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1 Introduction

Discretization methods, such as the finite element method, are commonly used
in the solution of partial differential equations (PDEs). The accuracy of the
computed solution to the PDE depends on the degree of the approximation
scheme, the number of elements in the mesh [1], and the quality of the mesh [2,
3]. More specifically, it is known that as the element dihedral angles become
too large, the discretization error in the finite element solution increases [4]. In
addition, the stability and convergence of the finite element method is affected
by poor quality elements. It is known that as the angles become too small,
the condition number of the element matrix increases [5].

Recent research has shown the importance of performing mesh quality im-
provement before solving PDEs in order to: (1) improve the condition num-
ber of the linear systems being solved [6], (2) reduce the time to solution [7],
and (3) increase the solution accuracy. Therefore, mesh quality improvement
methods are often used as a post-processing step in automatic mesh genera-
tion. In this paper, we focus on mesh smoothing methods which relocate mesh
vertices, while preserving mesh topology, in order to improve mesh quality.

Despite the large number of papers on mesh smoothing methods (e.g., [8,
9, 10, 11, 12, 13, 14]), little is known about the relative merits of using one
solver over another in order to smooth a particular unstructured, finite element
mesh. For example, it is not known in advance which solver will converge to an
optimal mesh faster or which solver will yield a mesh with better quality in a
given amount of time. It is also not known which solver will most aptly handle
mesh perturbations or graded meshes with elements of heterogeneous volumes.

∗This work was funded in part by NSF grant CNS 0720749, a Grace Woodward
grant from The Pennsylvania State University, and an Institute for CyberScience
grant from The Pennsylvania State University.
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The answers may likely depend on the context. For example, one solver may
find an approximate solution faster than the others, whereas another solver
may improve the quality of meshes with heterogeneous elements more quickly
than its competitors.

To answer the above questions, we use Mesquite [15], a mesh quality im-
provement toolkit, to perform a numerical study comparing the performance
of several local mesh quality improvement methods to improve the global ob-
jective function representing the overall mesh quality as measured with var-
ious shape quality metrics. We investigate the performance of the following
gradient-based methods: steepest descent [16] and Fletcher-Reeves conjugate
gradient [16], and the following Hessian-based methods: quasi-Newton [16],
trust-region [16], and feasible Newton [17]. Mesh quality metrics used in this
study include the aspect ratio [18], inverse mean ratio [19, 20], and vertex
condition number metrics [21]. The optimization solvers are compared on the
basis of efficiency and ability to smooth several realistic unstructured tetra-
hedral finite element meshes to both accurate and inaccurate levels of mesh
quality. We used Mesquite in its native state with the default parameters. Only
Mesquite was employed for this study so that differences in solver implemen-
tations, data structures, and other factors would not influence the results.

In this paper, we report the results of an initial exploration of the factors
stated above to determine the circumstances when the various solvers may
be preferred over the others. In an effort to make the number of experiments
manageable, we limit the number of free parameters. Hence, we consider a
fixed mesh type and objective function. In particular, we use unstructured
tetrahedral meshes and an objective function which sums the squared qualities
of individual tetrahedral elements. The free parameters we investigate are the
problem size, initial mesh configuration, heterogeneity in element volume,
quality metric, and desired degree of accuracy in the improved mesh.

The main results of this study are as follows: (1) the behavior of the opti-
mization solvers is influenced by the degree of accuracy desired in the solution
and the size of the mesh; (2) most of the time, the gradient-based solvers ex-
hibited superior performance compared to that of the Hessian-based solvers;
(3) the rank-ordering of the optimization solvers depends on the amount of
random perturbation applied; (4) the rank-ordering of the optimization solvers
is the same for the affine perturbation meshes; (5) the rank-ordering of the
majority of the solvers is the same for graded meshes; however, the rank of
conjugate gradient is a function of time; (6) graded meshes are sensitive to
changes in the mesh quality metric.

