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Summary. The ability to automatically morph an existing mesh to conform
to geometry modifications is a necessary capability to enable rapid prototyping
of design variations. This paper compares six methods for morphing hexahe-
dral and tetrahedral meshes, including the previously published FEMWARP
and LBWARP methods as well as four new methods. Element quality and per-
formance results show that different methods are superior on different models.
We recommend that designers of applications that use mesh morphing con-
sider both the FEMWARP and a linear simplex based method.
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1 Introduction

The modeling and simulation process often involves many iterations of ge-
ometric design changes. Geometric parameters are driven automatically via
an optimization procedure. The ability to automatically update an existing
mesh to conform to a modified geometry is a necessary capability to enable
rapid prototyping of many alternate geometric designs. In literature, this mesh
update process is called mesh morphing [28, 21], mesh warping [17, 18], or
mesh moving [22]. These algorithms first maintain constant mesh topology,
while computing new locations for mesh nodes in order to conform to geom-
etry changes. However, maintaining constant mesh topology has limitations
based upon the magnitude of the geometric changes required. More advanced
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methods for tetrahedral meshes perform local mesh modifications once ele-
ment quality degrades below a threshold [1, 4, 5, 14]. While modifying mesh
topology maintains element quality, local modification methods are generally
intractable for hexahedral meshes. In addition, mesh topology changes also in-
troduce noise into the gradient computations of the optimization. Extending
the range in which the mesh topology may be reused through many iterations
of the design process is the desired outcome of this research.

In this paper, we propose four new mesh morphing methods: 1. smoothing
alone, 2. weighted residuals, 3. simplex-linear, and 4. simplex-natural neigh-
bor. In addition, two existing methods, FEMWARP [17] and LBWARP [18],
which have been previously published for tetrahedral meshes, are extended
to hexahedral meshes. We compare these six methods with eight example
meshes (four hex, four tet) with numbers of nodes varying from 11k to 136k.
We assume the geometric topology of the models remains constant through all
iterations of the optimization, which allows the geometric ownership of mesh
nodes and elements to remain unchanged.

Ideally, the element quality resulting from any morphing method should
be optimal. In practice the element quality from a morphed mesh can still
be improved by using the morphed node locations as the initial condition for
a post-processing step of optimization based smoothing [3, 11]. The results
presented in this paper are generated without post-processing smoothing in
order to compare the resulting element quality of the morphing methods.

2 Background

Mesh morphing methods can be categorized as either mesh-based or mesh-
less. Mesh-based methods use the element topology of the mesh being mor-
phed to define a computational space to compute new node locations. Meshless
methods ignore the element topology, in favor of other algebraic relationships.

Numerous mesh-based techniques have been developed based on solving
partial differential equations (PDEs) assuming the boundary deformation
has been defined. For example, spring model approaches have been devel-
oped based on solving Laplace’s equation, variable diffusion, and biharmonic
PDEs [2, 9, 18, 22]. One of these methods, LBWARP [18], is used in the
comparison in this paper. A finite element based method (FEMWARP) for
triangle and tetrahedral meshes has also been presented [17], and is also part
of the comparison in this paper. Several elasticity-based approaches have been
developed as well [19, 23, 25]. An optimization-based approach to mesh warp-
ing based on the target matrix paradigm recently appeared in [13].

A meshless approach using radial basis interpolation functions has been
proposed in [15]. Simplex based meshless approaches have been used for mor-
phing surfaces meshes [24, 28]. In Section 3.3, we extend these simplex meth-
ods to morph volume meshes, and compare the results with other methods.

The computer graphics and geometry processing communities use morph-
ing for real-time deformations for animations [10] and geometric mappings
between 3D surfaces and the cooresponding 2D parameter space [7].
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3 Mesh Morphing Methods

We begin with a geometric domain, Ωn
G = {Gr|r = 0, 1, 2, 3} at iteration n,

with geometry entities of dimension r. An existing finite element mesh, Ωn
M =

{Mr|r = 0, 1, 2, 3}, also at iteration n, is assumed to have been generated and
fully associated with Ωn

G. We seek a transformation Ωn
M ⇒ Ωn+1

M given a new
Ωn+1

G such that the element quality in Ωn+1
M is maximized and usable. We

assume the topology of Ωn
G and Ωn+1

G are identical, which allows the mesh
topology of Ωn

M and Ωn+1
M to also be identical. Therefore, we seek only the

nodal (r = 0) transformation
[
M0
]n ⇒ [

M0
]n+1

.

