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1 Local Mesh Optimization

Many applications in computational science such as heat transfer, advection-
diffusion, and fluid dynamics numerically solve partial differential equations.
To numerically solve the equations, finite element, finite volume, and other
PDE-discretization methods are commonly used, along with meshes to dis-
cretize the physical domain. It is well-known that the mesh and its quality
can greatly impact the accuracy of simulations, as well as solver efficiency [1],
[2]. Mesh quality can be improved by various methods including adaptivity
[3], [4], smoothing [5], [6], and swapping [7], [8]. In mesh smoothing, one em-
ploys vertex-movement strategies to change the coordinates of mesh vertices,
leaving initial mesh connectivity intact. Mathematically rigorous methods for
formulating the smoothing problem entail the use of an objective function
that measures quality; included in this category are the variational methods
for structured meshes [9], [10], [11], and the direct optimization methods based
on mesh entities such as lengths and angles [12], [13].

A commonly-used method for smoothing meshes is the local patch method
where-in one loops over a set of patches containing one free vertex and the
adjacent vertices [14], [15], [16]. On each patch, the coordinates of the free
vertex are updated by using an update rule or by solving a local optimization
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problem. These solution methods are required to be very fast in order to keep
pace with other parts of a PDE-based simulation. As such, one usually only
performs a few sweeps to obtain an inexact solution, i.e., one that is closer to
optimal than the initial mesh, but differs from the true optimum.

The local patch smoothing method bears a strong resemblance to local
iterative methods such as Gauss-Seidel for solving systems of equations. From
that perspective, it is natural to ask whether or not the knowledge of linear
solvers can be applied to mesh smoothing methods. One solver topic that
seems particularly relevant to local mesh smoothing is that of vertex order-
ing. It is well-known that, in solving systems of equations via local relaxation
methods, the order in which the local sets of equations associated with a
vertex are considered can make a difference in the time needed to solve the
equations. For example, [17] describes natural and red-black orderings, also
known as point partitionings. This must also be the case when smoothing
meshes via local patches; however, it does not appear to have been investi-
gated to any large extent. In the present study, we examine the effect that
altering the vertex ordering has on the CPU time to solution, with the goal
of accelerating the convergence.

2 Timing Considerations

Pseudocode for the local patch optimization scheme is shown below. The
smoothing or optimization procedure used to update the free vertex coordi-
nates may itself be iterative, but the details of this inner iteration procedure
are not needed for the present purposes. Note that if the termination criterion
(for the outer ‘while’ loop) is not tight, then the final mesh will depend on
which fixed vertex ordering is selected.3 The outer termination criterion used
in this study is a comparison of the value of the objective function at each
iteration (representing the mesh quality) to a pre-determined value. There-
fore, we are interested in the ordering scheme that reaches the given level of
quality in the least amount of time. The inner termination criteria varied as
described later.

To assess the effectiveness of the various reordering schemes under differ-
ent situations, we recorded the Optimization Time per Iteration (OTI), which
is the difference between Timer3 and Timer2. The cumulative optimization
time (COT), Tj , is the sum of all the OTI’s over the ‘while’ loop, with j denot-
ing the reordering scheme j = 1, 2, ..., J .4 Also recorded were the cumulative
reordering time, CRT, (Timer4 - Timer3) and the total time, TT, (Timer 5 -
Timer 1).

3In general, the final mesh can also depend on which fixed vertex ordering is
selected even when the tolerance is tight due to the existence of non-unique minimae.
We have attempted to avoid this possibility by using a convex local metric.

4The timings include a negligible amount of time due to overhead operations.
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Pseudocode for Local Mesh Smoothing and Optimization

1. Initialization: vertex list, termination criterion,
tolerances, objective function, control parameters.

-- CPU Timer_1
2. While tolerance not satisfied and iteration count

not exceeded
-- CPU Timer_2
Loop over list of free vertices
- update free vertex coordinates (optimization)

End loop over free vertices
-- CPU Timer_3
Reorder vertex list every k-th iteration
-- CPU Timer_4