2 Problem Statement

2.1 Element and Mesh Quality

Let V and E denote the vertices and elements, respectively, of an unstruc-
tured mesh, and let |V | and |E| denote the numbers of vertices and elements,
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respectively. Define VB and VI to be the set of boundary and interior mesh
vertices. Let xv ∈ Rn denote the coordinates for vertex v ∈ V . For the pur-
poses of this paper, n = 3. Denote the collection of all vertex coordinates by
x ∈ Rn×|V |. Let e be an element in E. Finally, let xe ∈ Rn×|e| the matrix of
vertex coordinates for e.

We associate with the mesh a continuous function q : Rn×|e| → R to
measure the mesh quality as measured by one or more geometric properties of
elements as a function of their vertex positions. In particular, let q(xe) measure
the quality of element e. We assume a smaller value of q(xe) indicates a better
quality element. A specific choice of q is an element quality metric. There are
various metrics to measure shape, size, and orientation of elements [22].

The overall quality of the mesh is a function of the individual element
qualities. The mesh quality depends on both the choice of the element quality
metric q and the function used to combine them.

2.2 Aspect Ratio Quality Metric

An important parameter in this study is the choice of mesh quality metric. In
general, we expect that the results could vary significantly depending on the
choice of mesh quality metric. Thus, we consider three mesh quality metrics
in this study, starting with the aspect ratio.

Various formulas have been used to compute the aspect ratio. The aspect
ratio definition we employ is the one implemented in Mesquite. In particular,
it is the average edge length divided by the normalized volume. Thus for
tetrahedra, the aspect ratio is defined as follows:(

l21 + l22 + · · ·+ l26
6

)
/

(
vol× 12√

2

)
,

where li, i = 1, 2, . . . , 6 represent the six edge lengths, and vol represents its
volume.

2.3 Inverse Mean Ratio Quality Metric

In order to derive the inverse mean ratio mesh quality metric, we let a, b, c,
and d denote the four vertices of a tetrahedron labeled according to the right-
hand rule. Next, define the matrix A by fixing the vertex a and denoting by
e1, e2, and e3 the three edge vectors emanating from a towards the remaining
three vertices. Then, A = [e1; e2; e3] = [b − a; c − a; d − a]. Next, define
W to be the incidence matrix for the ideal element which is an equilateral
tetrahedron in the isotropic case. In this case,
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Next, let T = AW−1 transform the ideal element to the physical element.
Finally, the inverse mean ratio of a tetrahedral element is as follows:

‖T‖2F
3|det (T ) | 23

.

2.4 Vertex Condition Number Quality Metric

In order to specify the vertex condition number quality metric, we first define
some notation. Let x be any vertex of an element. Let xk denote the kth

neighboring vertex, for k = 1, 2, . . . ,n. Define k edge vectors ek = xk − x.
Then the Jacobian of the element is given by the matrix A = [e1 e2 · · · en] .
Using A, we can define its vertex condition number as follows:

‖A‖F ‖A−1‖F ,

where ‖ · ‖F denotes the Frobenius matrix norm.
All three mesh quality metrics range from 1 (for an equilateral tetrahedron)

to ∞ (for a degenerate element). Invalid elements can be detected by the
inverse mean ratio mesh quality metric when a complex value results.

2.5 Quality Improvement Problem

To improve the overall quality of the mesh, we assemble the local element
qualities as follows: Q =

∑
e q(xe)2, where Q denotes the overall mesh quality,

and q(xe) is the quality of element e. We compute an x∗ ∈ Rn×|V | such that
x∗ is a locally optimal solution to

min
x

Q(x) (1)

subject to the constraint that xvB
= xvB

, where xVB
are the initial boundary

vertex coordinates. In addition, we require that the initial mesh and subse-
quent meshes to be noninverted. This translates to the constraint det(A(i)) > 0
for every element. In order to satisfy the two constraints, Mesquite fixes the
boundary vertices and explicity checks for mesh inversion at each iteration.

