### A Parallel Linear Solver for Block Circulant Linear Systems with Applications to Acoustics

### Suzanne Shontz, University of Kansas Ken Czuprynski, University of Iowa John Fahnline, Penn State

### **EECS 739: Parallel Scientific Computing**

University of Kansas

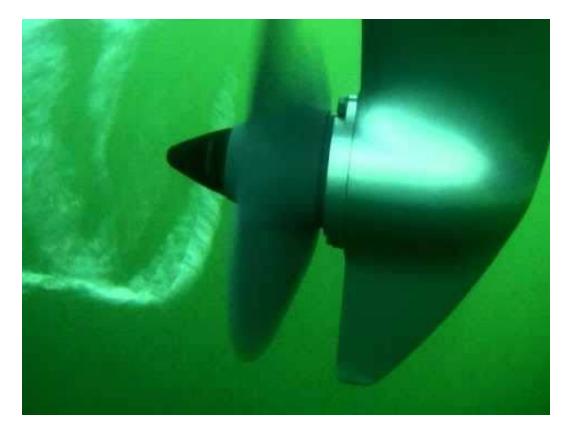
January 23, 2019







# **MOTIVATION**



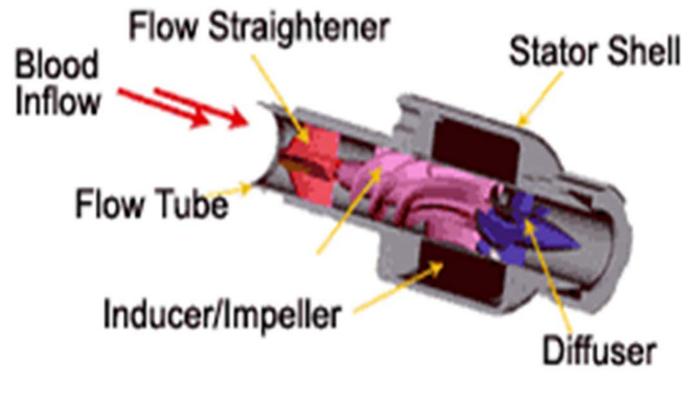
### **Example: Ships**



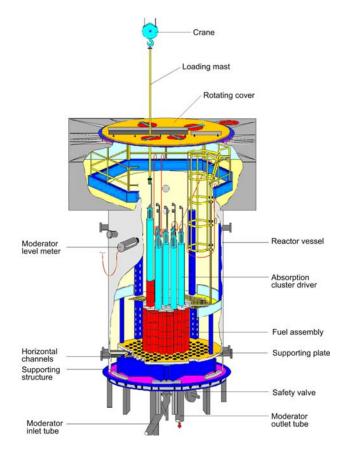
### **Example: UAVs**



### **Example: Planes**

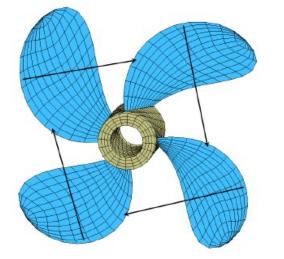


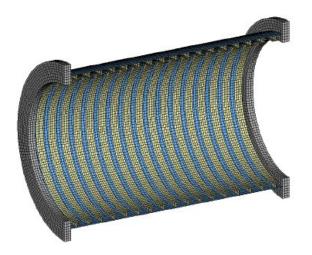
**Example: Blood Pumps** 



### **Example: Reactors**

### Examples of Rotationally Symmetric Boundary Surfaces





### **Real-world applications:** propellers, wind turbines, etcetera

## **THE PROBLEM**

### The Problem

**Goal:** To compute the acoustic radiation for a vibrating structure immersed in a fluid.

**Our focus:** Structures with rotationally symmetric boundary surfaces

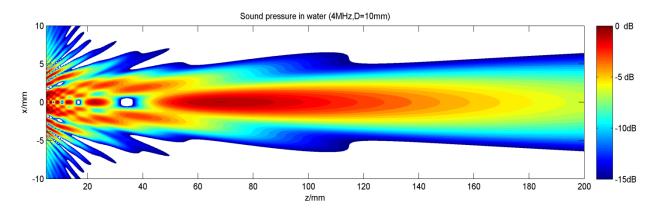


Image credit: Michael Lenz

Parallel Linear Solver for Acoustic Problems with Rotationally Symmetric Boundary Surfaces

**Context:** Vibrating structure immersed in fluid. Acoustic analysis using boundary element method. Coupled to a finite element method for the structural analysis. We focus on the boundary element part of the calculation.