End while loop
-- CPU Timer_5

3 Study Design

There are many variables, parameters, and choices one might make in a study
of the impact of vertex reordering on the overall efficiency of local patch-
based mesh optimization. Among the possible choices are different quality
metrics, objective function templates, optimization solvers, serial or paral-
lel solvers, computer architecture, 2D/3D, element type, type of reorder-
ing scheme, mesh anisotropy/isotropy, mesh heterogeneity/homogeneity, mesh
connectivity, tightness of the termination criterion of the outer ‘while’ loop,
and the number of free vertices in the mesh. For this initial work we con-
fine our focus by fixing the local quality metric (||T − I||2F ), the template
(linear averaging), the solver (Feasible Newton [18]), serial computation, and
the dimension (2D). The quality metric is described in [19] where its utility
is demonstrated. Further, the metric and objective function are proven con-
vex in [20]. The machine employed for this study is equipped with two Intel
(R) Xeon (TM) processor each having four cores; each processor has an 8MB
cache shared between its cores. The 64-bit machine has 4GB of RAM and runs
Linux. Optimizations and reorderings were performed using the Mesquite code
(Version 1.99 Alpha) [21].

The remaining free variables that were studied in this research are: (i)
several vertex reordering schemes to be described in the next section, (ii) the
number of free vertices in the optimization problem, (iii) mesh type (element
type and degree of heterogeneity/isotropy), and (iv) the frequency with which
the vertex list reordering is performed.

The outer termination criterion for the runs was based on the desire to
have them complete in roughly five minutes because in this amount of time
the resulting meshes are neither highly accurate nor grossly inaccurate (the
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inaccurate case, about one minute, was also considered). The outer termina-
tion criterion value was determined in a set of baseline calculations by running
the code for more than five minutes to learn what the value of the objective
function was at five minutes. This value was then used to terminate subse-
quent runs.

The optimization problem that is solved in this study used an objective
function that was the average over the entire mesh of the values of the local
metric at the element corners (quadrilateral case) or at the barycenter (tri-
angle case). The matrix T = AW−1 was determined from A and W , where
A represents the quality of the physical mesh and W represents the target
quality, as determined from a reference mesh. See [22] and [19] for details.

4 Vertex Reordering Schemes

Vertex reordering can be done either statically or dynamically. In the static
case, one takes as input the initial ordering of the vertex list provided to the
optimization scheme, and reorders using some criterion. The reordered list is
then used and kept fixed during the optimization. In the dynamic case, the
reordered list is updated at the end of each iteration (or at the end of every
kth iteration) within the optimization, thus creating a sequence of lists. Both
strategies were considered in this study. The reordered lists contain the same
number of vertices as the initial list. The challenge in all of these approaches is
to devise a reordering scheme that accelerates convergence while keeping the
computational cost of the reordering low so that the latter does not dominate
the time to optimize. Specific vertex reordering schemes that were investigated
are described next.

Scheme (N): Null ordering. Do not reorder the vertex list.
Scheme (R): Random Ordering. Generate a random integer from 1 to N,
with N being the total number of local patches in the mesh. Place the vertex
assigned the value 1 first in the list and N last.
Scheme (WQP): Ordering by Worst Quality Patch. Evaluate objective
function on a local patch to measure local patch quality. Sort by putting the
worst quality patch first in the list, and so on.
Scheme (GAVM): Ordering by Greatest Absolute Vertex Move-
ment. Evaluate the absolute distance moved by the free vertex in the local
patch before and after the local optimization. Sort by putting the patch with
the greatest absolute distance moved first in the list, and so on.
Scheme (GRVM): Ordering by Greatest Relative Vertex Movement.
Evaluate the relative distance moved by the free vertex in the local patch
before and after the local optimization. Relative distance was measured by
dividing the absolute distance-moved by the initial absolute distance-moved;
the normalizing quantity thus varies from patch to patch. Sort by putting the
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patch with the greatest relative distance moved first in the list, and so on.
Scheme (LNG): Ordering by Largest Norm of Gradient. Evaluate the
`2-norm of the local gradient of the objective function. Sort by putting the
largest norm first in the list, and so on.