3 Improvement Algorithms

In this paper, we consider the performance of five numerical optimization
methods, namely, the steepest descent, conjugate gradient, quasi-Newton,
trust-region, and feasible Newton methods, as implemented in Mesquite. The
steepest descent and conjugate gradient solvers are gradient-based, whereas
the remaining three are Hessian-based, i.e., they employ both the gradient
and Hessian in the step computation. We describe each method below.
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3.1 Steepest Descent Method

The steepest descent method [16] is a line search technique which takes a
step along the direction pk = −∇f(xk) at each iteration. In Mesquite the
steplength, αk, is chosen to satisfy the Armijo condition [23], i.e.,

f(xk + αkpk) ≤ f(xk) + c1αk∇f(xk)T pk

for some constant c1 ∈ (0, 1), which ensures that the step yields sufficient
decrease in the objective function.

3.2 Conjugate Gradient Method

The conjugate gradient method [16] is a line search technique which takes a
step in a direction which is a linear combination of the negative gradient at
the current iteration and the previous direction, i.e.,.

pk = −∇f(xk) + βkpk−1,

where p0 = −∇f(x0). Conjugate gradient methods vary in their computa-
tion of βk. The Fletcher-Reeves conjugate gradient method implemented in
Mesquite computes

βFR
k =

∇f(xk)T∇f(xk)
∇f(xk−1)T∇f(xk−1)

.

Care is taken in the line search employed by Mesquite to compute a
steplength yielding both a feasible step (i.e., one which does not result in a
tangled mesh) and an approximate minimum of the objective function along
the line of interest.

3.3 Quasi-Newton Method

Quasi-Newton methods [16] are line search (or trust-region) algorithms which
replace the exact Hessian in Newton’s method with an approximate Hessian
in the computation of the Newton step. Thus, quasi-Newton methods solve
Bkpk = −∇f(xk), for some Bk ≈ ∇2f(xk) at each iteration in an attempt
to find a stationary point, i.e., a point where ∇f(x) = 0. The quasi-Newton
implementation in Mesquite [15] is a line search that approximates the Hessian
using the gradient and true values of the diagonal blocks of the Hessian.

3.4 Trust-Region Method

Trust-region methods [16] are generalizations of line search algorithms in that
they allow the optimization algorithm to take steps in any direction provided
that the steps are no longer than a maximum steplength. Steps are computed
by minimizing a quadratic model of the function over the trust region. The
trust region is expanded or contracted at each iteration depending upon how
reflective the model is of the objective function at the given iteration.
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3.5 Feasible Newton Method

The feasible Newton method [17] is a specialized method for mesh quality
improvement. In particular, it uses an inexact Newton method [24, 16] with an
Armijo line search [23] to determine the direction in which to move the vertex
coordinates. At each iteration, the algorithm solves the Newton equations via
a conjugate gradient method with a block Jacobi preconditioner [24]. The
solver also obtains good locality of reference.

4 Numerical Experiments

In this section, we report results from four numerical experiments designed
to determine when each of the five solvers are preferred according to their
time to convergence for local mesh smoothing. All solvers are implemented in
Mesquite 2.0, the Mesh Quality Improvement Toolkit [15], and were run with
their default parameter values. We solve the optimization problem (1) on a
series of tetrahedral meshes generated with the CUBIT [25] and Tetgen [26]
mesh generation packages. We consider the following geometries: distduct,
foam, gear, hook [27] and cube. Sample meshes are shown in Figure 1. In the
first three experiments, we study the effects of three different problem param-
eters on the time taken to reach x∗, a locally optimal solution. The problem
parameters of interest are: problem size, initial mesh configuration, and grad-
ing of mesh elements. For each of the three parameters studied, we create a
set of test meshes in which we isolate the parameter of interest and allow it
to vary; these experiments were inspired by [28, 29]. Particular attention was
paid to ensure that the remaining parameters were held as constant as pos-
sible. Due to space limitations, we have omitted most of the tables of initial
mesh quality statistics which demonstrate this. In the fourth experiment, we
investigate the effect that mesh quality metric has on solver performance.

