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Talk Outline

Motivation:

I Challenges of Simulation-Based Optimization

Algorithms:

I Trust-Region Parallel Direct Search (TRPDS)

I mTRPDS

I Speculative Gradient

Our Contribution:

I Use of generalized approximation models in TRPDS

Numerical Experiments:

I Comparisons with TRPDS and Speculative Gradients

Conclusions
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Simulation-Based Optimization

Simulation-Based Optimization: Coupling optimization
software with simulations.

Examples:

I Identify parameters for new model such that simulation
and experimental results most closely match.

I Identify parameters to determine optimal device design.

Challenges of Simulation-Based Optimization

1. Analytic gradients might not be available
(use finite-differences)

2. Function evaluations can be expensive (dominant cost)

Our Goal: To reduce the number of function evaluations
by leveraging parallelism and approximation models.
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Parallelization of Optimization Algorithms

Focus on variant of trust-region algorithms:

I Trust-Region Parallel Direct Search (TRPDS) algorithm
(Hough, Meza, 2002)

Our Contribution:

I Employ approximation models to further reduce
computational cost.

Competing trust-region variant:

I Speculative gradient technique (Byrd, Schnabel, Shultz,
1988)
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Trust-Region Parallel Direct Search (TRPDS) Algorithm

mTRPDS Algorithm

An Iteration of TRPDS

An Iteration of mTRPDS

1. Minimize quadratic
model

2. Form simplex

3.

4. Check sufficient
decrease

5. Accept/Reject trial
iterate

6. Update trust region

7. Goto 1
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Trust-Region Parallel Direct Search (TRPDS) Algorithm

mTRPDS Algorithm

An Iteration of TRPDS

An Iteration of mTRPDS

1. Minimize quadratic
model

2. Form simplex

3. Concurrently evaluate
f (x) at simplex
points; choose lowest
value.

4. Check sufficient
decrease

5. Accept/Reject trial
iterate

6. Update trust region

7. Goto 1
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Trust-Region Parallel Direct Search (TRPDS) Algorithm

mTRPDS Algorithm

An Iteration of TRPDS

An Iteration of mTRPDS

1. Minimize quadratic
model

2. Form simplex

3. Use PDS to find the j
lowest model values
Evaluate f (x)
concurrently at those
points. Choose lowest
value.

4. Check sufficient
decrease

5. Accept/Reject trial
iterate

6. Update trust region

7. Goto 1
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Speculative Gradient Algorithm

An Iteration of Speculative Gradient

1. Minimize quadratic
model over trust
region

2. Processor 0 evaluates
trial iterate;
Remaining processors
evaluate gradient

3. Check sufficient
decrease

4. Accept/Reject trial
iterate

5. Update trust region

6. Goto 1
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Generalized Trust-Region Framework

I The framework is for managing the use of approximation
models (Alexandrov, Dennis, Lewis, Torczon, 1998).

I An approximation model ak(xk) is a less expensive
representation of f (xk).

I The trust-region method with generalized
approximation models converges globally whenever:

1. ak(xk) = f (xk)
2. ∇ak(xk) = ∇f (xk).

I Steps must be computed such that the sequence of
iterates produced satisfies the fraction of Cauchy
decrease (FCD) condition ⇒ Flexibility!
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Generalized Trust-Region Framework

Model management framework:

I At iteration k, an approximation model, mk(xk), to the
objective function, f (xk), is built. Then, the following
PDS subproblem is solved approximately:

min mk(xk + s)
s.t. ‖s‖2 ≤ 2δk .

I In all cases, we use a quadratic model for ak (to check
FCD). Note FCD is satisfied by construction for
Speculative Gradient.

I We use various approximation models for mk to
determine the step: mk = truth (TRPDS), generalized
approximation model (mTRPDS), and quadratic model
(Speculative Gradient).
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Numerical Experiments

Case Study: Earth Penetrator Design Problem

Goal: To find section lengths that will optimize mission
performance. The earth penetrator radius is held fixed,
while the lengths are varied independently.
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Optimal Design Problems (1)

Problem 1: Minimize maximum acceleration subject to
bounds on length parameters

min
L∈IR3

F (L) = max (acceleration) (1)

s.t. li ≤ Li ≤ ui , i = 1 . . . 3,

where L is the vector containing the three unknown length
parameters, Li , and li and ui are the lower and upper
bounds, respectively.
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Optimal Design Problems (2)

