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Abstract The presence of a few inverted or poor-quality
mesh elements can negatively affect the stability, conver-
gence and efficiency of a finite element solver and the accu-
racy of the associated partial differential equation solution.
We propose a mesh quality improvement and untangling
method that untangles a mesh with inverted elements and
improves its quality. Worst element mesh quality improve-
ment and untangling can be formulated as a nonsmooth un-
constrained optimization problem, which can be reformu-
lated as a smooth constrained optimization problem. Our
technique solves the latter problem using a log-barrier in-
terior point method and uses the gradient of the objective
function to efficiently converge to a stationary point. The
method uses a logarithmic barrier function and performs
global mesh quality improvement. We have also developed
a smooth quality metric that takes both signed area and the
shape of an element into account. This quality metric assigns
a negative value to an inverted element. It is used with our
algorithm to untangle a mesh by improving the quality of
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an inverted element to a positive value. Our method usually
yields better quality meshes than existing methods for im-
provement of the worst quality elements, such as the active
set, pattern search, and multidirectional search mesh quality
improvement methods. Our method is faster and more ro-
bust than existing methods for mesh untangling, such as the
iterative stiffening method.

1 Introduction

This paper proposes a new method for displacing vertices of
a finite element mesh in order to optimize the mesh qual-
ity. High-quality meshes are necessary for the stability [1]
and efficiency of finite element (FE) solvers and for the ac-
curacy [2–4] of the solution of the associated partial differ-
ential equations (PDEs). Inverted and poor quality elements
affect the conditioning of the linear system that arises from
the PDE and the mesh [1]. There are numerous geometric
mesh quality improvement algorithms which are effective in
improving the average mesh quality [5–9]. However, even a
few poor quality elements can negatively affect the entire fi-
nite element analysis due to the resulting ill-conditioned ma-
trices that hinder the efficiency and the accuracy of the finite
element solvers [10]. Therefore, we focus on the develop-
ment of an algorithm to improve the worst quality mesh ele-
ment. Our algorithm solves a smooth constrained optimiza-
tion problem to untangle a mesh with inverted elements and
to improve the worst quality elements. It can be classified as
an interior point method [11].

In many computational fluid dynamics (CFD) applica-
tions, for example, a consistent topology is desired for prob-
lems with evolving domains. For such applications, moving
mesh methods are used to warp a mesh [12]. Note that local
remeshing techniques may be used if consistent mesh topol-
ogy is not required. In this paper, we assume that the mesh
topology remains the same through the course of the sim-
ulation. In the event of mesh tangling after a moving mesh
method is applied, mesh untangling may be used to obtain a
valid mesh to continue the CFD simulation. Therefore, mesh
untangling and mesh quality improvement algorithms are
used to reorient inverted mesh elements after mesh deforma-
tion (e.g., mesh warping [13–15]) or to improve the quality
of mesh elements when the initial qualities of the elements
obtained from mesh generators are poor.

In order to efficiently solve isotropic, elliptic PDEs, the
quality of a tetrahedral mesh is improved so that the shape
of its elements are close to being regular [16]. In this paper,
we use quality metrics whose optimal value for a quality of a
tetrahedral element corresponds to a regular tetrahedral ele-
ment. For other PDEs, posterior or prior error estimates may
be used to improve the mesh quality [17]. Our technique can
be used to improve the quality of the mesh as long as the
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quality metric is continuous for all possible vertex positions
for a valid mesh.

Other algorithms have been developed for improvement
of the quality of the worst element. Freitag and Plassmann
developed an active set algorithm [18] for mesh quality im-
provement. However, their algorithm requires the objective
function specifying the mesh quality metrics to be convex.
Park and Shontz developed two derivative-free optimization
algorithms, namely the pattern search and multidirectional
search methods [19], for mesh quality improvement. These
algorithms do not use the gradient to optimize the mesh
quality; thus, we expect their rate of convergence to be slow.
These algorithms are described in more detail in Section 2.

Also, inverted mesh elements result in termination of FE
solvers. In order to untangle an inverted mesh, Freitag and
Plassmann also developed a simplex-based mesh untangling
algorithm [18], which maximizes the area (2D) or volume
(3D) of a tetrahedral element. However, this technique may
yield a mesh with poor quality. Escobar et al. developed an
algorithm [20] that can simultaneously untangle and smooth
tetrahedral meshes. Though this method yields a mesh with
good average quality, it does not target the elements with the
worst quality for improvement. Thus, a second optimization
problem must be solved in order to improve the mesh qual-
ity.

Mesh untangling and worst element mesh quality im-
provement can be formulated as a nonsmooth unconstrained
optimization problem. In Section 3, we describe the problem
statement and show its reformulation into a constrained opti-
mization problem. We solve this unconstrained optimization
problem using an interior point method.

We develop a log-barrier interior point method [21] that
seeks to improve the quality of its worst element. We suit-
ably modify our algorithm and extend its application to un-
tangle meshes with inverted elements. Our algorithm un-
tangles the mesh first, and then improves the quality of the
worst elements. As mesh quality improvement is a simpler
problem, we first describe our algorithm for mesh quality
improvement, and then describe the modifications neces-
sary for our algorithm to be used for mesh untangling. Our
method overcomes the disadvantages posed by the other al-
gorithms presented above by employing a logarithmic bar-
rier term, which is a function of the quality of the worst
element. Though derived from classical optimization the-
ory, the log-barrier method in our context has the following
natural interpretation. On each iteration, the gradient of the
log-barrier function points in a direction that is a weighted
combination of the directions that improve each individual
element. The weights are selected automatically in such a
way that elements with the worst qualities have the highest
weights (see (5) below). Therefore, the method globally up-
dates vertex positions but concentrates on the improvement
of the worst elements. Our interior point method solves the

primal formulation of the constrained optimization problem
and can be used on both convex and nonconvex objective
functions. The algorithm for mesh quality improvement and
untangling is presented in Section 4, and its characteristics
are discussed in Section 5.

In order to improve the worst element mesh quality, any
shape-based geometric mesh quality metric may be used
with our method. However, for tangled meshes, the signed
volume of the element is also important. We have developed
a smooth quality metric that takes both signed volume and
the shape of an element into factor. This quality metric as-
signs a negative value to an inverted element. It is used with
our algorithm to untangle a mesh by improving the quality
of an inverted element to a positive value. The suitable qual-
ity metrics for our algorithm for mesh quality improvement
and for mesh untangling are presented in Section 6.