Because the objective functions used for our experiments are non-convex,
the optimization techniques may converge to different local minima. To ensure
that this did not effect our study, we verified for each experiment whether
or not the solvers converge to the same optimal mesh by comparing vertex
coordinates of the optimal meshes.

In the following subsections, we describe the problem characteristics of the
test meshes in terms of the numbers of vertices and elements, initial mesh qual-
ity (according to the mesh quality metric of interest), and parameter values
of interest (such as magnitude of perturbation). We then specify performance
results for the five optimization solvers. In all cases, the solution is considered
optimal when it has converged to six significant digits. The machine employed
for this study is equipped with an Intel P4 processor (2.67 GHz). The 32-bit
machine has 1GB of RAM, a 512KB L2 cache, and runs Linux.
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(a) Gear mesh (b) Foam mesh (c) Distduct mesh

(d) Hook mesh (e) Cube mesh

Fig. 1. Sample meshes on the gear, foam, distduct, hook, and cube geometries.
Geometries (a)-(d) were provided to us by Dr. Patrick Knupp of Sandia National
Laboratories [27].

4.1 Increasing problem size

To test the effect that increasing the problem size has on optimization solver
performance, we used CUBIT to generate a series of tetrahedral meshes with
an increasing number of vertices while maintaining uniform mesh quality and
element size. A series of meshes were generated for the distduct, foam, gear,
and hook geometries shown in Figures 1(a) through 1(d); for each series of
meshes, the number of elements is increased from approximately 5000 to
500,000 elements.

In the creation of the test meshes, care was taken to ensure that, for each
mesh geometry, we achieve our goal of maintaining roughly uniform element
size and mesh quality distributions. Table 1 shows the initial and final aspect
ratio quality before and after conjugate gradient method was applied on three
of the meshes. Such changes in mesh quality were typical of the results seen
in this experiment.

For each mesh geometry, when the aspect ratio mesh quality metric was
employed, the time to convergence required increased linearly with an increase
in problem size. Figure 2 illustrates this trend for the use of the various solvers
on the distduct geometry. Solver behavior was identical on the remaining ge-
ometries; in particular, the solvers also converged to the same optimal meshes.
Thus, additional figures have been omitted. This is expected as the number of
iterations to convergence is more or less a constant, and the time per iteration
increases linearly with the number of elements used for local mesh smoothing.
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Distduct Mesh Mesh Quality (Aspect Ratio)

# Vertices # Elements Phase min avg rms max std dev

1,262 5,150
Initial 1.00557 1.33342 1.35118 2.71287 0.218363
Final 1.00077 1.27587 1.28932 2.83607 0.185684

19,602 99,895
Initial 1.0007 1.28014 1.29531 10.3188 0.197718
Final 1.00065 1.21742 1.22755 4.8624 0.157424

92,316 498,151
Initial 1.00009 1.27055 1.28513 18.5592 0.193054
Final 1.00004 1.18949 1.1977 18.5592 0.139968

Table 1. Initial and final mesh quality after smoothing the distduct mesh with the
conjugate gradient method using the aspect ratio mesh quality metric.

There are instances where a deviation from linearity is seen in larger meshes.
These are likely due to limitations on the size of the mesh which can fit in the
cache; small meshes may fit entirely in the cache, whereas larger meshes may
only partially fit in the cache.

We now examine the behavior of the various solvers on the distduct meshes
with the use of the aspect ratio quality metric. For engineering applications,
a highly accurate solution is not often needed or even desired. Thus, we con-
sider partially-converged as well as fully-converged solutions. In each case, we
consider smoothing with 85%, 90%, and 100%-converged solutions; the results
are shown in Figure 2. The legend for the remaining plots in the paper is as
follows: ‘circle’ (steepest descent), ‘triangle’ (conjugate gradient), ‘diamond’
(quasi-Newton), ‘square’ (trust-region), and ‘star’ (feasible Newton).