Problem 2: Maximize penetration depth subject to bounds
on length parameters.

min
L∈IR3

F (L) = −(depth of penetration) (2)

s.t. li ≤ Li ≤ ui , i = 1 . . . 3.
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Optimization Experiments

Solve optimal design problems (1) and (2) via:

1. mTRPDS

2. TRPDS

3. Trust-Region Speculative Gradient

mTRPDS Approximations:

1. Alter mesh discretization

2. Alter amount of event time simulated

3. Use Taylor series to construct quadratic model of
function

Employed: Central finite difference gradient, BFGS
approximation to Hessian

Compared: Timing results
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Optimization Experiments

Penetrator design simulation: 3 variables, so 7
simultaneous f (x) evaluations to compute function and
gradient. Used 16 processors per simulation + 1 processor
for optimization process. Total: 113 processors

mTRPDS experiments: Used 113 processors.
Ideal settings: search pattern size of 7, j = 7.

Optimization algorithms: Implemented in OPT++.



Experience with
Approximations in
the Trust-Region
Parallel Direct

Search Algorithm

Suzanne Shontz
(Penn State)

Victoria Howle
(Texas Tech)

Patricia Hough
(Sandia National

Labs)

International
Conference on
Computational

Science
Baton Rouge, LA

Approximation Models Employed

Key Algorithm Model Time for Single
Model Execution

1 SpecGrad Truth (Mesh640k, Time25ms) 2− 3 hours

2 TRPDS Truth (Mesh640k, Time25ms) 2− 3 hours

3 mTRPDS QuadraticModel negligible

4 mTRPDS Mesh10k 0.8− 1.3 hours

5 mTRPDS Mesh80k 1.3− 1.8 hours

6 mTRPDS Time6.25ms 1.1− 1.6 hours

7 mTRPDS Time12.5ms 1.7− 2.3 hours
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Wall Clock Time: Problem # 1

Figure: Wall clock time required to achieve a 0.1% change in the
function
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Average Time Per Iteration: Problem # 1

Figure: Average time per iteration
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Problem # 1 Results

I Primary difference in wall clock times is due to different
number of iterations required.

I However, several algorithm-model combinations have
comparable average times per iteration.

I TRPDS-based algorithms start out same as speculative
gradient algorithm. However, they move towards
solutions with lower function values. Thus, take longer.

I Further characterization of problem features on
algorithmic performance is needed.

I Require computationally expensive, physics-based test
problems. Hard to come by.
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Wall Clock Time: Problem # 2

Figure: Wall clock time required to achieve a 0.1% change in the
function
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Average Time Per Iteration: Problem # 2

Figure: Average time per iteration.
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Problem # 2 Results

Algorithms took approximately same number of iterations.
Variations in average wall clock time per iteration.

Suggestions for improving computational efficiency:

I Approximation models track truth fairly well. Reduce j
and incorporate computation of speculative
finite-difference gradients for those j points.

I Best might be j = 0. Would reduce number of truth
evaluations per iteration, hence reducing total time.

I PDS sometimes performs extraneous approximation
evaluations. Need dynamic scheme for managing
amount of PDS work.
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Convergence Patterns

Figure: Problem # 1: TRPDS-based algorithms move to a
solution with a lower function value, thereby taking more
iterations.
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Conclusions

1. Extended TRPDS algorithm to include use of
approximation model to solve PDS subproblem.
Parallelism used.

2. Performed numerical experiments on two earth
penetrator optimal design problems. Compared with
TRPDS and speculative gradient trust-region method.

3. Made suggestions for improving efficiency.

Longer-Term Research

1. Develop meaningful numerical stopping criteria for
optimization algorithms.

2. Characterization of effects of problem characteristics on
algorithm performance.
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Earth Penetrator Simulation Details

Mechanical deformation of penetrator upon impact:
Presto, 3D explicit transient dynamics code; Lagrangian
finite elements (Koteras, Guillerud, Crane, Hales, Reinert,
2007)

Contact algorithms: ACME library

Penetrator: Modeled as homogeneous elastic solid.

Target: Modeled with Mohr-Coulomb constitutive model.

Parametric meshes: Generated using CUBIT. Elements are
eight-node hex elements.

Time step: Chosen to satisfy Courant stability condition.

Simulations: Performed on Linux cluster.