We perform numerical experiments to assess the effi-
ciency of our algorithm by comparing its performance against
that of existing algorithms. Mesh quality improvement tech-
niques can be used until a desired mesh quality is reached
(often specified by an analysis tool) or until the technique
has converged [16]. In this paper, we execute our technique
and the related techniques until convergence. Numerical ex-
periments and their results for mesh quality improvement
and mesh untangling are discussed in Sections 7 and 8, re-
spectively. We give our concluding remarks in Section 9.

2 Related Work

2.1 Derivative-Free Algorithms for Mesh Quality
Improvement

Park and Shontz developed pattern search (PS) and mul-
tidirectional search (MDS) mesh quality improvement al-
gorithms [19] to improve the worst quality mesh element.
Their derivative-free algorithms do not compute the gradient
of the objective function, but instead use function evalua-
tions to move the vertices. These algorithms also employ lo-
cal mesh quality improvement, as pattern search techniques
are not efficient on large problems. The following objective
function is maximized in order to improve the worst element
mesh quality:

f (x) = min
1≤i≤m

qi(x), (1)

where m is the number of elements and qi(x) is the quality
of ith element.

Pattern Search (PS) Method. The PS method moves a mesh
vertex in one of a pre-defined (usually orthogonal) set of di-
rections. The direction and distance (i.e., the step length)
by which each vertex is moved is determined by evaluat-
ing the objective function at the pattern points. If the vertex
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movement would result in a tangled mesh, the movement is
backtracked by decreasing the step length along the search
direction. This is known as a backtracking line search and is
used to prevent the inversion of an element.

Multidirectional Search (MDS) Method. The MDS method
uses search directions given by a simplex, i.e., a triangle
(2D) or a tetrahedron (3D). The simplex is expanded, con-
tracted, and/or reflected in order to determine the optimal
position for a vertex. A backtracking line search is used to
prevent an element from inverting, if needed, in a similar
manner as for the PS method.

2.2 Active Set Method for Mesh Quality Improvement

Freitag and Plassmann developed an active set mesh qual-
ity improvement algorithm [18], which maximizes the qual-
ity of triangular or tetrahedral mesh elements. To guarantee
convergence, the relevant objective function formed by qual-
ity metrics should possess convex level sets. Examples of
such quality metrics include the minimum of the sine of the
angles of the triangle in 2D and the aspect ratio quality met-
ric in 3D for individual submeshes. This method employs a
local mesh quality improvement technique, where individual
submeshes are optimized by moving one vertex at a time.

For each submesh, the objective function is defined as
the quality of the worst element. The objective function de-
scribed above in (1) is maximized in order to improve qual-
ity of the worst element in the mesh. They define the active
value as the current value of the objective function due to
the vertex placement, x, which is a vector containing the ver-
tex positions. They define active set, denoted by A, as a set
of those functions that result in the active value. The non-
smooth optimization problem of improving the quality of
the worst element is solved using the steepest descent algo-
rithm [11]. Here, the gradient and hence the descent direc-
tion is obtained by considering all possible convex combina-
tions of active set gradients, ∇x (qi(x)) = gi(x), and choosing
the one that solves

min
x

ḡT ḡ,where ḡ = ∑
i∈A

βigi(x),

s.t. ∑
i∈A

βi = 1,βi ≥ 0.

A backtracking line search technique is used to determine
the points at which the active set changes, and the vertex
is moved to the point that results in the best mesh quality
improvement.

3 Problem Formulation for Mesh Untangling and
Quality Improvement

In this section, we mathematically formulate our mesh qual-
ity improvement and untangling problem. Our problem in-
volves the description of the quality metrics used to mea-
sure the mesh quality and the objective function that is op-
timized in order to untangle meshes and improve its quality.
We will describe the quality metrics we use for mesh quality
improvement and untangling in Section 6.

Objective Function for Mesh Quality Improvement and Un-
tangling. The problem of improving the worst quality ele-
ment (inverted or otherwise) can be expressed as

min
x

(
max

i∈[1,m]
qi(x)

)
.

In this paper, the aspect ratio quality metric and the nons-
mooth aspect ratio quality metric is used (described in Sec-
tion 6). Their range is from 1 to ∞, where 1 is the quality
of an ideal element, and ∞ is the quality of a degenerate el-
ement. Note that this formulation assumes that the quality
of an element should be minimized in order to obtain the
ideal element. However, our algorithm is designed for max-
imization of a quality metric. Thus, the objective function
is modified by taking the reciprocal of the quality metric as
follows:

max
x

(
min

i∈[1,m]

1
qi(x)

)
.

This can be reformulated as a constrained optimization prob-
lem

max
x

t subject to t ≤ 1
qi(x)

,∀i ∈ [1,m]. (2)

Note that all of these formulations improve the quality of
the worst element, as minimizing a function is equivalent to
maximizing its reciprocal. Any quality metric that defines a
maximum value for an ideal element, zero for a degenerate
element, and a negative value for an inverted element may
be used with our method. Such a quality metric may also be
obtained by taking the reciprocal, scaling, and/or translating
other quality metrics.

4 A Log-Barrier Method for Mesh Quality
Improvement and Untangling

In this section, we describe our log-barrier method for mesh
quality improvement and untangling. We develop our al-
gorithm based on interior point methods [11], which can
be used to solve constrained optimization problems. Our
method uses a logarithmic barrier term, which emphasizes
the improvement of inverted and poor quality elements, and
solves the constrained optimization problem using the gra-
dient of the objective function.
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4.1 Interior Point Methods

Interior point methods are a class of methods used to solve
constrained optimization problems [11]. For a constrained
optimization problem, the objective function, f (x), is max-
imized while respecting k constraints, ci(x) ≤ 0, ∀i ∈ [1,k].
When interior point methods are employed, the constraint is
added as a logarithmic barrier term to the objective function.
The new objective function, F(x,µ), is given by:

F(x,µ) = f (x)+ µ
k

∑
i=1

log(−ci(x)),

where µ > 0. The modified objective function is iteratively
maximized using an unconstrained optimization algorithm.
On every iteration, µ is reduced so that the barrier term is
eventually negligible, and the original objective function,
f (x), is maximized subject to the constraint. Pseudocode for
a typical interior point method is presented in Algorithm 1.

