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Abstract To achieve the full potential of high-order numerical methods for solv-
ing partial differential equations, the generation of a high-order mesh is required.
One particular challenge in the generation of high-order meshes is avoiding invalid
(tangled) elements that can occur as a result of moving the nodes from the low-
order mesh that lie along the boundary to conform to the true curved boundary. In
this paper, we propose a heuristic for correcting tangled second- and third-order
meshes. For each interior edge, our method minimizes an objective function based
on the unsigned angles of the pair of triangles that share the edge. We present sev-
eral numerical examples in two dimensions with second- and third-order elements
that demonstrate the capabilities of our method for untangling invalid meshes.

1 Introduction

The appeal of high-order methods for solving partial differential equations lies in
their ability to achieve higher accuracy at a lower cost than low-order methods. One
challenge in the adoption of these high-order methods for problems with curved
geometries is the lack of robust high-order mesh generation software [19]. More
specifically, to fully leverage the accuracy of high-order methods in the presence
of curved geometries, such methods need to be paired with a high-order mesh that
correctly reflects the curvature of the geometry, as demonstrated in [1, 8].
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The most common approach for high-order mesh generation methods is to trans-
form a coarse linear mesh [2], [3–5], [9, 10], [6, 12–14],and [16–18, 20]. The main
challenge of the transformation is obtaining a valid high-order mesh. In general,
these methods involve three steps: (1) adding additional nodes to the linear mesh;
(2) moving the newly added boundary nodes to conform with the curved geome-
try, and (3) moving the interior nodes. There are two categories of methods which
are especially popular for transforming the initial mesh. The first category involves
transforming the mesh based on optimization of an objective function [2], [4, 5],
[13, 14], and [15–17]. Several of the objective functions proposed in this category
include a measure of element validity, which allows them to untangle invalid ele-
ments [2, 4, 5, 13, 14, 17]. While they do not guarantee successful untangling, many
of them are robust. The second category of methods transform the mesh based on
the solution to a partial differential equation [3, 9, 12, 20].

In this paper, we describe an optimization-based approach for untangling invalid
second- and third-order meshes. The primary goal of this work is to untangle invalid
meshes that result from deforming the newly added boundary nodes to conform with
the true boundary. Toward that end, we demonstrate our method on several meshes
composed of second- and third-order elements that became invalid following the
projection of the boundary nodes onto the true boundary. We also explore the untan-
gling of meshes that became invalid as a result of small deformations. The remain-
der of this paper is organized as follows. In Section 2, we present our new method
for high-order mesh untangling. In Section 3, we illustrate the performance of our
method on several examples. Finally, in Section 4, we offer concluding remarks and
discuss some possibilities for future work.

2 Untangling high-order curvilinear meshes

In this section, we propose a local edge-based optimization method for untangling
high-order curvilinear meshes based on the unsigned angles of curvilinear triangles.
For each interior mesh edge, we identify the two triangles that share the edge and
compute the distortion of each of the two triangles. For each pair of triangles with
a minimum distortion measure less than 0, we solve the following unconstrained
optimization problem:

x∗ = argmin
x

4

∑
i=1

αi(x), (1)

where
αi = the ith entry of the vector of the four unsigned angles,
x = the nodal positions of the high-order nodes that lie on the edge
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In Fig. 1 we give an example which shows an interior edge in red and the pair of
triangles that share that edge in green. We also label the four unsigned angles that
are calculated, the nodes that are allowed to move during the optimization (black
diamonds), and the nodes that are fixed (black dots).

Fig. 1: A pair of triangles showing the interior edge (red), the free nodes (black
diamonds), the fixed nodes (black dots), and the four angles αi

To better understand the behavior of the objective function, consider the five ex-
amples shown in Fig. 2. In Fig. 2(a) for α1 +α4 and α2 +α3, moving the free node
(green diamond) will shift the proportion of each term, while leaving the overall
sum fixed. In other words, increasing α1 will cause a corresponding decrease in α4
while the quantity α1 +α4 remains the same. Similarly, increasing α2 will cause a
corresponding decrease in α3 while the quantity α2+α3 remains the same. This be-
havior means that the sum of all four angles cannot be further decreased by moving
the free node. Furthermore, this behavior is desirable because patches with no dis-
tortion will not be modified since the optimization will not move the free node (as
there is no step that will lead to a decrease in the objective function). Fortunately,
this behavior holds true as we add minor distortion as well. In Fig. 2(b), we moved
the bottom node (denoted by a blue square) to increase the distortion of the bottom
element. In Fig. 2(c), we moved the node slightly further to increase distortion. In
both cases, we can see that the overall sum cannot be further decreased by moving
the free node. Finally, in Fig. 2(d), we move the node to the point that it causes tan-
gling. Now that α1 is an angle between tangled edges, this angle can be decreased
by moving the free node. By decreasing the value of α1, we decrease the value of
α1 +α4, and thus decrease the overall sum of the four angles. In other words, min-
imizing our objective function attempts to decrease the value of angles that occur
between tangled edges by moving the free node away. In Fig. 2(e), we show results
of moving the free node to minimize our objective function.