In all the cases, i.e., for the 85%−, 90%-, and 100%−converged solutions,
the five optimization solvers converged towards the same optimal mesh. For
the 85%−converged solutions, feasible Newton is the fastest method to reach
an optimal solution (see Figure 2(a)); few iterations were required since the
initial CUBIT-generated meshes were of fairly good quality. Feasible Newton
was possibly the quickest method since it takes fewer iterations than the
other methods; however, each iteration takes a greater amount of time than
the other solvers. The ranking of all solvers in order of fastest to slowest on
the larger meshes is: feasible Newton < steepest descent < conjugate gradient
< trust-region < quasi-Newton. For the smaller meshes, the rank-ordering
is: conjugate gradient < feasible Newton < steepest descent < trust-region <
quasi-Newton. In general, the gradient-based solvers (i.e, steepest descent and
conjugate gradient) performed better than the Hessian-based solvers (trust-
region and quasi-Newton). However, feasible Newton, which is a Hessian-based
solver, performed very competitively. This is likely due to the fact that local
mesh smoothing was performed with a highly-tuned solver. In addition, the
rank ordering of the solvers depends on the mesh size as noted above.

In the majority of the 90%-converged solution cases (see Figure 2(b)),
the conjugate gradient algorithm reached convergence faster than the other
methods. This was followed by the steepest descent, feasible Newton, trust-
region, and quasi-Newton methods, respectively. This ordering is different
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(a) 85%-converged solution
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(b) 90%-converged solution
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(c) 100%-converged solution

Fig. 2. Mesh smoothing to various convergence levels: (a) 85%-converged solu-
tion; (b) 90%-converged solution; (c) 100%-converged solution. Results are for the
distduct meshes with the aspect ratio quality metric.

than that which was obtained for the 85% case. Because local mesh smoothing
was performed, only one vertex in the mesh is moved at a time. The steepest
descent and conjugate gradient methods use only the gradient of the objective
function to move a vertex to its optimal location. The other methods also use
the Hessian of the objective function to move the vertex. The calculation of
the Hessian adds computational expense, making the Hessian-based methods
comparatively slower. However, Hessians may effect local mesh smoothing
results less than global mesh smoothing results where the Hessian matrices
are much larger. The conjugate gradient method is superior to steepest descent
since it uses gradient history to determine the optimal vertex position.

In the majority of the 100%-converged solution case (see Figure 2(c)), the
conjugate gradient algorithm was the fastest to reach convegence for smaller
meshes; however, the steepest descent method proved to be faster for larger
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meshes. This is probably due to the increase in memory which is required
for larger meshes. Eventually the increased requirements on the performance
of the cache may slow down the conjugate gradient algorithm relative to the
steepest descent algorithm since it must store and access an additional vector.

In conclusion, the behavior of the optimization solvers is influenced by the
degree of accuracy desired in the solution and the size of the mesh. Most of the
time, the gradient-based optimization solvers exhibited superior performance
to that of the Hessian-based solvers.

4.2 Initial mesh configuration

In order to investigate the effect that the initial mesh configuration (as mea-
sured by distance from optimal mesh) had on the performance of the five
solvers, a series of perturbed meshes, based on the 500,000 element distduct,
foam, gear, and hook meshes from the previous experiment, were designed.
In particular, the meshes were smoothed initially using the aspect ratio mesh
quality metric. Then, random or systematic perturbations were applied to the
interior vertices of the optimal mesh. For all experiments, the perturbations
were applied to all interior vertices and to a randomly chosen subsets of ver-
tices of size 5%, 10%, 25%, and 100% of the interior vertices. The formulas
for the perturbations are as follows:

Random: xv = xv + αvr, where r is a vector of random numbers gener-
ated using the rand function, and αv is a multiplicative factor controlling the
amount of perturbation. For our experiments, we chose a random value for
αv; the resulting meshes were checked to verify that they were of poor quality.