For the schemes WQP, GAVM, GRVM, and LNG, there were associated
‘distance’ schemes D-WQP, D-GAVM, D-GRVM, and D-LNG which are cre-
ated by measuring the distance of the free vertex in each patch from the
position of the free vertex which had the (i) worst patch quality, (ii) great-
est average vertex movement, (iii) greatest relative vertex movement, or (iv)
largest norm of the gradient, respectively. Then sort by putting the patch with
the smallest distance first in the list, and so on.

For each of the schemes above there is a corresponding ordering scheme
produced by reversing the ordering (the abbreviation for these schemes is the
same as the forward ordering except there is a ‘minus’ at the start of the ab-
breviation). For example, scheme -WQP orders the vertex patches from best
quality first to worst quality last. Thus there are a total of 20 ordering schemes
in this study.

A QuickSort algorithm was used in this study to do the reordering. The
complexity of the sort is O(N log N), with the worst case being O(N2), where
N is the number of patches to smooth per outer iteration. The larger the num-
ber of patches, the more time it takes to reorder them, so the key question is
whether or not the time saved by the reordering (as a function of N) increases
as fast as the time to do the reordering.

5 Mesh Selection Criteria

Five meshes were created, as described in Table 1. Two basic cases are the
structured quadrilateral meshes and the unstructured triangle meshes. The
meshes all have the same physical domain, i.e., the horseshoe. The five mesh
types contain roughly 20, 40, or 80K free vertices each, for a total of 15 meshes
included in the study.

The approach to generating these meshes was to first generate regular

Table 1. Mesh Identification Table

MeshID Description

SQI Structured Quad, 1:1 cell ratio
SQII Structured Quad, 1:5 cell ratio
SQIV Structured Quad, Biased 1:5 cell ratio
UTI Unstructured Triangle Mesh, Trapezoidal Logical Domain
UTIV Unstructured Triangle Mesh, Biasing
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meshes on the unit square. For each such mesh, a reference mesh on the semi-
annulus and an initial mesh on the horseshoe were created by analytically
mapping each vertex in the unit mesh to give corresponding coordinates on
the other two domains. An example of the mesh triples (logical, reference,
and horseshoe domains) generated using the mappings for Mesh Type SQI
is given in Figure 1. Optimization was always performed on the horseshoe
domain using target matrices based on the corresponding annulus mesh.
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Fig. 1. Mesh Type SQI for the Unit Square, Reference Semi-Annulus, and Horseshoe

Coarse versions of the various Horseshoe meshes in Table 1 are shown in Fig-
ures 2 and 3.
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Fig. 2. The Three Quadrilateral Mesh Types. Left to Right: SQI, SQII, SQIV
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Fig. 3. Two Triangular Mesh Types. Left to Right: UTI, UTIV

Figure 4 shows the initial ordering of the vertices as given by the mesh gen-
erator in the structured and unstructured meshes on the unit square. The
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mapping, of course, preserves the orderings. Large vertices occur early in the
list, while smaller vertices occur towards the end. The initial (row-by-row)
ordering for all of the structured meshes is the same as shown in the figure,
while the ordering for the unstructured mesh in the figure is a representative
ordering for both types of unstructured meshes used in this document.
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Fig. 4. Initial Vertex Ordering on Structured and Unstructured Meshes

6 Numerical Experiments and Results

Eight numerical experiments were run using the Mesquite code to investigate
the behavior of the reordering schemes under various circumstances such as
mesh type, mesh size, and reordering strategy. Table 2 summarizes the eight
experimental set-ups.

The output of these experiments took the following form: 1) input sum-

Table 2. Table of Experiments

Exp. Exp. Mesh Mesh Schemes S/D Freq # Runs
No. Name Types Sizes

6.1 Baseline all 5 all 3 N D N/A 30
6.2 Static Reordering all 5 80K 20 S N/A 100
6.3 Sensitivity to IM SQI 80K 20 S/D N/A / 1 40
6.4 Dynamic Reordering all 5 all sizes 20 D 1 300
6.5 Frequency all 5 80K 20 D 1,2,5,10 400
6.6 ITC all 5 80K 20 D 1 100
6.7 Inaccurate all 5 all sizes 20 D 1 300
6.8 Red-Black all SQ 80K 20 D 1 60

mary tables to record the key inputs, 2) overlay plots showing average mesh
quality vs. total time (TT) for all twenty reordering schemes, and 3) rank-
ing tables giving optimization (COT), reordering (RT), and total times (TT),
along with rankings from 1 to 20 for each of these items (plus a ranking
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based on outer iteration count). Typical examples of the quality vs. time
plots are shown in Figure 5. Additional post-processing of the results was
also performed. The purpose of each experiment is described next, along with
selected results. At the end of the section, observations that pertain to all of
the experiments are given.