Algorithm 1 Interior Point Method
Input: f (x), ci(x), tol.
Output: x that approximately solves maxx f (x) such that ci(x) ≤
0, ∀i ∈ [1,k].
Initialize µ j > 0 and x0 such that ci(x0) < 0, ∀i ∈ [1,k].
while µ j ≥ tol do

Maximize f (x)+ µ j ∑k
i=1 log(−ci(x)) using any gradient-based

optimization algorithm.
Decrease µ j towards 0.

end while

4.2 The Log-Barrier Method for Mesh Quality
Improvement and Untangling

We seek to untangle a mesh with inverted elements and, if
no element is inverted, improve the element with the worst
quality. As in (2), a quantity t is defined such that

t ≤min
i

1
qi(x)

,

where qi(x) is the quality of the ith element. The x that leads
to the maximal value of t corresponds to the mesh whose
worst element has the best possible quality. The two goals
of untangling and improving are unified if the quality metric
rates inverted elements with the lowest value. In what fol-
lows, qi(x) will be negative if element i is inverted when the
nodal positions are given by x.

The log-barrier method replaces the constraint t ≤ qi(x)
with a barrier term

log
(

1
qi(x)

− t
)

in the objective function. In other words, we replace the con-
strained problem (2) by the unconstrained problem of max-
imizing

t + µk

m

∑
i=1

log
(

1
qi(x)

− t
)

. (3)

The barrier term automatically enforces the constraint since
the logarithm function tends to −∞ at the boundary of the
feasible region. In fact, it enforces strict inequality t < qi(x).
After every iteration, µ is brought closer to 0 by multiply-
ing it by some factor γ , where 0 < γ < 1. Note that other
techniques may be used to reduce µ towards 0 after every
iteration. We modify t such that d

dt (F(x, t,µ)) ≈ 0. For a
fixed µ and x, the objective function is strictly concave in t.
Therefore, setting its derivative to 0 corresponds to globally
maximizing the objective with respect to t. The log-barrier
method for mesh quality improvement and mesh untangling
is shown in Algorithm 2.

Algorithm 2 Interior Point Method for Mesh Quality Im-
provement

Initialize µk and t < 1/qi(x) for all i ∈ [1,m] where qi(·) is the
quality metric function.

while not converged do
Maximize F(x, t,µ j) = t + µ j ∑m

i=1 log
(

1
qi(x)

− t
)
, where t and µ

are held constant, using the nonlinear conjugate gradient
method.

Decrease µ j towards 0 by setting µ j+1 = γµ j .
Update t to a new value such that d

dt (F(x, t,µ j+1))≈ 0.
end while

5 Characteristics of the Log-Barrier Method for Mesh
Quality Improvement and Untangling

In this section, we show that the set of first-order neces-
sary conditions, i.e., the Karush-Kuhn-Tucker (KKT) con-
ditions [11], are satisfied for a solution of our constrained
optimization problem. This fact is well known in the opti-
mization literature; we include it here for the sake of com-
pleteness and also to provide more detail about the proper-
ties of the objective function and the algorithm. In addition,
we examine the monotonicity of our algorithm.

5.1 Satisfaction of the KKT Conditions

Consider a constrained optimization problem of maximizing
f (x), while respecting the k constraints ci(x)≤ 0, ∀i ∈ [1,k].
The Lagrangian is given by

L(x,λ ) = f (x)+λc(x),
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where λ is a vector of Langrange multipliers. The active set
is given by

A(x) = {i|ci(x) = 0}.
For a given point x, linear independence constraint qualifi-
cation (LICQ) holds if the active set gradients {∇ci(x)|i ∈
A(x)} are linearly independent.

Suppose that x∗ is a solution to our constrained optimiza-
tion problem and that LICQ holds at x∗. Then there is a La-
grange multiplier vector λ ∗ such that the following condi-
tions (i.e., KKT conditions) are satisfied at (x∗, λ ∗):

– stationarity condition:

∇xL(x∗,λ ∗) = 0

– primal feasibility:

ci(x∗)≤ 0, ∀i ∈ [1,k]

– dual feasibility:

λ ∗i ≥ 0, ∀i ∈ [1,k]

– complementarity condition:

λ ∗i ci(x∗) = 0, ∀i ∈ [1,k].

Now, consider our constrained optimization formulation
of the mesh quality improvement problem. For a solution,
x∗, of a constrained optimization problem, the gradient of
the Lagrangian vanishes at the solution, i.e., ∇xL(x∗, t∗,λ ∗)=
0. For (2), the Lagrangian is given by

L(x, t,λ ) = t +
m

∑
i=1

λi

(
1

qi(x)
− t

)
.

Hence, its gradient is given by

∇xL(x, t,λ ) =
m

∑
i=1

λi∇x

(
1

qi(x)

)
. (4)

The nonlinear conjugate gradient (CG) step in the log barrier
method computes x such that the gradient of the objective
function given by (3), i.e., ∇xF(x, t,µk), vanishes. For this
choice of F ,

∇xF(x, t,µk) = µk∇x

m

∑
i=1

log
(

1
qi(x)

− t
)

= µk

m

∑
i=1

1(
1

qi(x)
− t

)∇x

(
1

qi(x)

)
. (5)

From (4) and (5), we see that, if λi is defined by

λ ∗i =
µ∗k

1
qi(x∗) − t∗

, (6)

then the solution obtained by our method satisfies the sta-
tionarity requirement of the KKT conditions. The stationar-
ity conditions are satisfied, as

∇xL(x∗, t∗,λ ∗) =
m

∑
i=1

λ ∗i ∇x

(
1

qi(x∗)

)
= 0.

Primal feasibility is also satisfied, since

1
qi(x∗)

− t∗ ≥ 0.

Dual feasibility is satisfied if

λ ∗i ≥ 0.

From (6), and since µk > 0 and 1
qi(x∗)−t∗ > 0 at the solution,

we have
λ ∗i ≥ 0.

The complementarity condition requires that

λ ∗i

(
1

qi(x∗)
− t∗

)
= 0.

Substituting for λ ∗i , we see that

λ ∗i

(
1

qi(x∗)
− t∗

)
= µk.

The log-barrier method drives µk to 0 as k → ∞. Thus, the
complementarity condition is also satisfied. Therefore, our
log-barrier method converges to stationary points. Our im-
plementation explicitly checks that the line search explo-
ration moves the vertices in an ascent direction.