Translational: xv = xv + αs, where s is a direction vector giving the
coordinates to be shifted, and α is a multiplicative factor controlling the degree
of perturbation. In this case, we consider the shift with s = [1 0 0]T and
α values ranging from 0.016 to 1.52 were used to maximize the amount of
perturbation a particular mesh could withstand before the elements became
inverted. Thus, the specific value of α chosen for a mesh depended upon the
size of the elements.

Random Perturbations

The results obtained here differ somewhat from the results obtained from
the scalability experiment above. They are similar in that the gradient-based
methods performed better than the Hessian-based methods. This can be at-
tributed to the greater computational expense of computing the Hessian ma-
trices for a smaller payoff in terms of a decrease in the objective function. The
main difference here is that, in almost all cases, the steepest descent algorithm
performs better than the conjugate gradient algorithm.

For this experiment, the meshes to be smoothed were perturbed from
the fully optimized CUBIT-generated meshes. Thus, the initial meshes are
of poorer quality. Starting with poor quality meshes, i.e., far away from an
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optimal mesh, had a very significant impact on the performance of the solvers.
There are cases when the conjugate gradient method does better than the
steepest descent method when the quality of the input mesh is reasonably
good. In this case, all solvers converged to the same optimal mesh.

However, when we start with a poor quality initial mesh, a coarse-scale
improvement in the the mesh is needed. Once the mesh has been sufficiently
smoothed, fine-scale improvements can be obtained through the use of supe-
rior solvers. In most cases, because the perturbation was large, coarse-scale
smoothing was needed. As a result, the performance of steepest descent was
the best (also due to the lower complexity of the algorithm). When the per-
turbations were small, fine-scale smoothing requirements imply that superior
methods will converge faster. This was indeed seen when the perturbations
were small. The conjugate gradient method’s performance was better than
that of steepest descent in such cases. However, the Hessian-based methods
were slower because of their inherent computational complexity. Figure 3(a)
shows typical objective function versus time plots for our experiments.

The behavior of the trust region method was distinctly different than that
of the other algorithms. For small perturbations from the optimal mesh, the
behavior of the trust-region method almost coincided with that of the other
methods in the quality versus time plots. Figure 3(b) below illustrates an
example of such behavior.

However, when the perturbations were large, the trust-region method was
much slower than the other methods in terms of time to convergence. This
is due to the constraint of the spherical trust-region bounding the maximum
acceptable steplength at each iteration. This conservative approach slows the
time to convergence of the trust-region method. It was also observed that,
for large perturbations, the steepest descent method does not converge to
the same optimal mesh as the other methods. In particular, it converges to
an optimal mesh with a higher objective function value. The plot shown in
Figure 3(c) is a good example of the dismal performance of the trust-region
and steepest descent methods in the large perturbation case.

In conclusion, the rank-ordering of the optimization solvers depends upon
the amount of random perturbations applied to the initial meshes in the con-
text of mesh smoothing using the aspect ratio quality metric. In particular, all
five methods performed competitively for the small perturbation case; how-
ever, the steepest descent and conjugate gradient methods performed the best.
In the case of medium-sized perturbations, the steepest descent method per-
formed the best, and the trust-region method performed very slowly. The
other three methods exhibited average performance. Finally, for the case of
large perturbations, the trust-region method is very slow to converge, and the
steepest descent method may converge to a mesh of poorer quality.
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(a) 10% interior vertices perturbed
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(b) 10% interior vertices perturbed
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(c) 5% interior vertices perturbed

Fig. 3. Typical results from the random perturbation experiment. Results were
obtained by smoothing the 500,000 element meshes using the aspect ratio quality
metric. (a) The result is for the gear mesh with 10% of its vertices perturbed;
because the perturbation was small, the behavior of the trust-region method was
almost coincident with that of the other solvers. (b) The result is for the distduct
mesh with 10% of its vertices perturbed; here the trust-region method is competitive
when the initial mesh is of reasonable quality due to the medium-size perturbation.
(c) The result is for the distduct mesh with 5% of its vertices perturbed. Because the
perturbations were large, the steepest descent and trust-region methods performed
very poorly.