6.1 Baseline Experiment

The purpose of this ‘experiment’ was to determine the quality level that would
result in 1 or 5 minutes of smoothing. One minute of smoothing results in a
relatively inaccurate approximation to the optimal mesh, while five minutes
gives moderately accurate results. The runs were terminated after one or five
minutes, and the corresponding quality level was recorded, to be used in sub-
sequent experiments.

Selected Results
By examining the quality vs. time plots, it was noted that the shape of these
curves generally followed two basic patterns: either the curves were straight
lines, or they were highly curved, similar to a rapidly decaying L-shaped func-
tion (see Figure 5). The pattern was found to continue over the seven other
experiments that were performed. The explanation appears to be that if the
initial mesh is relatively ‘far’ from the optimal mesh then rapid convergence
occurs at early times and linear convergence at later times. This is consistent
with the expectations for the Feasible Newton solver in which one expects
quadratic convergence which results in an L-shaped curve on the linear plot
scale. On the other hand, if the initial mesh is relatively ‘close’ to the optimal
mesh, one only sees the tail of the L-shaped function, which appears linear.
For the most part, the curves for the SQI and SQII meshes appear linear,
while the SQIV, UTI, and UTIV meshes often showed quadratic behavior. In
general, the curves for the finer meshes (40-80K) had a steeper slope than the
coarser meshes (20-40K) and satisfied the convergence criterion more quickly.

6.2 Static Experiment

The purpose of this experiment was to observe the behavior of the reordering
schemes using a ‘static’ reordering strategy in which the reordering is done
only once, i.e., before optimization begins.

Selected Results
The quality vs. time curves were observed to be monotonically decreasing in
most cases; however, for a few ordering schemes (GRVM, R, WQP) on the
SQII meshes, they actually increased initially, before decreasing and satisfying
the convergence tolerance. This placed these schemes in last place in terms
of TT ranking. In very rare instances (and this applies to all experiments),
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quality vs. time curves were observed to cross one another, meaning that or-
dering schemes that were effective at early times, became relatively ineffective
a later times. For the most part, however, quality vs. time curves do not cross
one another. Moreover, in the static experiment, they tend to be parallel to
one another, as seen in Figure 5.

0 50 100 150 200 250 300 350
0

1

2

x 10
−4

Time (s)

Av
er

ag
e 

M
es

h 
Q

ua
lit

y
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Fig. 5. Sample Quality vs. Time Plots: Linear (left) and L-shaped (right)

The choice of reordering scheme did have a noticeable effect on the time
to convergence (TT). The variation in total time-to-convergence relative to
the average time-to-convergence for the given mesh type over the reordering
schemes in the static experiments was, for the 80K meshes, SQI: 312 ± 5 sec-
onds, SQII: 366 ± 61 seconds, SQIV: 258 ± 62 seconds, UTI: 312 ± 10 seconds,
and UTIV: 319 ± 13 seconds. That is, the variation in time-to-convergence
due to the choice of reordering schemes was: 1.6% for SQI, 16.7% for SQII,
24.0% for SQIV, 3.2% for UTI, and 4.1% for UTIV. From these results, it
appears that the choice of reordering scheme is more important for biased or
anisotropic mesh types. Although the difference between using one reordering
scheme versus another is noticeable, the maximum effect was less than 40%
of the total run times.

Nearly all reorderings took less than 1.5 seconds. Smoothing times varied
from 105 to 315 seconds, so reordering time was less than one percent of the
smoothing time. In terms of total time, -N was the best at 196 seconds, while
-GAVM was the worst at 320 seconds. Notably, Scheme N took about 314
seconds while scheme -N took 196 seconds, about a 30% difference in total
time. The other mesh types had different reordering schemes giving the least
TT.