In defining the nodal transformation
[
M0
]n ⇒ [

M0
]n+1

we address the
nodes on each geometric entity type independently. For example, nodes are

first transformed from vertices (r = 0) of
[
G0
]n

to vertices of
[
G0
]n+1

, fol-
lowed by curves (r = 1), surfaces (r = 2) and finally volumes (r = 3). In
each step, the locations of nodes associated to lower dimension entities are
assumed to be fixed. We introduce the notation Xr(e) to represent the loca-
tion of entity e, which is either a geometric vertex or a mesh node. If e is a
geometric vertex, r is omitted. If e is a mesh node, r represents the dimension
of the geometric entity to which the node is associated.

The new location of node k associated to geometric vertex j is simply:

X0

([
M0

k

]n+1
)

= X
([
G0

j

]n+1
)
. (1)

For curves, we make the assumption that the parametric location, tk, on curve
j, for any node k, remains constant through the transformation n ⇒ n + 1,
(tk = tnk = tn+1

k ). We define the location for any interior node k on curve j
as:

X1

([
M0

k

]n+1
)

=
[
G1

j

]n+1
(tk) (2)

where
[
G1

j

]n+1
(tk) is a simple parametric evaluation of curve j at tk.

For nodes associated to surfaces we use either the smoothing or weighted
residual method described below. Any of the methods described below could
be used to morph surface nodes if the surface is planar, or with a post-morph
3D surface projection. However, our focus is on 3D morphing of volume mesh
nodes, so we have only implemented the smoothing and weighted residual
methods for general 3D surface node transformations.

For nodes associated to volumes we use either the smoothing, weighted
residual, simplex-linear, simplex-natural neighbor, FEMWARP, or LBWARP
methods described below. Optionally, for structured hexahedral meshes, the
interior node locations of the morphed models could be computed using trans-
finite interpolation. However, we seek methods which can be applied to un-
structured hex mesh topologies.

3.1 Smoothing

Smoothing, a mesh-based method, utilizes smoothing techniques from the
Mesquite [3] toolkit, and is used for morphing both surface and volume nodes
(r = 2, 3). After the nodes on the bounding curves are morphed to their new
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positions, the interior surface mesh will often be inverted. Surface smoothing
is then performed using the nodal coordinates established on the boundary
curves as fixed. Mesquite’s mean ratio, condition number [11] and untangling
smoothing procedures are used adaptively based on local mesh quality. The
same smoothing techniques are subsequently employed for volumes, where the
node locations established on the boundary surfaces are fixed.

3.2 Weighted Residuals

Weighted residual, a meshless method, borrows from hexahedral sweeping,
which morphs quad meshes from “source” surfaces to intermediate or “target”
surfaces [12]. The weighted residual method is used for surface and volume
morphing (r = 2, 3). The initial node locations,

[
M0
]n

, are first transformed
using an affine transformation, Γ, computed to minimize the function:

F(Γ) = min
∑[

Xr−1

([
M0

k

]n+1
)
− Γ ·Xr−1

([
M0

k

]n)]
(3)

for all nodes, k, on the domain boundary. A correction is then applied based
upon the weighted sum of the nearby residual vectors at boundary nodes. The
location of an interior node k, can be represented as:

Xr

([
M0

k

]n+1
)

= Γ ·Xr

([
M0

k

]n)
+

npts∑
i=1

wiRi, (4)

Ri = Xr−1

([
M0

i

]n+1
)
− Γ ·Xr−1

([
M0

i

]n)
, and (5)

wi =
d−2i∑npts

j=1 d
−2
j

(6)

where Ri in (4) represents the minimization error in (3) for boundary node i.
The weight wi in (4), is the normalized inverse distance squared from node k
to the nearest boundary nodes. 0nly a subset of the boundary nodes influence
the weight wi. We identify the npts closest boundary nodes using a kd-tree.
For the results in Section 4 we used npts = 20 for surface morphing and
npts = 80 for volume morphing, however an adaptive method for determining
the influencing nodes may be necessary.

3.3 Simplex-Linear Transformations

Simplex-linear is a meshless method based upon the BMSweep hex sweep-
ing method [24], previously used for surface morphing [28]. In this study,
simplex-linear was only implemented for 3D volume morphing, using weighted
residual for surface morphing.

