
Noname manuscript No.
(will be inserted by the editor)

A Parallel Log-Barrier
Method for Mesh
Quality Improvement and
Untangling

Shankar P. Sastry ·

Suzanne M. Shontz∗

Received: date / Accepted: date

Abstract The development of parallel algorithms for

mesh generation, untangling, and quality improvement

is of high importance due to the need for large meshes
with millions to billions of elements and the availabil-

ity of supercomputers with hundreds to thousands of

cores. There have been prior efforts in the develop-
ment of parallel algorithms for mesh generation and

local mesh quality improvement in which only one ver-

tex is moved at a time. But for mesh untangling and
for global mesh quality improvement, where all vertices

are simultaneously moved, parallel algorithms have not

yet been developed. In our earlier work, we developed

a serial global mesh optimization algorithm and used it
to perform mesh untangling and mesh quality improve-

ment. Our algorithm moved the vertices simultaneously

in order to optimize a log-barrier objective function
that was designed to untangle meshes as well as to im-

prove the quality of the worst quality mesh elements. In

this paper, we extend our work and develop a parallel
log-barrier mesh untangling and mesh quality improve-

ment algorithm for distributed-memory machines. We

have used the algorithm with an edge coloring-based

algorithm for synchronizing unstructured communica-
tion among the processes executing the log-barrier mesh

optimization algorithm. The main contribution of this

paper is a generic scheme for global mesh optimization,

Shankar P. Sastry
∗Corresponding author
University of Utah

Salt Lake City, UT 84112

E-mail: sastry@sci.utah.edu

Suzanne M. Shontz

Mississippi State University

Mississippi State, MS

E-mail: shontz@math.msstate.edu

whereby the gradient of the objective function with re-

spect to the position of some of the vertices is commu-
nicated among all processes in every iteration. The al-

gorithm was implemented using the OpenMPI 2.0 par-

allel programming constructs and shows greater strong
caling efficiency compared to an existing parallel mesh

quality improvement technique.

1 Introduction

Scientific simulation codes are typically run on meshes

with millions to billions of mesh elements (e.g., [2, 32,

53]). Meshes with billions of elements are becoming
more and more common due to the advent of super-

computers and shared-memory machines. Meshing al-

gorithms should take advantage of parallelism to effi-
ciently handle such meshes. Parallel meshing algorithms

can be run in a distributed manner on a parallel cluster

in order to be effective both in terms of time and mem-

ory. Alternatively, they can be performed on a shared-
memory machine; however, memory contention of the

shared resources is a challenge that must be overcome

in the latter case. Alternatively, hybrid algorithms can
be designed that use OpenMP and MPI for intra- and

inter-core parallelism, respectively.

There are numerous parallel mesh generation algo-
rithms in existence [14]. We focus on those used to

generate triangular and tetrahedral meshes in this pa-

per. In regards to the generation of such meshes, sev-

eral parallel Delaunay mesh generation algorithms have
been developed (e.g., [9–12, 25, 33, 38]). In contrast,

only a few parallel advancing front methods [17, 34–36]

have been developed. Parallel edge subdivision meth-
ods [8, 17, 40, 45, 46, 56] have also been designed for

generation of triangular and tetrahedral meshes. The

algorithm that currently generates the largest meshes
is an exascale mesh generator (which generates meshes

with up to 1018 elements) [13] and is due to Nikos

Chrisochoides and his collaborators.

For large meshes, it is also important that other
mesh operations (e.g., smoothing and untangling which

we focus on in this article), be performed in paral-

lel. There are only four algorithms that have been de-
veloped for parallel mesh smoothing. Freitag, Jones,

and Plassmann developed a parallel mesh optimiza-

tion technique which employed a parallel nonsmooth
optimization technique which smoothed independent

sets of vertices simultaneously [21]. Their parallel mesh

smoothing algorithm was designed for a parallel ran-

dom access machine (PRAM) model. This technique
performs local vertex movement in which each vertex is

moved at a time. In order to void conflicting updates

to vertex positions, a vertex coloring scheme has been

2

used in these algorithms. The positions of vertices of

a single color are optimized first, and their new posi-
tions are communicated before the positions of vertices

of other colors are optimized. The unstructured com-

munication of vertex positions is carried out through a
root process.

More recently, Jiao et al. developed a parallel feature-

preserving mesh smoothing algorithm for preservation
of features, such as corners and creases, in surface meshes.

Most recently, Gorman and collaborators developed a

parallel hybrid OpenMP/MPI anisotropic mesh smooth-
ing algorithm [27]. To date, only one parallel mesh un-

tangling technique has been developed [4]. This algo-

rithm has been developed for shared-memory proces-
sors.

Since there are very few parallel mesh smoothing

and no parallel mesh untangling algorithms, we also
review serial algorithms developed for these purposes.

The vast majority of the mesh smoothing algorithms

employ optimization techniques to improve the quality
of the mesh by adjusting the positions of the vertices

(e.g., [3, 7, 30, 44, 47–49, 52]). Other authors have de-

veloped physics-based approaches to mesh smoothing.

Approaches have been developed based on a torsion-
spring system [58, 60] and an electrical system [37]. A

force-based mesh smoothing method based on graphs

was developed by Djidjev [18]. The vast majority of
these methods perform average mesh quality improve-

ment. However, there are a few methods that have been

proposed that improve the quality of the worst ele-
ment in the mesh (instead of the average mesh qual-

ity) [22, 42, 47, 48]. For example, Freitag and Plass-

mann developed an active set method [22] for improv-

ing the worst quality element in the mesh; however,
the quality metric employed must lead to a convex ob-

jective function. In addition, Park and Shontz devel-

oped derivative-free mesh optimization algorithms for
improving the worst quality element [42]; their algo-

rithms were based on pattern search and multidirec-

tional search methods. The latter optimization meth-
ods do not use the gradient of the objective function,

and hence are slower to converge. In collaboration with

Stephen Vavasis, the authors of this paper have devel-

oped log barrier mesh quality improvement (and untan-
gling) techniques for improvement of the worst quality

mesh elements [47, 48]. These techniques were more

general in that they could perform mesh quality im-
provement employing any shape-based geometric mesh

quality metric. In addition, more improvement was typ-

ically seen than with the other methods [47, 48].