5.2 Monotonicity

In our algorithm, the optimization method maximizes the
objective function given by (3),

F(x, t,µk) = t + µk

m

∑
i=1

log
(

1
qi(x)

− t
)

,

on every iteration. Because t and µk > 0 are constants for a
given iteration, the maximization of the objective function
is equivalent to maximization of the sum of the logarithmic
terms. This is equivalent to maximizing the product of the
terms (without taking their logarithms).

For simplicity of the analysis, let us now examine the
monotonicity of our algorithm when employed on a patch
having only two elements. If we plot the qualities of the two
elements on the X and Y axes, we obtain hyperbolic con-
tours representing the objective function as shown in Fig. 1.
In Fig. 1, P represents a patch with nearly equal qualities of
the elements, and Q represents a patch with unequal element
qualities. The symbols a, b, c, and d represent the paths the
patches can take in order to maximize the objective func-
tion. Ideally, P should take path b, and Q should take path d,
so that the qualities of both the elements improve. In many
cases, this is not possible, as improving the quality of one
of the elements decreases the quality of the other. When the
qualities of the two elements are nearly equal, if P takes path
a, the quality of the worst element decreases. Thus, we see
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Fig. 1 Illustration of possible nonmonotonicity in the convergence of
our algorithm. The X and Y axes represent the qualities of two elements
in a patch, and the hyperbolic contours represent the sum of the two
qualities on a logarithmic scale (which is maximized in an iteration).
P and Q are possible locations of qualities of the patch. The symbols
a, b, c, and d are the possible paths our algorithm can take. Although
the objective function is maximized, notice that the quality of the worst
element may not improve in all cases.

that our algorithm may not monotonically increase the qual-
ity of the worst element in the mesh. For the unequal case,
path c also improves the quality of the worst element.

Fig. 2 shows how the nonsmooth objective function for
maximizing the worst quality element in Fig. 2(a) is con-
verted to a smooth objective function in Fig. 2(b). In Fig. 2(a),
the nonsmooth aspect ratio is plotted for a patch with a free
vertex in the square formed by the diagonal from (0,0) to
(1,1). Other vertices are on the perimeter of the square at
(0,0), (0,0.5), (0,1), (0.5,1), (1,1), (1,0.5), (1,0), and (0.5,0).
Note that the contours are nonsmooth when plotting the worst
quality element in the patch. For illustration purposes, we
chose the point (0.1,0.1), where the function is nonsmooth
and set t in the log-barrier objective function as some quan-
tity less than the worst element quality in the patch with the
free vertex at (0.1,0.1). The smooth contours of the objec-
tive function are plotted in Fig. 2(b). Our algorithm moves
the free vertex at (0.1,0.1) to a point close to (0.5,0.5).

6 Quality Metrics

In this section, we define quality metrics that may be used
with our method to improve the quality of mesh elements.
However, the naı̈ve use of the same metrics do not work for
mesh untangling. Thus, we suitably modify the metrics to
successfully untangle meshes.

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

(a) Contours of the mesh quality

0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

(b) Contours of the objective function

Fig. 2 Contours of the worst element quality and log-barrier objective
function for a patch with eight vertices on the perimeter. (a) Contours
of the nonsmooth aspect ratio quality metric. They are nonsmooth at
points where two worst quality elements are present. The dotted lines
indicate a patch with one possible vertex position. (b) Contours of the
log-barrier objective function with the free vertex at (0.1,0.1). Notice
how smooth the contours are.

6.1 Quality Metrics for Mesh Quality Improvement

We use two quality metrics, i.e., one smooth and one nons-
mooth, to demonstrate the effectiveness of our algorithm.

Aspect Ratio Quality Metric: We define the quality of tetra-
hedral mesh element i as

qi(x) =
(

l2
1 + l2

2 + · · ·+ l2
6

6

) 3
2

/

(
vol× 12√

2

)
,

where x are the vertex positions, vol is the unsigned volume
of the ith tetrahedron, and l j is the length of side j of the
tetrahedron [22]. The range of this quality metric is from 1
to ∞, where 1 is the quality of an regular tetrahedron. The
quality tends to infinity as the tetrahedron becomes degen-
erate. Note the reciprocal of the metric is used in our imple-
mentation as described in Section 4.4.
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Nonsmooth Aspect Ratio Quality Metric: We define the qual-
ity of the ith tetrahedral mesh element as

qi(x) =
√

2
12

l3
max

vol
,

where lmax is the length of the longest edge of the tetrahe-
dron. The range of this quality metric is from 1 to ∞, where 1
is the quality of an equilateral tetrahedron. The quality tends
to infinity as the tetrahedron becomes degenerate. Note the
reciprocal of the metric is used in our implementation as de-
scribed in Section 4.4.

Log Barrier Term for Nonsmooth Quality Metrics: As our
log-barrier method uses the gradient of the objective func-
tion, the objective function needs to be differentiable. How-
ever, the nonsmooth aspect ratio metric, which is used in
defining the objective function, is not differentiable. There-
fore, our method handles this metric by using each of the
edges in the tetrahedron to compute six qualities for the
tetrahedron and uses them as additive terms in the log bar-
rier function. Since each individual term (for each edge in
the tetrahedron) is smooth, the resulting log barrier function
is also smooth. Note that the nonsmooth aspect ratio quality
metric is defined using only the longest edge of a tetrahe-
dron.

6.2 Quality Metrics for Mesh Untangling

Below, we describe how our log-barrier method can also be
used to untangle meshes. Inverted elements are assigned a
negative value, and by improving the quality of the inverted
element to a positive value, a mesh can be untangled. We
first describe an unsuccessful attempt to untangle a mesh by
maximizing the minimum signed mesh quality and then de-
scribe a successful attempt in which the minimum signed
volume of the mesh elements was maximized. We improve
upon this successful attempt by combining the two tech-
niques and compare the resulting algorithm against the el-
ement quality measuring technique of Escobar et al. [20].