**Goal: Solve block circulant linear systems** to compute acoustic radiation of vibrating structure with **rotationally symmetric boundary surface.** 

**Approach: Parallel linear solver** for **distributed memory machines** based on known inversion formula for block circulant matrices.

# THE BOUNDARY ELEMENT METHOD (BEM)

### **Boundary Element Method**

The **boundary element method (BEM)** is a numerical method for solving linear partial differential equations (PDEs).

In particular, the BEM is a solution method for solving boundary value problems (BVPs) formulated using a boundary integral formulation.

**Discretization:** Only of the surface (not of the volume). Reduces dimension of problem by one.

**BEM:** Used on **exterior domain problems** and when **greater accuracy** is required.

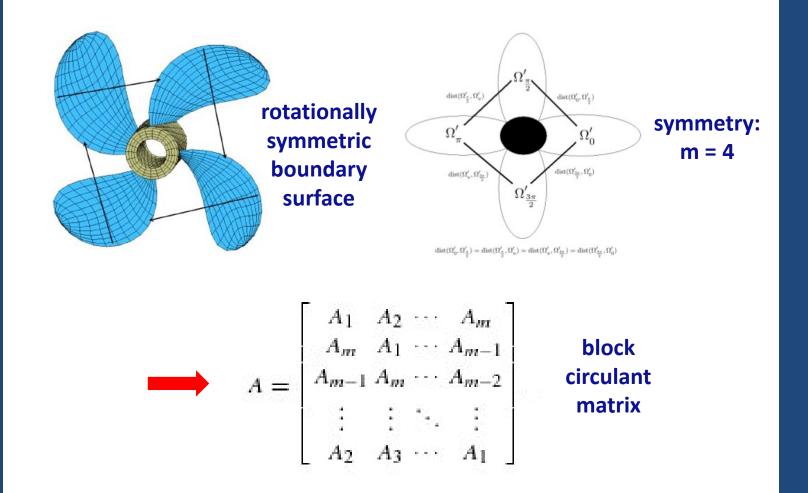
We employ the boundary element method to obtain the linear system of equations.

### Comparison of the BEM with the Finite Element Method

| Advantages of the BEM                                                                | Disadvantages of the BEM                                                                                               |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Less data preparation time<br>(due to surface only modeling)                         | Unfamiliar mathematics                                                                                                 |
| High resolution of PDE<br>solution (e.g., stress)                                    | The interior must be modeled<br>for nonlinear problems (but<br>can often be restricted to a<br>region of the domain)   |
| Less computer time and<br>storage (fewer nodes and<br>elements)                      | Fully populated and<br>unsymmetric solution matrix<br>(as opposed to being sparse<br>and symmetric)                    |
| Less unwanted information<br>(most "interesting behavior"<br>happens on the surface) | Poor for thin structures (shell)<br>3D analyses (large<br>surface/volume ratio causes<br>inaccuracies in calculations) |

# BLOCK CIRCULANT MATRICES VIA THE BOUNDARY ELEMENT METHOD

### **Discretization Using the BEM**



### **Block Circulant Matrices**

• **Properties of circulant matrices:** Diagonalizable by Fourier matrix. Can use DFT and IDFT. **Nice properties!** 

• **Related work (serial):** algorithm derived from inversion formula (Vescovo, 1997); derivation (Smyrlis and Karageorghis, 2006)

 Related work (parallel): parallel block Toeplitz matrix solver (Alonso et al., 2005) (neglects potential concurrent calculations); parallel linear solver for axisymmetric case (Padiy and Neytcheva, 1997) MATHEMATICAL FORMULATION OF LINEAR SYSTEM OF EQUATIONS

### **Notation: Fourier Matrix**

The Fourier matrix is given by

$$F = \frac{1}{\sqrt{m}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega_m^1 & \omega_m^2 & \cdots & \omega_m^{m-1} \\ 1 & \omega_m^2 & \omega_m^4 & \cdots & \omega_m^{2(m-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_m^{(m-1)} & \omega_m^{2(m-1)} & \cdots & \omega_m^{(m-1)^2} \end{bmatrix}$$

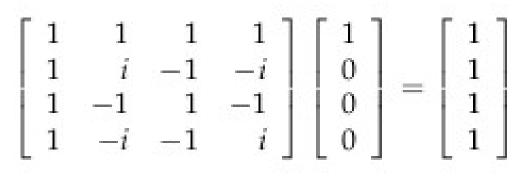
where  $\omega_m = e^{i2\pi/m}$ .