Simplex-linear creates a Delaunay tessellation, Dn, of the nodes on the
fixed domain boundary. We use QMG[27] to generate Dn. No interior nodes
are used. The enclosing tetrahedron, Tn

i , of each interior node i is determined.
The barycentric coordinates, Bi, of X3

([
M0

i

]n)
with respect to Tn

i is com-
puted. We require that the connectivity of Dn remains the same for Dn+1
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and enforce the condition that the barycentic coordinates, Bi, for node i with
respect to Tn

i and Tn+1
i will be the same. The location of interior node i at

iteration n+ 1 is then:

X3

([
M0

i

]n+1
)

=

4∑
j=1

(Bi)j ·X2

(
Tn+1
i

)
j

(7)

where (Bi)j is defined as the jth component of Bi and X2

(
Tn+1
i

)
j

is the

location of the jth node of tetrahedron Tn+1
i .

3.4 Simplex-Natural Neighbor Transformations

The simplex-natural neighbor method uses a similar vertex-based weight-
ing scheme as the simplex-linear method described in Section 3.3, but gen-
eralizes the selection of weighting vertices. If we consider Cn

i , the set of all
tetrahedron, Tn

i ∈ Dn, whose circumsphere contains X3

([
M0

i

]n)
, then all

vertices, (Nn
i )j |j = 1, 2, ...nvert, of tetrahedron Cn

i , are used to compute the
natural neighbor coordinates, (λi)j for [M0

i ]n. Similar to equation 3.3 we can

define the new location X3

([
M0

i

]n+1
)

as a weighted average of (Nn+1
i )j using

weights (λi)j ,

X3

([
M0

i

]n+1
)

=

nvert∑
j=1

(λi)j ·X2

(
Nn+1

i

)
j

(8)

where (λi)j are a function of the Voronoi volumes formed by temporarily in-
serting [M0

i ]n into Dn as described in [29] and [20]. Because the morphed
locations of [M0

i ]n are influenced by the boundary points within its natural
neighborhood, rather than only the four points defined by its enclosing tetra-
hedron, we hypothesize that the resulting morph quality will be improved.

3.5 Finite Elements

Finite element-based mesh warping (FEMWARP) was proposed by Baker
[1] and developed by Shontz and Vavasis in [17] for tetrahedral meshes. We
now adapt FEMWARP for hexahedral meshes. FEMWARP expresses the co-
ordinates of each interior node, ni, of the initial mesh as an affine combination
of its neighbors with shape functions encapsulated in element stiffness matri-
ces for each element. Extending FEMWARP to hexahedral meshes simply
requires implementing hexahedral element stiffness matrices. We use stan-
dard bi-linear hex shape functions. Each ni is then expressed as an affine
combination of the nodes which share a common adjacent element with ni.

The FEMWARP method proceeds as with tetrahedra. Let b and m be the
numbers of boundary and interior nodes,

[
M0
]n

, in Ωn
M , respectively. We form

the (m+b)×(m+b) global stiffness matrix A by assembling the local element

stiffness matrices for the boundary value problem 4u = 0 on
[
G0
]n+1

with

u = u0 on ∂
[
G0
]n+1

. The result is a symmetric positive definite sparse global
stiffness matrix where its nonzero entries correspond to pairs of neighboring
nodes.
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Next, let AI denote the m ×m submatrix of A whose rows and columns
are indexed by interior nodes, and let AB denote the m × b submatrix of A
whose rows are indexed by interior nodes and whose columns are indexed by
boundary nodes. Let Xn

I be the m× 3 matrix consisting of x, y, z-coordinates
of the interior nodes at step n:

Xn
I = {X3

([
M0

1

]n)
,X3

([
M0

2

]n)
, . . . ,X3

([
M0

m

]n)}T (9)

and let Xn
B be the b×3 matrix consisting of x, y, z-coordinates of the boundary

nodes at step n:

Xn
B = {X2

([
M0

m+1

]n)
,X2

([
M0

m+2

]n)
, . . . ,X2

([
M0

m+b

]n)}T (10)

where interior nodes are numbered first. Then it follows that:

AIX
n
I = −ABX

n
B (11)

and
AIX

n+1
I = −ABX

n+1
B . (12)

In (11) and (12), the only unknown is Xn+1
I , which represents the morphed

locations of the interior nodes of Mn+1 and can be found by solving (12) as
a linear system of equations.