Maximizing the Minimum Signed Mesh Quality: The recip-
rocal of the smooth aspect ratio quality metric that is used
to determine the element quality is a function of the signed
volume of the element. It is negative when the element is
inverted. By maximizing the element quality to a positive
value, it is possible to untangle the mesh. In Fig. 3, the con-
tours of the element quality (for a triangular element) asso-
ciated with a free vertex when the other two vertices are held
stationary are plotted. It is clear that a gradient-based opti-
mization algorithm will be able to improve an inverted ele-
ment only when the gradient points towards the line connect-
ing the stationary vertices. If the free vertex is sufficiently far

away from this line, then the gradient points away from the
line; hence, the element will remain inverted. We tested our
hypothesis by perturbing a mesh vertex by some distance.
When the distance of the perturbation was increased beyond
a certain value, our method was no longer able to untangle
the mesh.

−0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

Y

X

Fig. 3 Contours of the reciprocal of the smooth aspect ratio quality of a
triangular element as a function of a free vertex. The other two vertices
are held stationary at (0,0) and (1,0). The solid line indicates the line
segment joining the stationary vertices. The dotted lines indicate the
other two sides of the triangular element when the free vertex is at an
optimal position. The triangle is inverted when the free vertex is below
the line joining the stationary vertices. When the free vertex is at X, the
gradient points towards the line. However, when the free vertex is at Y,
the gradient points away from the line.

Maximizing the Minimum Volume: We replaced the recipro-
cal of the smooth aspect ratio quality metric with the signed
volume of the element. The contours of the signed volume
(for a triangular element) are shown in Fig. 4. Limited suc-
cess was achieved with this modification. The maximization
of the minimum volume moves a vertex to a location that
may yield suboptimal element quality. This results in con-
strained movement of the vertex that is responsible for ele-
ment inversion because other vertices in the neighborhood
are not in an optimal location.

Maximizing the Hybrid Mesh Quality: We found that, by
combining the signed element volume and the reciprocal of
the aspect ratio quality metric, simultaneous mesh quality
improvement and untangling may be achieved. We define
our hybrid mesh quality as follows: if the element is in-
verted, the signed element volume is defined to be its qual-
ity, and if the element is not inverted, the reciprocal of the
smooth aspect ratio is defined to be its quality. Note that
this hybrid mesh quality metric is continuous, as is shown
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Fig. 4 Contours of the signed volume of a triangular element as a func-
tion of a free vertex. The other two vertices are held stationary at (0,0)
and (1,0). The solid line indicates the line segment joining the station-
ary vertices. The dotted lines indicate the other two sides of the triangu-
lar element when the free vertex is at an optimal position. The triangle
is inverted when the free vertex is below the line joining the stationary
vertices. When the free vertex is at X or Y, the gradient points towards
this line.

in Fig. 5, but is not smooth. Since we use a line search tech-
nique to move the vertices, and since the direction of the gra-
dients of the functions defining the signed element volume
and the reciprocal of the smooth aspect ratio quality metric
are the same for a free vertex forming a degenerate element,
it is possible to untangle the mesh and to improve the qual-
ity of the mesh elements. Our numerical experiments using
the hybrid mesh quality metric show successful mesh qual-
ity improvement and untangling.

Hybrid Mesh Quality with Sigmoid Functions: As differ-
entiable objective functions are desirable for convergence
properties of gradient-based optimization algorithms, we pro-
ceed by constructing a differentiable function that is similar
to the objective function defined by the hybrid mesh quality
metric. The hybrid mesh quality can be formulated as

Qi = wvolvoli(x)+warq−1
ar (x),

where voli is the signed volume of element i, wvol is its
weight, qar(x) is the smooth aspect ratio quality of the el-
ement, and war is its weight. For the hybrid mesh quality
metric, [wvol, war] = [1, 0] for an inverted element, and [wvol,
war] = [0, 1] for an element that is not inverted. In order to
make the function differentiable, the weights can be modi-
fied using sigmoid functions. The sigmoid functions defin-
ing the weights are given by

wvol =
1

1+ eα ·voli(x)
and war =

1

1+ e−β ·q−1
ar (x)

,

where α and β are scaling factors. In order to scale the gra-
dient of the hybrid quality of an inverted element at its vertex
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Fig. 5 Contours of the hybrid quality of a triangular element as a func-
tion of a free vertex. The other two vertices are held stationary at (0,0)
and (1,0). The solid line indicates the line segment joining the station-
ary vertices. The dotted lines indicate the other two sides of the tri-
angular element when the free vertex is at an optimal position. The
triangle is inverted when it is below the line joining the stationary ver-
tices. When the free vertex is at X or Y, the gradient points towards the
line. Note that the metric is continuous (but not smooth) as the volume
and the quality vanish for a degenerate element.

positions, we have scaled the signed volume component of
the hybrid quality metric. This ensures that the magnitude of
the gradient of the hybrid quality of an inverted element at
its vertex locations is scaled relative to that of the other ele-
ments. This is important as a global implementation of mesh
optimization is being used. Thus, the new objective function
is given by:

max
x

(
min

i∈[1,m]

((
1

1+ eα·λvoli(x)

)
λvoli +

(
1

1+ e−β ·q−1
ar (x)

)
q−1

ar (x)
))

,

where λ is the volume scaling factor. Note that volume scal-
ing constant may vary for various parts of the mesh depend-
ing on the local grading. As we have used a homogeneous
mesh in our numerical experiments, the same scaling factor
is used for all the elements. In our numerical experiments,
we find that the new objective function is able to be used
to perform simultaneous mesh untangling and quality im-
provement of the worst element. Note that the quality metric
should be defined such that the quality of a degenerate ele-
ment is 0, and the quality of an ideal element is 1. This can
be achieved by scaling, taking the reciprocal, and/or trans-
lating any smooth quality metric.

Quality Metric with Mapped Volume: In [20], the authors
have suggested a modification to the function defining any
signed volume-based quality metric to enable simultaneous
mesh untangling and quality improvement. The signed vol-
ume of a tetrahedral element is modified using the following
mapping function:

h(voli(x)) =
1
2

(
voli(x)+

√
vol2i (x)+4δ 2

)
,
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where δ is some constant. The contours of the reciprocal of
the mapped aspect ratio quality metric are shown is Fig. 6.
Note that this mapping is possible only when the quality of
an element is a function of the signed volume of the element.
We maximize the mapped quality of the worst element us-
ing the log-barrier method. Note that the magnitude of the
gradient of the modified quality metric reduces as we move
away from the optimal vertex position. The parameter, δ ,
can be increased to scale the magnitude to a larger value,
but as δ increases, the optimal vertex position for the free
vertex moves from being an equilateral triangle to a point
closer to the line joining fixed vertices. Note that the gradi-
ents of the mapped aspect ratio quality metric (and not its
reciprocal) are scaled so that their magnitudes are larger at
vertex positions of inverted elements. For the mapped aspect
ratio quality metric, the element quality must be minimized
for quality improvement. For this formulation, techniques to
improve the average quality have been developed, but not
for worst element mesh quality improvement. In this chap-
ter, we consider the problem of improving the quality of the
worst mesh element.