6.3 Sensitivity of Results to Initial Mesh

The purpose of this experiment was to observe the behavior of the reordering
schemes when a different initial mesh was used, using both the static and
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dynamic (see Experiment 6.4) reordering strategies. The second initial mesh
differed from the first initial mesh only in the vertex coordinates. The vertices
in both of these initial mesh types were ordered in the same way (see Exper-
iment 6.8 for an example of different vertex orderings in the initial guess).
The vertex coordinates in the second initial mesh were obtained from the first
initial mesh by randomly perturbing them by the largest possible amount
without creating inverted mesh elements; thus, the second mesh is farther
from optimal.

Selected Results for the Static Case
The quality vs. time plots showed that the curves that were linear when using
the first initial guess became L-shaped when using the second initial guess,
thus confirming the idea that initial guesses that are farther from optimal give
quadratic convergence, whereas initial guesses that are close to optimal give
linear convergence.

The variation in total time-to-convergence relative to the average time-
to-convergence for the 80 K SQI mesh type over the reordering schemes in
this experiment was 895 ± 51 seconds, or 5.6%, compared to 1.6% when the
first initial guess was used. Thus, it appears that the farther the initial guess
is from optimal, the larger the variation, and thus the more significant the
choice of reordering scheme becomes.

6.4 Dynamic Experiment

The purpose of this experiment was to observe the behavior of the reordering
schemes using a different reordering strategy. The ‘dynamic’ strategy is to
perform the reordering once per outer iteration. Clearly, this will cost more
than the static strategy in terms of time spent reordering, so the question is
whether or not the added expense is worth it in terms of the total CPU time
expended.

Selected Results
The quality vs. time curves differed from those in the static case in that the
linear curves that were parallel in the static case remained linear, but with
differing slopes, depending on the reordering scheme. This reflects the fact
that in the dynamic strategies, differences amongst ordering schemes become
cumulative with time, whereas this does not happen in the static case. As a
result, the quality vs. time curves in the dynamic case diverge from one an-
other with increasing time. A similar effect was seen for the L-shaped curves.

The choice of reordering scheme did have a noticeable effect on the time to
convergence. The variation in total time-to-convergence relative to the aver-
age time-to-convergence for the given mesh type over the reordering schemes
in the dynamic experiments was, for the 80K meshes, SQI: 365 ± 55 seconds,
SQII: 411 ± 107 seconds, SQIV: 345 ± 116 seconds, UTI: 488 ± 182 seconds,
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and UTIV: 421 ± 120 seconds. That is, the variation in time-to-convergence
due to the choice of reordering schemes was: 15.1% for SQI, 26.0% for SQII,
33.6% for SQIV, 37.3% for UTI, and 28.5% for UTIV. Comparing these results
to the static strategy, one sees that both the average total time-to-convergence
and the variation is larger in the dynamic case.

Although, the average time-to-convergence in the dynamic case is larger
than in the static case, it does not necessarily mean that there may not be
particular reordering schemes that, when used in the dynamic strategy, are
competitive with the static strategy. To investigate, we compared the best
time-to-solution for the static and dynamic cases for each of the 80K mesh
types (excluding the ±I and ±R schemes). It appears that the best dynamic

Table 3. Best Dynamic Scheme vs. Corresponding Static Result

Mesh Type Best Scheme Static Time Dynamic Time

SQI D-GRVM 312.74 314.81
SQII D-GAVM 326.13 313.40
SQIV -GRVM 203.35 228.77
UTI -GRVM 321.21 346.49
UTIV D-LNG 318.47 333.08

schemes (in terms of least TT) are not quite as effective as the same schemes
when used statically. The only exception was SQII, and that is attributed to
the fact that in the static runs the D-GAVM quality versus time curve initially
increased, causing it to lag the others; this did not happen in the dynamic
case. Evidently, updating the ordering once every iteration is too expensive
compared to the gain in overall solution time. The next experiment investi-
gates a modified dynamic strategy.

6.5 Frequency of Dynamic Reordering Experiment

The purpose of this experiment was to observe the behavior of the reordering
schemes with a modified dynamic reordering strategy. Instead of reordering
every iteration, in this experiment, reordering was performed every iteration,
every other iteration, every fifth iteration, and every tenth iteration.