To measure distortion, we use the scaled Jacobian [2]. To solve our unconstrained
optimization problem, we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-
Newton method decribed in Chapter 6 of [11]. In place of the analytical gradient,
we use a 6th order centered finite difference with a step size of 10−6. As our initial
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(a) (b)

(c) (d)

(e)

Fig. 2: A simple patch showing the angles (αi), the free node (green diamond), and
the node that is moved to increase distortion (blue square). In (a), the patch with no
distortion is shown. In (b-d), the amount of distortion is gradually increased. In (e),
the mesh after applying our method to minimize the sum of the angles is shown.
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Hessian approximation, we use a scaled version of the identity matrix. In Alg. 1 and
Alg. 2, we give pseudocode descriptions of our untangling method and optimization
method, respectively. Our implementation of the BFGS quasi-Newton method uses
a backtracking line search. This backtracking approach based on the Wolfe condi-
tions ensures that the step results in a sufficient decrease in our objective function.
In the next section, we discuss how the angles αi(x) of the curved elements are cal-
culated.

Algorithm 1 Pseudocode for our edge-based mesh untangling method

while there are tangled elements or passes < count do
for each interior edge e do

Find the two triangles t1 and t2 with e as a common edge
Compute the element distortions ed1 and ed2 for t1 and t2, respectively
if min(ed1,ed2)< 0 then

Solve Eq. 1 for x∗ using Alg. 2
Update nodal positions of the free nodes on e to x∗

end if
end for
passes = passes + 1

end while

Algorithm 2 Pseudocode for our BFGS quasi-Newton method

Given an initial value x0, an initial value for the Hessian B0, and a tolerance tol;
while ‖∇ f (xk)> tol‖ do

Compute Cholesky factorization Bk = LLT

Compute the direction vector dk by solving LLT dk =−∇ f (xk).
ρk = 1.0
while f (xk +ρkdk)> f (xk)+10−4ρk∇ f (xk)

T dk do
ρk = 0.5ρk

end while
xk+1 = xk +ρkdk
sk = xk+1− xk
yk = ∇ f (xk+1)−∇ f (xk)

Bk+1 = Bk−
BksksT

k Bk

sT
k Bksk

+
ykyT

k

yT
k sk

k = k+1
end while
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2.1 Measuring the angles of curvilinear triangles

In order to compute the angle between two curves at a given point, we compute
the derivatives of the curves, evaluate the derivatives at the given point, and then
compute the angle between the resulting tangent vectors. Following this approach,
we will compute the angles between each pair of edges of curvilinear triangles. For
our derivation, we use the third-order Lagrange elements. Derivation for the second-
order Lagrange elements is similar.

Consider the third-order Lagrange triangle shown in Fig.3 with shape functions
defined as follows:
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The mapping φ(ξ ,η) from the reference unit element in Fig.1 onto the physical
element is then given by:

φ(ξ ,η) =
10

∑
i=1

xi si(ξ ,η), (2)

where xi are the nodal positions, and (ξ ,η) is a point in the reference element. Since
we are concerned with the angles between each pair of edges, we need to define
mappings from each point on the edges of the reference element to the correspond-
ing point on the edges of the physical element. The edges correspond to third-order
Lagrange elements in 1D. The shape functions associated with these elements are



An angular approach to untangling high-order curvilinear triangular meshes 7

Fig. 3: Third-order Lagrange reference unit triangle

defined as:
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The derivatives of these shape functions with respect to t are given by:

n1
′(t) =

1
2
(
−11+36t−27t2)

n2
′(t) =

1
2
(
18−90t +81t2)

n3
′(t) =

1
2
(
−9+72t−81e2)

n4
′(t) =

1
2
(
2−18t +27t2) .

Using these shape functions, we define the mappings from each edge in the reference
element to each edge in the physical element as:

f12(t) = x1n1(t)+x4n2(t)+x5n3(t)+x2n4(t)

f23(t) = x2n1(t)+x6n2(t)+x7n3(t)+x3n4(t)

f31(t) = x3n1(t)+x8n2(t)+x9n3(t)+x1n4(t).