**Note:** The Fourier matrix is used in Fourier transforms.

**Discrete Fourier Transform (DFT)** 

To compute the discrete Fourier transform (DFT) of a vector x, simply multiply F times x.

Example: m = 4



 $F^*x = u$ 

Inverse Discrete Fourier Transform (IDFT)

To compute the inverse of the discrete Fourier transform (IDFT) of a vector u, simply multiply  $\frac{1}{m}$  F\* times u, where F\* = Hermitian of F.

**Continuing the example:** 

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & +i \\ 1 & -1 & 1 & -1 \\ 1 & +i & -1 & -i \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 0 \\ 0 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$
 Divide by m

F\* times u = m\*x

### Fast Fourier Transform (FFT)

The Fourier transform of a vector (i.e., the DFT of a vector) of length 2m can be computed quickly by taking advantage of the following relationship between  $F_m$  and  $F_{2m}$ :

$$F_{2m} = \begin{pmatrix} I & D \\ I & -D \end{pmatrix} \begin{pmatrix} F_m & 0 \\ 0 & F_m \end{pmatrix} \mathbf{P},$$

where **D** is a diagonal matrix and **P** is a 2m by 2m permutation matrix.

**Fast Fourier Transform (FFT):** Requires two size m Fourier transforms plus two very simple matrix multiplications!

### **Key Equations**

Let F = Fourier matrix, and let  $F_b$  denote the Kronecker product of F with I<sub>n</sub>.

Then, the **block DFT is given by**:

То

## **SERIAL ALGORITHM**

### Block Circulant Matrix: Storage

#### TABLE 1. THE PERCENTAGE OF THE INITIAL COEFFICIENT MATRIX WHICH NEEDS TO BE STORED.

| m  | % of A stored |
|----|---------------|
| 2  | 50%           |
| 4  | 25%           |
| 8  | 12.5%         |
| 12 | 8.33%         |
| 16 | 6.25%         |

### Block Circulant Matrix: Size of Linear Systems

## **TABLE 2**.SIZE OF THE LINEAR SYSTEMS FOR VARYING mAND N.

| Ν      | n,m=4 | n,m=8 |
|--------|-------|-------|
| 13,000 | 3,250 | 1,625 |
| 15,000 | 3,750 | 1,875 |
| 19,000 | 4,750 | 2,375 |
| 24,000 | 6,000 | 3,000 |

Note: Solving a dense linear system is cubic in the size of the matrix.

### Sequential Algorithm

Algorithm 1 Pseudocode for the sequential solution of a block circulant linear system.

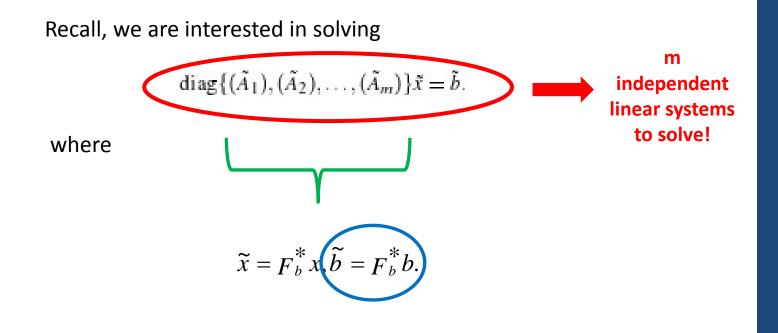
- 1. Compute  $\tilde{b} = F_b^* b$ . **IDFT**
- 2. Compute  $\tilde{X} = F_b X$ . **DFT**
- 3. Solve  $\tilde{A}_j \tilde{x}_j = \tilde{b}_j, j = 1, ..., m$ . Solution of m independent
- 4. Compute  $x = F_b \tilde{x}/m$  **DFT**

linear systems

## **PARALLEL ALGORITHM**

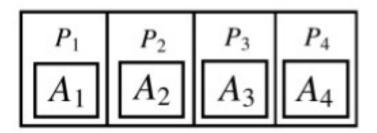
### How to Parallelize the Algorithm?