Selected Results
The case of the 80K SQIV mesh is instructive. Consider the behavior of scheme
-GRVM (which had the smallest TT over the 20 schemes when k = 1, 2) vs.
the reordering frequency.

The fraction of time spent reordering vs. the total time decreases as re-
ordering becomes less frequent. The optimization time is smallest with fre-
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Table 4. Scheme -GRVM vs. Reordering Frequency

Freq COT COT Rank RT RT Rank TT TT Rank

1 198.07 1 33.48 12 231.55 1
2 224.76 6 9.55 10 234.31 1
5 261.32 6 0.05 5 261.37 6
10 307.20 7 0.02 6 307.22 7

Static 203.33 0.02 203.35

quency 1, as is total time. In this case, reordering every iteration is well worth
it compared to the other reordering frequencies. However, the total time in
the static case is even less. Figure 6 shows TT vs. reordering frequency for
schemes -GRVM, -WQP, and N on the 80K, SQIV mesh. Note that the figure
shows that it is clearly best to apply the -WQP scheme as infrequently as
possible!

This experiment shows that the ideal frequency of reordering depends on
the reordering scheme in question. If the reordering scheme is an effective one
for the given problem, it should be applied as frequently as possible.

Does the dynamic strategy ever result in a total time that is less than the
corresponding static case? In general, the answer is yes, but not significantly.
For each of the five mesh types one can find a reordering scheme whose total
time when k = 1 or k = 10 is less than its own static time, but, even then, the
dynamic times are only a few percent less than the static times. Therefore,
the dynamic strategy, even with infrequent reordering, seems to be mostly less
efficient than the static strategy.
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6.6 Inner Termination Criterion Experiment

The purpose of this experiment is to determine whether or not the number of
inner iterations in the optimization had any significant impact on the results
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of the reordering experiments.

Selected Results
Increasing the number of inner iterations to 2 increases the time-to-convergence
in many of these runs. Since the variation in total times over the twenty re-
ordering schemes does not increase with the number of inner iterations, the
impact of the choice of reordering scheme becomes less as the number of in-
ner iterations increases. In addition, the rankings of the reordering schemes
changes with the number of iterations.

6.7 Inaccurate Experiment

The purpose of this experiment was to determine how the results of the re-
ordering experiments might change if only an inaccurate (1 minute) solution
were sought when dynamic vertex reordering was performed.

Selected Results
The main result here was that indeed, the rankings of the reordering schemes
did change when comparing the ‘inaccurate’ case to the ‘medium-accurate’
case. The variations in total time-to-convergence relative to the average time-
to-convergence for the given mesh type over the reordering schemes in the
Inaccurate Experiment were, for the 80K meshes, SQI: 101 ± 25 seconds,
SQII: 204 ± 70 seconds, SQIV: 100 ± 39 seconds, UTI: 113 ± 35 seconds, and
UTIV: 107 ± 40 seconds. That is, the variation in time-to-convergence due to
the choice of reordering schemes was: 24.8% for SQI, 34.3% for SQII, 39.0%
for SQIV, 31.0% for UTI, and 37.4% for UTIV. Comparing these results to
the medium-accurate dynamic strategy, one sees that although both the total
time-to-convergence and the variation is smaller in the inaccurate case, the
choice of reordering scheme becomes more significant percentage-wise.

6.8 Red-black Experiment

The purpose of this experiment was to investigate whether or not the ordering
of the vertices in the initial mesh had a significant impact on the behavior
of the ordering schemes. The first (original) initial meshes for the structured
mesh types were modified to create a red-black (checkerboard) ordering of
the vertices while keeping the vertex coordinates the same. Results were then
compared to the original initial mesh.

For this experiment, the percent variation over the reordering schemes was
much larger than when using the ordering in the first initial mesh: SQI - 144%,
SQII - 209 %, and SQIV - 222 %. For example, the SQI curves diverge much
more than in the original ordering, giving a larger variation and much longer
run-times overall (300-800 sec vs. 300-450 in original). Scheme rankings are
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somewhat similar to original, but not too close. For the SQII curves it was
observed that the plots no longer show an initial increase in average quality
for any scheme, whereas in the original some did. The scheme rankings are
completely different. For SQIV, there was slightly more quadratic behavior
and overall run times are longer, and the scheme rankings change. The -N
scheme is conspicuously bad in the red-black experiments.