3.6 Log Barrier

The log barrier-based mesh warping (LBWARP) technique was proposed
by Shontz and Vavasis in [18] for tetrahedral meshes. We now adapt LBWARP
for hexahedral meshes. Let X3

([
M0

i

]n)
denote the x, y, z coordinates of the

ith interior node, ni, in the initial mesh. In addition, let the x, y, z coordinates
of ni’s adjacent nodes be given by {X0,1,2,3

([
M0

j

]n)
: j ∈ Ni}, where Ni

denotes the set of neighbors of ni.
We define Ni as the set of all nodes which share an adjacent 3D element

with ni. For tetrahedra, this also means that ni shares a common mesh edge
with every nj in Ni. However, this is not true for hexahedra because of the
more complex hexahedral topology. We choose this definition of Ni to include
more nodes in the interpolation and for consistency with FEMWARP.

In order to find the set of weights wij , where wij is the weight of node j on
interior node i, we use the log barrier function from linear programming [16]
to formulate the following optimization problem for each ni:

maxwij ,j∈Ni

∑
j∈Ni

log(wij)

subject to wij > 0∑
j∈Ni

wij = 1

X3

([
M0

i

]n)
=
∑

j∈Ni
wijX0,1,2,3

([
M0

j

]n) (13)

We solve for all wij using (13), a strictly convex optimization problem,
for its unique optimum using the projected Newton method [30]. (See [18] for
more details.)
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Once the weights, wij , have been found, we assemble all wij into an (m+
b) × (m + b) matrix A, and solve for the morphed interior node locations by
decomposing it into AI and AB in the same manner used for FEMWARP. For
LBWARP, AI is an M-matrix.

4 Examples

We have implemented the six methods described in Section 3 using C++.
For the FEMWARP and LBWARP methods, the Trilinos [26] implementation
of the Amesos KLU sparse direct linear solver [6] was used to solve the linear
systems. No matrix pre-conditioning was done.

Four example problems are illustrated in Figures 1, 3, 5, and 7. 3D mor-
phing, using all six methods, was performed on a tetrahedral and a hexahe-
dral mesh of each model, giving eight total test cases. To ensure a consistent
baseline for the 3D methods, the boundary surface meshes of each example
were morphed with the weighted residual method. Table 1 lists the number
of nodes and elements in each example model. All test case data were run on
an HP ProLiant linux workstation with two X5570 Intel quad cores with 24
GB RAM. The resulting quality and execution times were reported.

The tet meshes were generated with the GSH3D tet mesher [8]. The hex
meshes on the bore and pipe models are completely structured and were gener-
ated with transfinite interpolation. In contrast, the hex meshes on the courier
and canister models are unstructured, having been generated by decomposing
the geometries into partitions each of which can be meshed with the pave and
sweep method [24].

Table 1. Example Model Sizes

Bore Pipe Canister Courier
Hex Tet Hex Tet Hex Tet Hex Tet

#nodes 11,904 21,859 11,520 17,174 136,462 83,562 101,817 136,106
#elems 15,190 109,535 8,532 81,304 128,269 472,924 83,934 699,867

Element quality is compared using the scaled Jacobian metric, which is the
determinant of the elemental stiffness matrix. Normalization of element edges
during formulation of stiffness matrices restricts the scaled Jacobian metric
on the range [-1,1].

In each example, two sets of geometric parameters, S0 ∈ {s01, s02, ...s0nvar}
and SF ∈ {sF1 , sF2 , ...sFnvar}, define initial and final geometry configurations.
Morphing is performed with N iterations between S0 and SF where the pa-
rameters, Si, used for a given iteration i are defined as:

Si =
i

N
(SF − S0), i ∈ {0, 1, . . . , N}. (14)

We used N = 20. Each model is morphed using both relative and absolute
coordinates. With relative coordinates, the mesh is morphed from Si−1 to Si,
testing incremental morphing and iterative element quality degradation. With
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absolute coordinates, the mesh is morphed from S0 to Si, testing how big a
step each morphing method can take while maintaining element quality.