The notation fi j denotes the edge between nodes i and j in Fig. 1. In their expanded
forms, each fij(t) is a cubic polynomial in the variable t. Next, we need to compute
the derivatives of our functions. Straightforward differentiation with respect to t
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results in the following:

f12
′(t) = x1n1

′(t)+x4n2
′(t)+x5n3

′(t)+x2n4
′(t)

f23
′(t) = x2n1

′(t)+x6n2
′(t)+x7n3

′(t)+x3n4
′(t)

f31
′(t) = x3n1

′(t)+x8n2
′(t)+x9n3

′(t)+x1n4
′(t).

Given these derivatives, we can return to the problem of calculating the angles
between edges. As an example, suppose that we want to calculate the angle between
edge e12 and edge e31 in Fig. 1. To calculate the angle in radians, we use the follow-
ing formula:

θ = π− arccos
(

f12
′(0) f31

′(1)
|| f12

′(0)|| || f31
′(0)||

)
=

π

2
.

Returning to the calculation of αi(x) in Eq. 1, we loop over each triangle in the
patch and calculate the two angles of each triangle formed by the edges incident to
the shared edge between the triangles as described above.

3 Numerical experiments

In this section, we show the results from performing several numerical experiments
to untangle invalid second- and third-order meshes. For each example, we show
the initial meshes; the meshes which result after untangling them with our method;
the minimum distortion, maximum distortion, average distortion computed over all
elements (referred to as Avg1 in figures), and average distortion computed over
curved elements (referred to as Avg2 in figures), and the run time needed for our
method to untangle the mesh. For each mesh, we show the nodes associated with the
element of the given order. We do not show the location of the quadrature points.
The code was run using Matlab R2017b, and the execution times were measured
on a machine with 8GB of RAM and an Intel Xeon(R) W3520 CPU. All mesh
visualizations and distortion calculations were done using Gmsh [7].

Our first example is a third-order annulus composed of 30 elements. During the
process of curving the boundary, tangled elements were created near the top and
bottom of the inner ring. Figure 4(a,c) show the initial invalid mesh and the final
mesh resulting from our method, respectively. Figure 4(b,d), show detailed views of
the inner ring from Fig. 4(a,c), respectively. In Fig. 4(e) we give the mesh element
distortion.

Our second example is the leading edge of a third-order NACA0012 airfoil. In
Fig. 5(a), we can see that curving the inner boundary resulted in two tangled el-
ements near the leading edge of the airfoil. In Fig. 5(b), we show the final mesh
resulting from our method. Finally, Fig. 5(c) gives the mesh element distortion.
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(a) (b)

(c) (d)
Distortion

Example Min Max Avg1 Avg2
original mesh -0.223 1.0000 0.615 0.279
resulting mesh 0.039 1.0000 0.595 0.325

(e)

Fig. 4: Annulus example: (a) the tangled third-order mesh; (b) a detailed view of
one tangled element along the top of the inner boundary; (c) the mesh resulting
from our method; (d) a detailed view of the untangled element from (c), and (e) the
mesh quality as measured by the element distortion metric.

Our third example is a second-order mesh of a mechanical part with several
holes. Figure 6(a-c) shows the initial invalid mesh, the final mesh resulting from
our method, and the mesh quality as measured by the distortion metric. In Fig. 6(a),
we can see that curving the boundaries resulted in tangled elements near the top and
bottom holes.

Our fourth and fifth examples are valid meshes of a square plate with a circular
hole. To induce mesh tangling in the fourth example, we applied a rotation of 10
degrees counterclockwise to the inner ring followed by a horizontal shear with a
shear factor of 0.5. In Fig. 7(a,b,d), we show the initial valid mesh, the tangled mesh
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(a)

(b)

Distortion
Example Min Max Avg1 Avg2

original mesh -0.566 1.000 0.968 0.967
resulting mesh 0.050 1.000 0.970 0.970

(c)

Fig. 5: Airfoil example: (a) the tangled third-order mesh; (b) the mesh resulting from
our method, and (c) the mesh quality as measured by the element distortion metric.

resulting from rotation and shearing, and the final untangled mesh resulting from
our method. In Fig. 7(c,e), we show detailed views of the inner ring. In Fig. 7(f), we
give the element distortion for the initial, tangled, and final meshes, respectively. In
the fifth example, we applied a rotation of 10 degrees counterclockwise to the inner
ring followed by a stretching of the bottom half of the plate. In Fig. 8(a,b,c), we
show the initial valid mesh, the tangled mesh resulting from rotation and stretching,
and the final untangled mesh resulting from our method. In Fig. 8(d), we give the
element distortion for each mesh. In our final example, we show a valid mesh of a
two-dimensional beam. To create mesh tangling, we treated the beam as a simply
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supported beam and applied a center load. After applying the load, we translated
the left and right sides of the beam. In Fig. 9(a,b,c), we show the initial valid mesh,
the tangled mesh resulting from our transformations, and the final untangled mesh
resulting from our method. In Fig. 9(d,e), we show detailed views of the left side of
the beam from Fig. 9(b,c). Finally in Fig. 9(f), we give the mesh element distortion.