−0.5 0 0.5 1 1.5
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Fig. 6 Contours of the reciprocal of the aspect ratio quality with
mapped volume of a triangular element as a function of a free vertex.
The other two vertices are held stationary at (0,0) and (1,0). The solid
line indicates the line segment joining the stationary vertices. The dot-
ted lines indicate the other two sides of the triangular element when the
free vertex is at an optimal position for the signed aspect ratio quality
metric (not the modified quality metric with a mapped volume). The
triangle is inverted when it is below the line joining the stationary ver-
tices. When the free vertex is at X or Y, the gradient points towards the
line. Note that the metric is continuous and smooth.

7 Numerical Experiments for Mesh Quality
Improvement

In this section, we describe the numerical experiments that
we designed to evaluate the performance of our log-barrier

method for mesh quality improvement. We implemented our
algorithm, the PS, and the MDS methods in the Mesquite
Mesh Quality Improvement Toolkit Version 2.0.0 [23]. The
active set method was already implemented in Mesquite. For
each of the methods, the movement of the surface vertices
was enabled. For the star meshes, the gradient of the objec-
tive function for the boundary vertices was projected onto
the respective planes. For the sphere meshes, if the boundary
vertices moved away from the surface, they were snapped
back onto the surface.

Star and sphere (Fig. 7) meshes of various sizes were
constructed using CUBIT [24]. We considered these sim-
ple geometries because the movement of surface vertices for
such planar and spherical surfaces is possible in Mesquite.
We will be performing our experiments on more complex
domains in future. Surface vertex movement can be designed
in our method’s implementation if the surface definitions
from computer-aided design packages are imported into mesh
quality improvement software. In order to test our algorithm
on challenging meshes, 50% of the vertices in the original
meshes were randomly perturbed. The following three ex-
periments were performed.

7.1 Effect of Parameters on Algorithmic Performance

For our first experiment, the following set of parameters
were modified to determine their effect on the performance
of the mesh quality improvement. Three variants of the non-
linear conjugate gradient method, i.e., the Fletcher-Reeves,
Polak-Ribière, and Hestenes-Stiefel variants were used to
improve the mesh quality in the inner loop. Two, four, and
eight CG iterations per outer iteration were used in each
of the experiments. The parameter µ was reduced to 90%,
60%, and 30% of its value after every outer iteration. We
used the largest star mesh with approximately 1.012 million
elements. We maximized the reciprocal of the aspect ratio
quality metric for each of the subexperiments. The subexper-
iments were carried out for all combinations of these param-
eters. The numerical experiments were run until the quality
of the worst element did not improve for five successive it-
erations.

The detailed results of these experiments can be found in
our previous paper [21]. We found that the Hestenes-Stiefel
variant of the CG method with four inner iterations and 90%
reduction in µ resulted in the most optimal performance. We
have used these parameters in the rest of the paper for both
mesh quality improvement and untangling unless specified
otherwise.
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(a) Star domain (b) Sphere domain (c) Stab3 domain

Fig. 7 Unperturbed coarse meshes on the three domains representative of actual meshes considered in this paper.

7.2 Scalability

For this experiment, the reciprocal of the aspect ratio met-
ric was maximized to improve the quality of the perturbed
meshes using all the methods described in Section 4.2. Two
inner iterations were carried out for every outer iteration
in the log-barrier, PS and MDS methods. The log-barrier
method employed the Hestenes-Stiefel conjugate gradient
algorithm [11] in the inner loop. After every outer iteration,
µ was reduced to 90% of its value in the previous iteration.
In order to accurately estimate the time per iteration, our
implementation was executed for 50 iterations on each star
mesh.

The results from the scalability experiment are shown in
Fig. 8, where the time per outer iteration for each method
scales linearly with the number of elements in the mesh, as
the time required to compute the gradient and move the ver-
tices is directly proportional to the mesh size. Table 1 pro-
vides the initial and the final worst element mesh quality for
each of the meshes. We determined the order of convergence
as a function of the problem size for our method. The order
of convergence, α , is given by T = k ∗mα , where T is the
time to convergence, m is the number of mesh elements, and
k > 0 is a constant. In order to determine α , a least squares
fit was computed by taking the logarithm of both sides. The
value of α was found to be 0.9946.

7.3 Comparison with Existing Mesh Quality Improvement
Methods for the Aspect Ratio Quality Metric

For this experiment, we used the largest meshes for each
domain containing approximately 1.012 million and 1.014
million elements in the star and the sphere mesh, respec-
tively. The reciprocal of the aspect ratio quality metric was
maximized by the four algorithms previously discussed: the
log-barrier, active set, PS, and MDS methods. Several ex-
periments were conducted to find the values of the various
parameters in each of the algorithms resulting in the best
performance (measured as the worst element quality at the
time by which our algorithm converged). The numerical ex-
periments were carried out until the worst element quality
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Fig. 8 Scalability experiment results for mesh quality improvement.
The data and the linear regression fits are shown. In the equations, T
refers to average time per iteration (in seconds), and m refers to num-
ber of elements (in thousands). The reciprocal of the aspect ratio qual-
ity metric was maximized. The average time per iteration for the first
50 outer iterations of all the methods were used to compute the least
squares fit. For the log-barrier method, two Hestenes-Stiefel CG itera-
tions were carried out per outer iteration.

remained the same for five iterations. We present results for
the best performance for each of the algorithms.

The results for mesh quality improvement on the star
mesh are shown in Fig. 9(a). Our method improved the mesh
quality by the greatest amount when compared to the other
methods. It was followed by MDS, PS, and then the active
set method. A closer inspection of the plot reveals that, in
the initial iterations, the active set method was the fastest
method to significantly improve the worst quality. The method
was followed by the MDS and PS methods. During the ini-
tial phase, our method was slower than the rest.