4.1 Bore Model

Figure 1 illustrates the “bore” model with its geometric parameters S0 ∈
{h, r1, r2, r3, θ} and SF ∈ {h′, r′1, r′2, r′3, θ′}. The values used are S0 ∈ {12.0,
2.0, 2.5, 3.0, 60◦} and SF ∈ {12.0, 2.5, 3.5, 6.0, 30◦}. The bore model tests
scaling and rotations in each morphing method. The resulting element quality
is illustrated in Figure 2. The hex mesh is a structured mesh generated with
transfinite interpolation, while the tet mesh is completely unstructured. For
this simple model, all morphing methods except smoothing provide near iden-
tical results for both relative and absolute morphing. The smoothing method
does well for relative morphing, but quickly inverts element quality for ab-
solute morphing. This suggests that smoothing should be restricted to small
parametric changes. Table 2 lists the execution times for each method. It is
notable that the execution times are roughly the same for the relative and
absolute runs for all methods except for smoothing. Smoothing times more
than double for absolute. This is because as the parametric changes get big-
ger, the displacement of the boundary nodes produces an inverted mesh that
smoothing must work harder to untangle.

(a) (b)

Fig. 1. Example problem “bore”. (a) The parametric variables on the initial shape,
(b) the final shape.

4.2 Pipe Model

Figure 3a illustrates the “pipe” model with its geometric parameters. Fig-
ures 3b and 3c illustrate the initial and ending geometric shapes. The pipe
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(a) (b)

(c) (d)

Fig. 2. Results of morphing on bore model. (a) Relative hex morph, (b) absolute
hex morph, (c) relative tet morph, (d) absolute hex morph.

Table 2. Results for morphing bore model: CPU Time Per Step

Method
Ave Time Per Step (sec)

Hex-Relative Hex-Absolute Tet-Relative Tet-Absolute

Smoothing 0.23 0.75 0.68 1.75

Weighted Residual 3.57 3.65 7.52 7.40

FEMWARP 0.30 0.29 0.56 0.58

LBWARP 1.55 1.36 1.97 1.96

Simplex-linear 0.33 0.40 0.39 0.36

Simplex-natural neighbor 0.46 0.38 0.94 0.56

thickness and radius are decreased and the elbow radius is increased. The pipe
model tests nonlinear stretching. Figure 4 again shows that the smoothing
method is unable to maintain a quality mesh for very long, especially in ab-
solute morphing. For tet morphing the five other methods result in nearly the
same element quality. Hex element quality from FEMWARP, simplex-linear,
and simple-natural neighbor are roughly the same and superior to weighted
residual, while LBWARP is somewhere in the middle.

Execution times for the pipe model are listed in Table 3. For this model, the
FEMWARP, simplex-linear, and simplex-natural neighbor methods perform
significantly better than LBWARP, smoothing, and weighted residual, while
weighted residual is the most expensive method. Simplex-linear is by far the
least expensive method.
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(a) (b) (c)

Fig. 3. Example problem “pipe”. (a) The parametric variables, (b) the initial shape,
(c) the final shape.

(a) (b)

(c) (d)

Fig. 4. Results of morphing on pipe model. (a) Relative hex morph, (b) absolute
hex morph, (c) relative tet morph, (d) absolute hex morph.

Table 3. Results for morphing pipe model: CPU Time Per Step

Method
Ave Time Per Step (sec)

Hex-Relative Hex-Absolute Tet-Relative Tet-Absolute

Smoothing 1.08 1.19 2.56 2.41

Weighted Residual 3.39 3.28 6.08 5.93

FEMWARP 0.31 0.32 0.55 0.56

LBWARP 1.53 1.50 1.88 1.85

Simplex-linear 0.16 0.28 0.31 0.28

Simplex-natural neighbor 0.29 0.35 0.53 0.54
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4.3 Canister Model

Figure 5a illustrates the “canister” model which has only one geometric
parameter (i.e. the offset of an inner cylindrical hole). Figures 5b and 5c illus-
trate the initial and ending geometric shapes. The canister model tests severe
localized mesh warping, while the majority of the model remains unchanged.
Figure 6 shows that for the canister model, FEMWARP and LBWARP pro-
vide the best quality. They maintain a positive scaled Jacobian mesh for longer
than any other method. The exception is the smoothing algorithm, which
performs well for hex-relative (Figure 6a), but poorly for hex-absolute and
both tet morphs. The simplex and weighted residual methods also perform
well, providing equivelant quality to FEMWARP and LBWARP for the first
several steps of all four morphs, until eventually trailing off. Interestingly,
simplex-linear and simplex-natural neighbor provide near identical results.