The results in the scheme ranking tables showed that for SQI, the best
red-black total time is 308.72 sec (for scheme N), while the best original to-
tal time was 309.51 sec (again for N), so red-black ordering per se is hardly
worse than the original ordering. However, the worst red-black time is 752.21
sec (for GAVM), compared to the worst original (WQP, 420.21 sec). Table 5
directly compares results for three reordering schemes. The table shows that

Table 5. Comparison of Natural and Red-Black Orderings (SQI)

Scheme COT COT Rank RT RT Rank TT TT Rank

D-GRVM-or 309.07 4 5.74 9 314.81 3
D-GRVM-rb 314.57 12 6.48 8 321.05 4

GAVM-or 316.50 14 79.53 16 396.03 17
GAVM-rb 599.84 19 152.37 20 752.21 20

WQP-or 391.84 20 28.37 11 420.21 20
WQP-rb 392.21 15 28.25 10 420.46 16

the ordering of the initial mesh itself can alter the final results, but it is hard
to predict in advance what will happen.

6.9 Reordering Time

For each of the runs performed in this study, we measured the cumulative
CPU time (RT) expended during the reordering step. To investigate which
reordering schemes tended to take the least amount of CPU time, we com-
puted a set of histograms. For each reordering scheme we counted the number
of times it was ranked first (in terms of reordering time), second, third, and all
the way to twentieth. The counting was performed over the entire set of runs
performed in this study. Results are summarized in Table 6 and the schemes
assigned an overall rank.

Of course scheme N ranks first since it takes no CPU time at all, being
a null operation. The next three schemes also take very little work since they
only reverse a given ordering that was fast to create in the first place. It is
difficult to explain the rankings for the remaining schemes, although perhaps
a look at operation counts might help. The ‘distance’ scheme ranks are mixed
in with the schemes upon which they are based, a somewhat surprising result.
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Table 6. A Rough Reordering Time Ranking Over All Runs

Rank Scheme Mode 2nd Mode Best Rank Worst Rank

1 N 1 - 1 1
2 -N 2 3 2 4
3 R 3 4 2 5
4 -R 4 3 2 5
5 GRVM 5 6 4 6
6 D-GAVM 7 8 6 12
7 -GRVM 6 12 4 16
8 D-LNG 7 8 6 11
9 D-GRVM 9 8 6 12
10 WQP 10 11 9 19
11 -WQP 11 14 10 20
12 D-WQP 12 10/13 9 17
13 -D-GRVM 14 11 10 19
14 -D-GAVM 14 13 7 19
15 -D-LNG 15 13 7 19
16 -D-WQP 16 15 13 20
17 -GAVM 17 18 12 19
18 LNG 19 18 10 20
19 GAVM 20 18 10 20
20 -LNG 20 19 11 20

As one would expect, the reverse orderings ranked below the forward order-
ings (except for GAVM).

6.10 Overall Scheme Rankings

The selected results reported in the previous experiments are supplemented
by taking a look at TT scheme ranking results over the entire set of runs that
were performed over all the experiments. From the results obtained, it was
found that the ‘best’ orderings varied from experiment to experiment, mesh
type to mesh type, mesh size to mesh size, etc., with no discernible pattern.
If one were going to do a lot of mesh optimization calculations with these
variables fixed, one might benefit by determining which ordering scheme is
best in that specific instance. For a general purpose tool such as Mesquite, it
is reasonable to ask if there are reordering schemes which generally performed
well over all the runs (and which generally did poorly). To investigate, we cre-
ated a set of histograms, one for each reordering scheme, in which we counted
the number of times the scheme was ranked first, second, third, and all the
way up to twentieth. The counting was over the entire set of runs.