### Ideas?



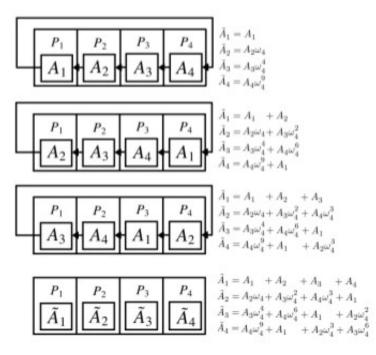
### Block DFT Algorithm

- A block DFT calculation is the basis for our parallel algorithm.
- This demonstrates **improved robustness** (over use of the FFT) and allows for **any boundary surface to be input**.



**FIGURE 4**. INITIAL DATA DISTRIBUTION ASSUMED IN THE DFT COMPUTATION FOR THE CASE P = m = 4.

### **DFT Computation**



**FIGURE 5**. THE DFT COMPUTATION FOR THE CASE P = m = 4. EACH ARROW INDICATES THE COMMUNICATION OF A PRO-CESSOR'S OWNED SUBMATRIX TO A NEIGHBORING PROCES-SOR IN THE DIRECTION OF THE ARROW.

#### This generalizes to the case when P > m.

### **Parallel Algorithm**

Algorithm 2 Pseudocode for the parallel solution of a block circulant linear system, assuming P = cm.

- 1. Define  $m \sqrt{c} \times \sqrt{c}$  process grids.
- 2. Block cyclically distribute each  $A_j$  and  $b_j$  onto grid  $G_j$  using identical blocking factors. Asynchronous sends and receives
- 3. Perform c simultaneous IDFTs transforming  $b_j$  to  $\tilde{b}_j$ .
- 4. Perform c simultaneous DFTs transforming  $A_j$  to  $\tilde{A}_j$ .
- 5. Simultaneously solve each  $\tilde{A}_j \tilde{x}_j = \tilde{b}_j$  in parallel using PZGESV. Solve using SCALAPACK. Complexity: Cubic in n
- 6. Perform c simultaneous DFTs transforming  $\tilde{x}_j$  to  $x_j$ .

The tradeoff of using overlapped communication and computation is additional memory.

## **NUMERICAL EXPERIMENTS**

### **Computer Architecture for Experiments**

#### **Cyberstar compute cluster at Penn State:**

- Run on two Intel Xeon X5550 quad-core processors
- HyperThreading = disabled
- Total: 8 physical cores running at 2.66 GHz
- 24 GB of RAM per node

### Code:

- Fortran 90 with MPI
- ScaLAPACK library

### **Blocking and Communication:**

- Blocking factor of 50 for block cyclic distribution of A<sub>j</sub> and b<sub>j</sub> onto their respective processor grids.
- DFT algorithm communications: blocks of size 4000
- Asynchronous sends/receives

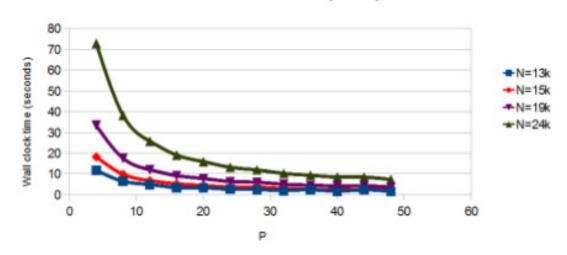
**Metrics for Experiments** 

 Runtime = wall clock time of parallel algorithm = T<sub>p</sub>

- **Speedup** = how much faster is the parallel algorithm than the serial algorithm =  $S = T_s/T_p$
- Efficiency = E = S/P

### **Experimental Results – 4 Processors**





Four Times Rotational Symmetry

FIGURE 9. RUNTIME COMPARISON FOR VARYING P AND N WITH m = 4.

The runtime decreases as the number of processors increase and as the problem size decreases.

### **Experimental Results – 4 Processors**

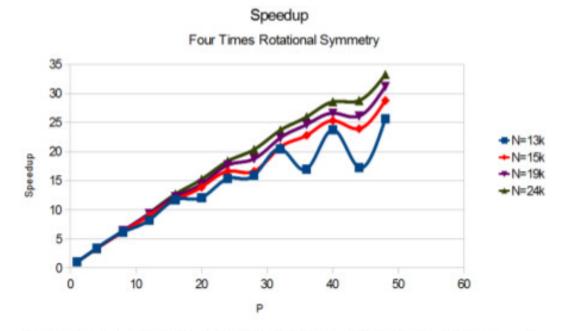


FIGURE 10. SPEEDUP COMPARISON FOR VARYING P AND N WITH m = 4.