The increased model size of the canister model (∼100k nodes) over the
pipe and bore models (10k-20k nodes) is reflected in the execution times in
Table 4. For hex, FEMWARP and LBWARP are by far the most expensive,
followed by weighted residual. For tet, FEMWARP and LBWARP did not
show the spike in computation time. The simplex-linear method is by far the
most efficient method, several orders of magnitude faster than the others.

Table 4. Results for morphing canister model: CPU Time Per Step

Method
Ave Time Per Step (sec)

Hex-Relative Hex-Absolute Tet-Relative Tet-Absolute

Smoothing 5.10 20.90 3.88 4.02

Weighted Residual 76.24 74.86 46.00 46.52

FEMWARP 215.48 216.39 31.92 31.81

LBWARP 265.14 266.96 43.35 44.50

Simplex-linear 0.55 0.83 0.57 0.69

Simplex-natural neighbor 54.25 52.88 23.43 23.48

4.4 Courier Model

Figure 7 illustrates the “courier” model. Eight parametric variables are
modified to test full design optimization. For hex-relative, the simplex meth-
ods consistently provide the best quality, followed by FEMWARP. LBWARP
is the first to invert the mesh. For hex-absolute and the tet morphs, FEMWARP
and the simplex methods provide the best element quality.

Table 5 shows that simplex-linear is again the most efficient method. In-
terestingly, FEMWARP and LBWARP are also very efficient when compared
to the Canister model results. It is clear that the efficiency of FEMWARP
and LBWARP are model dependent, likely controlled by the conditioning of
the sparse global system being solved.

4.5 Performance and Scaling

Twenty-five variations of a brick model were used to obtain scaling data.
An N × 20× 20, N ∈ {20, 30, . . . 260}, hex mesh was fit to a N × 20× 20 box.
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(a) (b) (c)

(d) (e)

Fig. 5. Example problem “canister”. (a) The offset parametric variable, (b) the
initial shape, (c) the final shape, (d) zoom in of initial meshes, (e) zoom in of final
meshes.

Table 5. Results for morphing courier model: CPU Time Per Step

Method
Ave Time Per Step (sec)

Hex-Relative Hex-Absolute Tet-Relative Tet-Absolute

Smoothing 5.13 12.27 37.61 67.40

Weighted Residual 39.70 39.16 69.26 72.76

FEMWARP 4.75 4.89 14.92 14.78

LBWARP 18.55 18.71 28.44 28.49

Simplex-linear 1.07 1.50 1.95 2.55

Simplex-natural neighbor 6.69 7.45 13.23 12.67
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(a) (b)

(c) (d)

Fig. 6. Results of morphing on canister model. (a) Relative hex morph, (b) absolute
hex morph, (c) relative tet morph, (d) absolute hex morph.

The dimensions of the box were then scaled to N × 20 × 40, and the mesh
morphed to fit. Figures 9a and 9b illustrate the model for N = 20 and N = 30
respectively. Each N×20×20 mesh was morphed to the N×20×40 model with
each of the six morphing methods, testing 3D affine scaling. Different scaling
would likely result with different geometric changes such as torsion or shear.
The execution times are plotted in Figure 10. Figure 10 shows that simplex-
linear, simplex-natural neighbor and weighted residual scale nearly linearly,
while LBWARP, FEMWARP and smoothing scale to a power of ∼1.50. The
simplex methods scale the best and are the most efficient. LBWARP and
FEMWARP are the most expensive since they require a solution to a global
sparse matrix system.

5 Conclusions

We have compared six 3D mesh morphing methods on eight example mod-
els. Here we make conclusions based on the results of this comparison.

Smoothing : The smoothing method tracks small linear changes in geometry
very well, as illustrated by the bore model. However, absolute (large step)
morphing and nonlinear transformations, such as those in the pipe, courier,
and canister models, proved impossible to capture. The morph of the model
boundary produces a severely tangled mesh for large transformations, which a
smoother cannot always untangle. Likely additional smoothing iterations are
needed. However, in general, smoothing is not a reliable morphing method.
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(a) (b) (c)

(d) (e)

Fig. 7. Example problem “courier”. (a) The parametric variables, (b) the initial
shape, (c) the final shape, (d) zoom in of initial mesh, (e) zoom in of final mesh.