To rank the schemes using these histograms, we looked at the mode for
each scheme and the general distribution around the mode. Based on this, the
overall rankings are shown in Table 7, with schemes N, -N, D-GAVM, D-LNG
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Table 7. A Rough Scheme Ranking Over All Runs

Rank Scheme Mode 2nd Mode Best Rank Worst Rank

1 N 1 2 1 20
2 -N 1 2 1 20
3 D-GAVM 3 4 1 15
4 D-LNG 4 3 1 15
5 D-GRVM 4 5 2 16
6 D-WQP 6 9 2 17
7 -D-GAVM 7 8 1 17
8 -D-LNG 9 7 1 17
9 -GRVM 2 15 1 18
10 -D-GRVM 8 9 2 17
11 GRVM 16 2 2 20
12 -D-WQP 10 15 1 19
13 -R 18 17 1 20
14 R 17 18 9 20
15 -GAVM 14 11 5 20
16 -LNG 15 12 2 19
17 LNG 13 18 3 19
18 GAVM 20 12 6 20
19 WQP 20 19 3 20
20 -WQP 20 19 4 20

among the best and LNG, GAVM, WQP, and -WQP among the worst. The
best ‘worst rank’ over all the schemes was 15th, so no scheme was immune
from a circumstance in which it did poorly. The worst ‘best rank’ was 9th, so
nearly all the schemes had at least one circumstance it which it did very well
relative to the others. On the whole, though, the top five of these schemes
stand out as being good general purpose reordering schemes. It is perhaps
not too surprising to see schemes N and -N at the top of the rankings since
they incur virtually no cost in terms of reordering time. Furthermore, there
may be an advantage to leaving the original orderings alone since these re-
flect the order in which the mesh vertices were likely created when the mesh
was generated. Not surprising perhaps is the relatively low rankings of the
±R schemes since they do not take advantage of problem structure. Never-
theless, they ranked higher than six other schemes. As a general rule, the
‘distance’-based schemes were ranked higher than the schemes from which
they were derived. For example, GAVM ranks 18th while D-GAVM ranks
3rd. Counter-intuitively, reordering by patch quality is not advantageous. Or-
dering of patches to maintain or create locality seems to be an important
variable in creating an effective re-ordering scheme.
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7 Conclusions and Future Work

The results of this study are somewhat preliminary but a number of impor-
tant trends are suggested. First, it appears that the static strategy is superior
to the dynamic ones because the additional cost of reordering does not re-
sult in enough of a speedup in the optimization process. Second, reordering
appears most important when ‘inaccurate’ meshes are considered satisfactory
or when the initial mesh is far from optimal. Third, it is difficult to predict
in advance which reordering scheme will be best for a given problem. It was
noted that optimization of meshes with strong biasing or heterogeneity will
most likely benefit most from a consideration of vertex ordering. Additionally,
reordering may be beneficial if the ordering of the patches in the initial mesh
lacks locality, as seen in the red-black experiment. Fourth, although total time
to solution is impacted noticeably by vertex ordering, it is usually within a
factor of two, as opposed to orders-of-magnitude. This could change if other
mesh sizes and types were considered. Fifth, the natural ordering provided by
the mesh generator itself resulted in scheme N being one of the more efficient
orderings. Reversing the ordering of the list (forward to reverse) is inexpensive
and often improved TT. Sixth, distance-based reordering schemes appear to
be more effective than the schemes upon which they are based; once again,
this is most likely due to an increase in locality. Seven, no discernible pattern
of results was observed related to mesh size. Perhaps much smaller or much
larger meshes would have resulted in a pattern with respect to this parame-
ter. Many of these observations can perhaps be explained theoretically, as has
been done for the linear equation solver case. Nonetheless, it is useful to have
empirical data to suggest possible theoretical results and also to supply data
that theory cannot provide.

Far more data was generated in this study than could be presented due
to space limitations. Moreover, additional post-processing and analysis of the
data generated is planned in the future to better quantify the results, check
for over-looked tendencies, and to investigate the question as to whether or
not there are particular circumstances which can be predicted in advance as
to which of the reordering schemes should be used. Future work on this topic
might include the creation of better ordering schemes to provide more local-
ity, further investigations of reordering efficiency vs. mesh size, other dynamic
strategies, and the effect of using other optimization solvers.
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