Example Number of Elements Wall Clock Time(s)
annulus 30 2.56
airfoil 282 16.63

mechanical part 182 2.44
plate 1 597 7.40
plate 2 597 7.48
beam 542 6.73

Table 1: The number of elements and the wall clock time for each mesh

While the test cases are relatively straightforward, our goal was to explore the
types of tangling that occur as a result of moving the new boundary nodes onto the
curved boundary during the typical high-order mesh generation process. We were
also interested in tangling that might result from small deformations to a valid mesh.
With these points in mind, the examples demonstrate that our method is able to han-
dle the small deformations that might result in tangling for second- and third-order
meshes. Additionally, our method only required a single pass for each of the test
cases. We demonstrate the runtime performance of our method in Tab. 1. We list the
number of elements and wall clock time for each of our numerical examples in Tab.
1. While these times are reasonable, for large meshes, faster run times will be re-
quired. Fortunately, there is high potential for improved performance using parallel
computing, as our method can be applied to non-adjacent patches simultaneously.

4 Conclusions

We have presented a new optimization-based method for untangling the edges of
second- and third-order meshes. The two-dimensional examples have shown that
our proposed method based on the unsigned angles of curvilinear triangles is able
to successfully untangle several invalid second- and third-order meshes.

We note that presently our method has a few limitations. The first limitation is
that it only allows movement of the high-order nodes that lie on the interior edge
(e.g. the free nodes show in Fig. 1). That is, it does not allow movement of the
endpoints. The second limitation is that non-edge nodes (e.g. like node 10 in Fig.
3) are not moved at all. The final limitation is that our objective function does not
measure element validity. Due to these limitations, our method does not guarantee
that it will successfully untangle a given tangled patch. With these limitations in
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(a)

(b)

Distortion
Example Min Max Avg1 Avg2

original mesh -0.049 1.000 0.904 0.601
resulting mesh 0.008 1.000 0.905 0.625

(c)

Fig. 6: Mechanical part example: (a) the tangled second-order mesh; (b) the mesh
resulting from our method, and (c) the mesh quality as measured by the element
distortion metric.
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(a) (b)

(c) (d)

(e)

Distortion
Example Min Max Avg1 Avg2

original mesh 0.287 1.000 0.995 0.412
tangled mesh -0.716 1.000 0.974 0.375

resulting mesh 0.027 1.000 0.979 0.500

(f)

Fig. 7: Square plate example: (a) the initial second-order mesh; (b) the mesh re-
sulting from rotating the inner ring 10 degrees counterclockwise and applying a
horizontal shear with a shear factor of 0.5; (c) a detailed view of the elements along
the inner ring; (d) the mesh resulting from applying our method, (e) a detailed view
of the elements along the inner ring; and (f) the mesh quality as measured by the
element distortion metric.
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(a) (b)

(c)

Distortion
Example Min Max Avg1 Avg2

original mesh 0.287 1.000 0.995 0.412
tangled mesh -0.120 1.000 0.966 0.934

resulting mesh 0.042 1.000 0.964 0.930

(d)

Fig. 8: Square plate example: (a) the initial third-order mesh; (b) the mesh resulting
from rotating the inner ring 10 degrees counterclockwise and stretching the bottom
half of the plate; (c) the mesh resulting from applying our method, (d) the mesh
quality as measured by the element distortion metric.
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(a)

(b)

(c)

(d) (e)

Distortion
Example Min Max Avg1 Avg2

original mesh 1.000 1.000 1.000 1.000
tangled mesh -0.044 1.000 0.982 0.975

resulting mesh 0.032 1.000 0.980 0.973

(f)

Fig. 9: Beam example: (a) the initial second-order mesh; (b) the mesh after treating
it as a simply supported beam with a center load and translating the left and right
ends; (c) the mesh resulting from applying our method; (d) a detailed view of the
left edge of (b); (e) a detailed view of the left edge of (c), and (f) the mesh quality
as measured by the element distortion metric.
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mind, our future work will include extending the capabilities of our method to in-
clude moving non-edge nodes, as well as allowing the endpoints of edges to move.
We will also explore the use of signed angles, where a negative angle indicates
that tangling is present. This would allow us to directly check element validity, but
would likely require modification of the objective function to achieve the desired
untangling behavior. Other future improvements include extending our approach to
three dimensions by using the dihedral angles between curved faces of high-order
tetrahedral elements, and extending our implementation to allow for elements with
p > 3.
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