Affine Perturbations

In order to determine the effect that affine perturbations had on the per-
formance of the optimization solvers, the affine (translation) perturbation
shown above was applied to all interior mesh vertices once the appropriate
initial 500,000 element distduct, foam, gear, and hook meshes were smoothed
according to the aspect ratio mesh quality metric.
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(a) Mesh smoothing of affinely per-
turbed distduct mesh
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(b) Mesh smoothing of affinely per-
turbed gear mesh

Fig. 4. Typical results for the affine perturbation experiment using the aspect ratio
for local mesh smoothing. The results are for smoothing the distduct and hook
meshes with 500,000 elements after all interior vertices were affinely perturbed.

The qualities of the interior elements of the perturbed meshes were still
fairly good since the transformation applied was affine; however the qualities
of the boundary elements was much worse. It is expected that the conver-
gence plots for all of the solvers will start with rapid decrease in the objective
function and will end with a small decrease in the objective function. This
is because the initial meshes were created by applying as large an affine per-
turbation as possible before mesh inversion occurred, thus generating meshes
rather far away from the optimal ones. This behavior is typical and is observed
in the plots shown in Figure 4. The time taken per nonlinear iteration varies
with the computational complexity of the algorithm. However, the objective
function values (for the various solvers) remain rather similar over the first few
iterations until, eventually, more vertex movement occurs, and the objective
function values become less predictable. However, all solvers did converge to
the same optimal mesh.

The steepest descent method, being the least computationally expensive
method, spends less time per iteration and converges to an optimal mesh
fairly quickly. The ranking of the optimization solvers for the affine pertur-
bation meshes is as follows: steepest descent < conjugate gradient < feasible
Newton < trust-region < quasi-Newton. This rank-ordering demonstrates that
methods for which every iteration is faster converge before methods for which
each iteration is slower.

In conclusion, the optimization solvers exhibited a distinct rank-ordering
for the affine perturbation meshes in the context of local mesh smoothing
using the aspect ratio quality metric. In particular, the rank-ordering was as
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follows: steepest descent < conjugate gradient < feasible Newton < trust-
region < quasi-Newton.

4.3 Graded Meshes

Our second test set was generated using Tetgen in order to test the effect that
grading of mesh elements has on the performance of the five optimization
solvers, as graded meshes have a larger distribution of element mesh qualities.
For this experiment, three sets of structured tetrahedral meshes were gen-
erated which contain the same numbers of vertices and elements but whose
elements have different volumes. The meshes were constructed on a cube do-
main having a side length of 20 units. In the first set of meshes, the vertices
were evenly distributed in two of the three axes, but, for the other axis, half
of the vertices were placed in first 10%, 20%, 30%, or 40% of the volume. Two
additional sets of test meshes were created with the density of vertices varying
in two and three directions instead of variation in only one direction. After
the point clouds were created, Tetgen was used to create a volume mesh of
the cube domain. The resulting Delaunay meshes, which were created without
using any quality control features, was used for the graded mesh experiment.
See Figure 1(e) for an example of a mesh created with half of its vertices occu-
pying 30% of the space in all three axes and distributed uniformly throughout
the rest of the cube volume.

This mesh generation technique results in a structured mesh with het-
erogeneous elements in terms of volume. In particular, approximately one-
fourth, one-half, and one-fourth of the mesh elements can be considered small,
medium, and large, respectively. All of the meshes generated contain 8000 ver-
tices and 41,154 tetrahedra.