The slow convergence of the other three methods, de-
spite their initial performance, may have been caused by the
slow propagation of unequal patches due to their use of local
mesh quality improvement. The active set method was able
to quickly improve the worst quality by a significant amount
within two iterations but became stagnant afterward. The ac-
tive set method moves every vertex to the optimal location
with respect to the patch.
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The optimal vertex locations are approximately deter-
mined in each iteration for the PS and MDS methods. Thus,
unequal patches are present throughout the mesh. This en-
ables steady improvement of the worst element quality by
MDS and PS. With MDS, we noticed a behavior similar to
that of the active set method where the worst element qual-
ity was constant for seven iterations, and then the method
converged to a mesh with a slightly better quality.

The results for the sphere mesh are shown in Fig. 9(b).
As in the earlier case, our method was able to improve the
mesh quality by the greatest amount. Here the PS method
was very competitive and converged faster than our method,
but converged to a lower optimal value. The MDS and active
set methods also converged to a lower optimal value.

7.4 Comparison with Existing Mesh Quality Improvement
Methods for the Nonsmooth Aspect Ratio Quality Metric

Through this experiment, we demonstrate that our algorithm
is also efficient for mesh quality improvement when a nons-
mooth or nonconvex quality metric is used to define the ob-
jective function. For this experiment, the objective function
that was formed from the reciprocal of the nonsmooth as-
pect ratio quality metric was maximized by the log barrier,
PS, and MDS methods. The active set method is designed
to be used with a convex objective function and yields a
tangled mesh when used with a nonconvex quality metric.
Thus, we have shown only the results for the other three
methods in Fig. 10(a). The numerical experiments were car-
ried out until the quality of the worst element did not im-
prove for five iterations. It can be clearly seen in Fig. 10(a)
that our method yields a better quality mesh than the other
methods. In Fig. 10(b), it can be seen that our log-barrier
method converged to a mesh of somewhat lower quality than
the PS method. We seek to determine the line search param-
eter values that can make our method converge to a mesh
with better quality.

7.5 Domain with Sharp Features and High Curvature

In order to show that our technique also performs efficiently
on domains with sharp features and high curvature, we ran
our technique on a mesh on the stab3 domain (Fig. 7(c)).
The mesh containing 124,907 vertices and 726,834 tetrahe-
dral elements was generated using Tetgen [25]. The bound-
ary vertices were held fixed in this experiment. The smooth
aspect ratio quality metric was used to measure the quality
of the mesh elements. The initial quality of the mesh was
0.05330. Our technique was able to improve the quality to
0.1085 in 423 seconds (13 iterations). The quality improve-
ment is not as large as in the cases of the star and sphere

mesh because this is a more challenging domain and be-
cause the boundary vertices were held fixed. Mesquite im-
plements boundary vertex movement by moving the bound-
ary vertices in the same way as the interior vertices and then
snapping the vertices back to the boundary surface. This is
not very robust for challenging geometries as snapping the
vertices may lead to inversion of elements. We plan to in-
corporate robust boundary vertex movement in our future
work.

8 Numerical Experiments for Mesh Untangling

We have used experimental results from Section 4.7.1 for the
input parameters to mesh untangling experiments. We have
not performed scalability experiments for mesh untangling
because the time taken to untangle a mesh is not only depen-
dent on the size of the mesh, but also depends on the extent
of the mesh tangling. Since there are multiple variables, we
have only compared our algorithm with other existing tech-
niques and their implementations.

In order to obtain test cases for our untangling algorithm,
we perform the same numerical experiments as presented
in [14] for each method. In the Untangling Before New-
ton (UBN) algorithm by Shontz and Vavasis [14], hyperelas-
ticity equations for Dirichlet or Neumann boundary condi-
tions are solved using Newton’s method. Newton’s method
requires a starting point close to the real solution in order
to successfully converge to a solution. In order to solve the
hyperelasticity equations, the starting point should corre-
spond to an untangled mesh. In their algorithm, the start-
ing point is obtained by solving isotropic linear elasticity
equations for the same boundary conditions. When the mag-
nitudes of the vertex movements are large, obtaining vertex
positions by solving the linear elasticity equations may yield
tangled meshes. A procedure called iterative stiffening (IS)
was developed to untangle the deformed mesh iteratively.
The IS method selectively increases the stiffness of the tan-
gled elements by a stiffening constant, and the linear elas-
ticity equations are solved again to obtain the new positions
of the vertices. We compare our log-barrier method against
the IS method and examine their effectiveness in untangling
meshes.

Since the log-barrier method is implemented in Mesquite,
i.e., C++, and the IS method is implemented in MATLAB,
we compare only the number of iterations required to suc-
cessfully untangle the mess and the robustness of each tech-
nique. For the log-barrier method, we use four nonlinear
conjugate gradient iterations for every outer iteration. In the
implementation of the IS algorithm, the linear equation for
the linear elasticity problem is solved using the linear con-
jugate gradient (CG) method with the ILU preconditioner.
In order to compare the two techniques, we report the total
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# Vertices # Elements Initial Worst Quality Final Worst Quality
2,128 9,099 1.854e-03 5.299e-02
9,501 48,219 8.996e-04 5.617e-02

21,972 99,684 4.623e-04 2.044e-02
29,096 153,780 1.287e-05 3.490e-02
38,163 204,612 4.242e-05 4.014e-02
48,880 263,602 5.775e-04 4.598e-02
64,673 350,303 9.485e-06 3.330e-02
73,617 400,522 3.130e-05 3.458e-02
80,926 440,711 6.132e-05 2.984e-02
97,981 535,921 7.253e-05 2.358e-02

119,137 654,606 4.593e-05 4.036e-02
129,952 714,495 7.980e-06 2.334e-02
152,929 844,425 4.988e-06 3.151e-02
169,024 935,178 4.925e-06 1.433e-02
182,760 1,012,632 2.335e-04 3.050e-02

Table 1 Number of vertices and elements in the star meshes with their initial and final qualities after 50 outer iterations of quality improvement
using the log-barrier method. The objective function that is formed from the reciprocal of the aspect ratio quality metric is maximized. The aspect
ratio metric is a smooth, convex quality metric.
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Fig. 9 Results from the experiment that compares the mesh quality improvement algorithms. The aspect ratio quality metric was improved in the
meshes.