Weighted Residual : The weighted residual method performed on par with
the other methods for simple models such as the bore model. However, as
model complexity increased, weighted residual and smoothing are generally
the first to produce poor mesh quality. Quality might be improved by increas-
ing npts in equations (4) and (6), at the cost of decreased efficiency.

Simplex-Linear : This method proved effective for all example models in-
cluding those with large transformations and complex geometry such as the
courier and canister models. Performance and scaling is excellent due to the
ability to localize the location of containing tets and the computation of
barycentric coordinates. The most expensive part, however minimal, is the
generation of the background Delaunay tesselation. However, there are good
quality Delaunay tesselators available [27]. Even with the cost of generating
the tesselation, simplex-linear is still by far the least computationally ex-
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(a) (b)

(c) (d)

Fig. 8. Results of morphing on courier model. (a) Relative hex morph, (b) absolute
hex morph, (c) relative tet morph, (d) absolute hex morph.

(a) (b)

Fig. 9. Model for scaling study, (a) N = 20, (b) N = 30.

pensive method. Considering reasonable element quality and excellent perfor-
mance, simplex-linear should be considered for any morphing implementation.

Simplex-Natural Neighbor : This method was included in the study in antic-
ipation of improved element quality over simplex-linear by using a more judi-
cious selection of weighting vertices. Using our implementation, both barycen-
tric and natural neighbor weighting exhibited very similar results. As sug-
gested by [29], augmenting the natural neighbor interpolant to use a nodal
based gradient function may provide further improvement. However, with our
current implementation, we observed little improvement in element quality
and decreased performance over simplex-linear. Given that this method is
more difficult to implement than simplex-linear, further studies would be
needed before this method could be recommended over simplex-linear.



16 M. L. Staten, S. J. Owen, S. M. Shontz, A. G. Salinger, T. S. Coffey

Fig. 10. Scaling (time per step).

LBWARP : LBWARP provided excellent element quality on all test cases,
except for the courier model with hexes. On the courier-hex model, element
quality is still good, but less than the other methods. However, scaling of
LBWARP is a concern. LBWARP requires solving an n × n sparse linear
system, where n is the number of interior nodes being morphed. An efficient
sparse linear solver is critical for any LBWARP implementation. Our example
models show that LBWARP can morph meshes with ∼100k elements in a few
minutes. Computation times may become unacceptable as model sizes increase
beyond a few hundred thousand nodes. Efficiency also varies significantly, for
similarly sized models, as shown by a comparison of Tables 4 and 5. LBWARP
is also complicated to implement. Tolerance and convergence issues must be
considered carefully in the computation of the initial weights, wij , particularly
with hexahedral meshes which tend to have large sets of coplanar element
faces. Finally, LBWARP requires that the initial mesh be non-inverted (i.e.
all elements being convex). Computation of initial weights, wij , requires that
each point lie in the convex hull of its neighbors, which is not guaranteed in
inverted meshes. The other five methods do not have this restriction.

FEMWARP : FEMWARP maintained the best element quality for all test
cases and is easy to implement. Computation/assembly of local element stiff-
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ness matrices is the most difficult coding task. Although, FEMWARP requires
solving an n× n global sparse system matrix, where n is the number of inte-
rior nodes, and efficiency varies significantly for similarly sized models, easy
parallelization should minimize scaling concerns. We recommend FEMWARP
based on its excellent element quality and easy of implementation.

In summary we recommend that both simplex-linear and FEMWARP
should be considered when implementing a mesh morphing system. FEMWARP
provides excellent element quality and easily extended to parallel for large
models. The simplex-linear method also provides reasonable element qual-
ity, with excellent performance even for very large models. Additional studies
would be required to identify the context in which the other morphing meth-
ods presented in this paper would be a reasonable option.

Finally, we observe that hexahedral meshes tend to maintain higher ele-
ment quality longer than tetrahedral meshes during morphing, particularly
with structued hex meshes, likely due to the more flexible element topology
of hexahedral elements. For example, in the bore and pipe models, minimum
element quality degrades only slightly for the hex meshes, while the quality of
tet meshes on the same model become inverted (compare Figures 2a, 2b, 4a,
and 4b with Figures 2c, 2d, 4c, and 4d). This same effect is seen to a lesser
effect with the unstructured hex meshes on the canister and courier models.
Maintaining high element quality during morphing is more important in hex-
ahedral meshes because local remeshing of hexahedra is generally considered
intractable, while straightforward for tetrahedral meshes.
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