The results obtained from this experiment are shown in Figure 5. The mesh
smoothing results for the graded meshes are similar to those observed in the
affine perturbation case. The main difference between the two experiments is
the behavior of the conjugate gradient method. For the graded meshes, there
is a definite hierarchy among the other four solvers; the rank-ordering is as
follows: steepest descent < feasible Newton < trust-region < quasi-Newton.
However, the rank of the conjugate gradient method with respect to the other
solvers varies as a function of time.

In conclusion, the rank-ordering of the conjugate gradient method varied
as a function of time as the graded meshes were smoothed using the aspect
ratio mesh quality metric. However, the rank-ordering of the remaining four
optimization solvers was as follows: steepest descent < feasible-Newton <
trust-region < quasi-Newton.

4.4 Mesh quality metric

Our final experiment was designed to investigate the effect of the choice of
mesh quality metric on the performance of the optimization methods. For
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Fig. 5. Mesh smoothing results for the graded meshes using the aspect ratio mesh
quality metric. The percentages indicate the amount of volume used by the first half
of the vertices in a given axis within the cube domain.

this experiment, we investigated the performance of the various methods on
the distduct, foam, gear, hook, and cube meshes by repeating a subset of the
above experiments for the inverse mean ratio and vertex condition number
quality metrics.

The results of performing the scaling experiment for the inverse mean
ratio and vertex condition number quality metrics are the same as those for
the aspect ratio mesh quality metric described above.

Performing the random perturbation experiment for the inverse mean ratio
and vertex condition number quality metrics yielded results that were qual-
itatively the same, i.e., the results could be classified into one of the above
three cases depending upon how large were the perturbations.

The results of performing the affine perturbation experiment for the inverse
mean ratio and vertex condition number mesh quality metric yielded results
similar to those when the aspect ratio mesh quality metric was used.

Performing the element heterogeneity experiment for the inverse mean ra-
tio mesh quality metric yielded results that were the same as those observed
earlier for the aspect ratio mesh quality metric. However, the results are dif-
ferent for the vertex condition number mesh quality metric. When the vertex
condition number metric is employed for mesh smoothing in the context of the
graded mesh experiment, we observe a small rise in the objective function af-
ter a significant initial decrease as seen in Figure 6. The plots in this figure are
for the cube meshes with vertices in all three axes distributed nonuniformly
to create graded meshes with elements of heterogeneous volume. Although
such behavior is rare, it is possible, as local mesh smoothing is being applied
with a global objective function. Further investigation into the cause of such
behavior for the meshes in this experiment is needed.
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Fig. 6. Mesh smoothing results for the cube meshes with heterogeneous element
volumes using the vertex condition number mesh quality metric. The percentages
indicate the percentage of volume used by the first half of the vertices in all three
axes within the cube domain.

In conclusion, the scaling experiment results were insenstivive to the choice
of mesh quality metric. However, the perturbation and element heterogeneity
results were indeed sensitive to the choice of mesh quality metric. Further
research is needed to identify additional contexts where the choice of mesh
quality metric influences optimization solver behavior.

5 Future Work

The results in this study are specific to local mesh quality improvement of un-
structured tetrahedral meshes via five optimization solvers, namely, the steep-
est descent, Fletcher-Reeves conjugate gradient, quasi-Newton, trust-region,
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and feasible Newton methods, with mesh quality measured according to the
three specified quality metrics, namely the aspect ratio, inverse mean ratio,
and vertex condition number. The results we obtained may vary dramatically
if global mesh quality improvement methods were used instead of the local
ones studied here [28, 29]; hence, we plan to investigate global versions of
these solvers in future work. In addition, vertex ordering has been shown to
play an important role in convergence of the Feasnewt solver when used for
local mesh optimization [30]; thus, we will also investigate the effect of vertex
ordering in the future. We also plan to investigate the role that other non-
shape quality metrics have on the mesh optimization methods with the goal of
identifying other contexts where quality metrics influence optimization solver
behavior. Finally, we plan to investigate the use of hybrid solvers to improve
optimization solver performance.
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