Mesh Deformation
Mesh Untangling Methods

The Log Barrier Method with the
Hybrid Quality Metric

The Log Barrier Method with Es-
cobar et. al.’s Quality Metric [20]

Iterative Stiffening [14]

Volume Scaling # of Iterations The δ Parameter # of Iterations Stiffening Constant # of Iterations

Foam5

0.50 10 1 (4) 0.002 1 (4) 1.5 1 (1)
1.00 10 3 (12) 0.001 3 (12) 4.0 4 (4)
1.25 10 8 (32) 0.001 7 (28) 4.0 4 (4)
1.50 10 10 (40) 0.001 13 (52) 4.0 6 (6)
1.60 10 16 (64) 0.001 18 (72) 2.0 7 (7)
1.75 10 17 (68) 0.001 27 (108) * *
1.90 10 29 (116) 0.0005 67 (268) * *
2.00 10 44 (176) * * * *
2.20 * * * * * *

Table 2 Performance of various mesh untangling techniques. Input parameters to each of the algorithms are provided. The number of inner
iterations are given within the parentheses. A ’*’ denotes that the method did not converge.
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Fig. 10 Results from the experiment that compares the mesh quality improvement algorithms. The nonsmooth aspect ratio quality metric was
improved in the meshes. The active set method is designed to be used with a convex objective function, and it yields a tangled mesh when used
with a nonconvex quality metric, and hence its performance is not shown here.

(a) Surface foam5 mesh (b) Cut-away view of the deformed mesh

Fig. 11 Foam5 mesh and its cut-away view showing the deformation. The foam5 mesh was provided to us by P. Knupp [26].

numbers of iterations required by the respective algorithms
to converge to a solution.

In our numerical experiments, the foam5 mesh (Fig 11(a)),
which was provided to us by P. Knupp [26], is deformed us-
ing Dirichlet boundary conditions. The mesh contains 1337
vertices and 4847 tetrahedral elements. Fig. 11(b) shows a
cut-away view of the deformed mesh. The Dirichlet bound-
ary conditions are provided for all the boundary vertices.
The log-barrier method and the IS method untangle the mesh
by moving only the interior vertices.

Table 2 shows the number of iterations required to un-
tangle the mesh for various deformations (from 0.5 to 2.2
units). We ran multiple experiments to determine the pa-
rameters that resulted in the best overall performance. For
the log-barrier method with the hybrid quality metric with
sigmoid functions, the volume is scaled by a factor of 10.
In the case of Escobar et al.’s quality metric, the parameter,
δ , is set to 0.001 for all cases except for the deformation of
1.9 units, where δ was set to 0.0005. The factor by which
the stiffness of the inverted elements is increased is given
in the table. In Fig. 12, the number of inverted elements af-

ter each iteration is provided for the deformation of 1.6 and
1.75 units for all the three methods. The number of inverted
elements gradually reduces for the log-barrier method with
both the hybrid metric and Escobar et al.’s quality metric.
For the IS method, the number of inverted elements falls
from 70 to 0 in the last iteration in the case of 1.6 units of
deformation. For the case of 1.75 units of deformation, the
IS method does not yield an untangled mesh even after 100
iterations.

The deformations are restricted to 2.2 because the defor-
mations greater than or equal to 2.2 result in a mesh in which
the boundary surfaces themselves intersect. For such a de-
formation, it is not possible to untangle the mesh by moving
only the interior vertices, since the boundary vertices should
also be moved to untangle the mesh.

We see that the log-barrier method with the hybrid qual-
ity metric with sigmoid weight functions untangles the de-
formed meshes in the fewest iterations. The number of iter-
ations vary when the volume is scaled by different factors.
This additional parameter enabled quick mesh untangling
as the gradient of the function defining the signed element
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Fig. 12 The number of inverted elements after each iteration for all the three methods for the deformation of 1.6 and 1.75 units of the foam5
mesh. Note that only the number of iterations are provided. For 1.75 units of deformation, the iterative stiffening algorithm does not yield an
untangled mesh even after 100 iterations. The time for untangling cannot be compared because the implementations of the respective algorithms
are in different software environments.

volume can be appropriately scaled to move the vertices by
the optimal magnitude. Although the log-barrier algorithm
with Escobar et al.’s quality metric was initially competitive,
its inability to scale the gradients resulted in a slower per-
formance for highly deformed meshes. As shown in Fig.6,
when the vertices are far away from their optimal locations,
the gradients are poorly scaled. Hence, they are not moved to
their optimal locations by a line search technique that moves
all the vertices simultaneously (as in the case of global im-
plementation of the mesh optimization algorithms). The IS
method is not as successful as the log-barrier method. For
large deformations, the IS method is unable to yield an un-
tangled mesh.

9 Conclusions and Future Work

We have presented a log barrier interior point method for
untangling and improving the worst quality elements in a
finite element mesh. We reformulated the nonsmooth prob-
lem of maximizing the quality of the worst element as a
smooth constrained optimization problem, which is solved
using a log barrier interior point method. Our method uses
a log barrier function whose gradient places a greater em-
phasis on poor quality elements in the mesh and performs
global mesh quality improvement. We have shown that our
algorithm converges to stationary points. We have also pre-
sented a suitable quality metric, which takes both the signed
area and the shape of an element into account. It assigns
a negative value as the quality of an inverted element, and
the gradient of the function defining the metric at a vertex
position points towards a direction necessary to reorient the
element. This quality metric can be used with our algorithm

to untangle meshes by improving the quality of an inverted
element to a positive value.

Our method usually yields a better quality mesh than
other existing worst quality mesh improvement methods and
scales roughly linearly with the problem size. We have shown
that our algorithm is more robust in untangling meshes with
large numbers of inverted elements than existing algorithms.

We plan to use more complex domains and import sur-
face geometry definitions from computer-aided design pack-
ages, and move surface vertices using optimization tech-
niques for such domains. We have used the conjugate gradi-
ent method to perform mesh quality improvement in the in-
ner loop. We plan to use Newton’s method for the objective
function maximization instead of the nonlinear CG method
because it uses second-order information which may lead to
faster convergence. The constrained optimization problem
can also be solved using primal-dual Newton-based meth-
ods. An example of such a method includes the Mehrotra
predictor-corrector method [27]. We plan to explore such
methods to determine the most efficient solver for mesh qual-
ity improvement.
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