Oscillations are due to small variance in small runtime numbers. They are smoothed out with increasing N.

### **Experimental Results – 4 Processors**

#### Efficiency

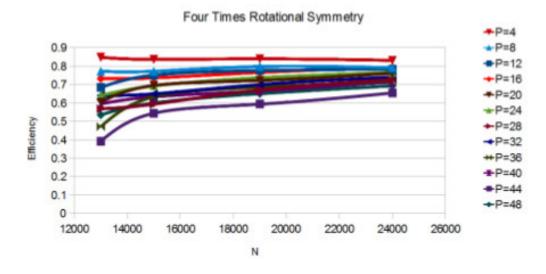
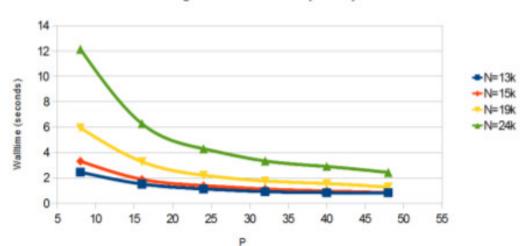


FIGURE 11. EFFICIENCY COMPARISON FOR VARYING N AND P WITH m = 4.

The efficiency increases for a decreased number of processors. It also increases with an increase in problem size.

### **Experimental Results – 8 Processors**

#### Runtime



Eight Times Rotational Symmetry

FIGURE 12. RUNTIME COMPARISON FOR VARYING P AND N WITH m = 8.

#### The runtime trend is the same as it is for m = 4.

### Experimental Results – 8 Processors

Speedup

Eight Times Rotational Symmetry

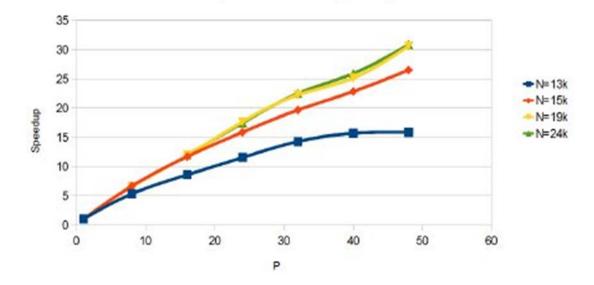


FIGURE 13. SPEEDUP COMPARISON FOR VARYING P AND N WITH m = 8.

For small problems, the speedup levels off due to the ratio of computation versus communication in the linear system solve. For larger problems, the speedup is nearly linear.

### Experimental Results – 8 Processors

Efficiency

Eight Times Rotational Symmetry 0.8 0.7 0.6 ►P=16 P=24 0.5 Ellidency +P=32 0.4 P=40 P=48 0.3 0.2 0.1 0 12000 14000 16000 18000 20000 22000 24000 26000 N

**FIGURE 14**. EFFICIENCY COMPARISON FOR VARYING P AND N WITH m = 8.

The efficiency is fairly good but not quite as high as it is for m = 4. Based on increase in communications due to DFT algorithm and size of linear system solve. Expect efficiency to remain high for increased problem size.

# **CONCLUSIONS**

### Conclusions

- We have proposed a parallel algorithm for solution of block circulant linear systems. Arise from acoustic radiation problems with rotationally symmetric boundary surfaces.
- Based on block DFTs (more robust) and have embarrassingly parallel nature based on ScaLAPACK's required data distributions.
- Reduced memory requirement by exploiting block circulant structure.
- Achieved near linear speedup for varying problem size, linear speedup for large N. Efficiency increases with problem size.
- Can solve larger/higher frequency acoustic radiation problems.

### Reference

K.D. Czuprynski, J. Fahnline, and S.M. Shontz, *Parallel boundary element solutions of block circulant linear systems for acoustic radiation problems with rotationally symmetric boundary surfaces*, Proc. of the Internoise 2012/ASME NCAD Meeting, August 2012.

### Acknowledgements

This work is based on the **M.S. Thesis of Ken Czuprynski** in addition to our Internoise 2012 paper.

#### **Computing Infrastructure:**

• NSF grant OCI-0821527

#### **Research Funding:**

- Penn State Applied research Laboratory's Walker Assistantship Program (Czuprynski)
- NSF Grant CNS-0720749 (Shontz)
- NSF CAREER Award OCI-1054459 (Shontz)