Improving the quality of the worst element in the

mesh is more challenging in that it involves solving a

nonsmooth optimization problem. However, doing so

is typically more beneficial from the viewpoint of the

associated finite element solver in that it improves its
stability, accuracy, convergence, and efficiency [50].

In regards to triangular or tetrahedral mesh untan-
gling, optimization techniques are often used to untan-

gle the mesh and generate valid mesh elements [23, 24,

31, 48, 55]. The majority of these optimization-based

mesh untangling techniques converge to a local optima
of the objective function; however, the method in [31]

converges to the global optimum. Agarwal has devel-

oped a remeshing procedure [1] for mesh untangling.
Bhowmick and Shontz recently designed a graph-based

mesh untangling approach [5]. In addition, Remacle and

his collaborators and Jiao and his students have pro-
posed mesh untangling schemes for curvilinear meshes

[54] and high-order surface triangulations [15], respec-

tively. Although parallel local mesh untangling algo-

rithms have not been formally studied, Freitag and Plass-
mann’s optimization-based untangling algorithm [22],

for example, can be implemented in parallel in a similar

way to their parallel mesh quality improvement tech-
nique [21].

Several approaches have recently been developed

that combine various aspects of mesh smoothing and
untangling [26, 29, 55, 57]. A parallel algorithm com-

bining mesh smoothing and untangling has also been

developed [4]. Such combined approaches are appealing
in that it is sometimes the case that one optimization

problem can be solved in lieu of solving two or more

optimization problems separately in order to smooth
or untangle the mesh.

In this paper, we describe a parallel log-barrier al-

gorithm for global mesh quality improvement and un-
tangling. We first review the serial log-barrier algo-

rithm [47, 48] and discuss the techniques for its parallel

implementation on distributed-memory machines. As
we have described before (in [48]), and as we shall see

in Section 2, the log-barrier method is an efficient global

untangling and mesh quality improvement technique in

which all the vertices are moved simultaneously. Paral-
lel global mesh quality improvement methods commu-

nicate the gradient of the vertices to neighboring pro-

cesses. For this purpose, a new use of a coloring tech-
nique for synchronization of the data communication

is employed to ensure a consistent and efficient execu-

tion of our parallel algorithm. We use an edge-based
coloring communication synchronization technique in

which edges corresponding to a graph of communicat-

ing processes (NOT mesh edges) are colored in order

to synchronize the communication. Note that our edge
coloring-based technique can be used for local mesh

quality improvement or any other parallel algorithm

with an unstructured communication requirement. Re-

3

lated node-based versions of such algorithms have been

used before to synchronize communication in wireless
networks [43]. We carry out numerical experiments to

determine the strong scaling efficiency of our algorithm

as applied to mesh untangling and mesh quality im-
provement on a distributed-memory machine with two

large meshes. We also carry out a numerical experi-

ment to examine the weak scaling efficiency of our algo-
rithm. The numerical experiments in which we evaluate

the strong and weak scaling efficiency of our algorithm

and the associated results are discussed in Section 3.

In Section 4, we conclude the paper and provide future
research directions.

2 Parallel Algorithm for Mesh Quality

Improvement and Untangling and Its

Implementation

In this section, we describe our parallel algorithm and
its implementation in detail. We first recall the mesh

untangling and quality improvement algorithm devel-

oped in our earlier papers [47, 48] and then describe
the challenges and modifications necessary for efficient

execution of our parallel algorithm in the subsequent

subsections.

2.1 The Log-Barrier Method for Mesh Untangling and

Quality Improvement

In this paper, the quality of a mesh is improved by a
numerical optimization algorithm that dictates the ver-

tex movement in unstructured meshes. In particular,

we use the log-barrier method in which the quality of
the worst element is improved by maximizing an objec-

tive function that uses logarithmic barrier terms. Our

previous papers [47, 48] describe the mathematical for-
mulation and serial mesh untangling and mesh quality

improvement algorithms in detail. Here, we simply pro-

vide the algorithm along with some intuition behind it.

The serial algorithm is provided in Algorithm 1 below.

The main differences between earlier mesh quality

improvement methods and the log-barrier method is
the use of the log-barrier objective function and a non-

smooth objective function. Earlier methods used some

composite functions such as the average value or the
root-mean-squared value of the qualities of all the ele-

ments in the mesh. Such objective functions improved

the average mesh quality, but the quality of the worst el-

ement was not guaranteed to be improved. Our method
solves a reformulation of the nonsmooth unconstrained

optimization problem of improving the quality of the

worst element as a smooth constrained optimization

Algorithm 1 The log-barrier method for mesh untangling and

quality improvement.

1: start the iterations with the vector of vertex locations x.

2: while the quality of mesh is not satisfactory do

3: for all vertices in the mesh do

4: if vertex i can be moved then

5: compute the gradient and the descent vector

6: end if

7: end for

{carry out a line search as described below:}
8: while the log-barrier objective function F (µ, t) is not max-

imized, i.e., the gradient has not vanished do

9: move all vertices along the descent direction by a dis-
tance proportional to the magnitude of the descent vec-

tor
10: compute the objective function value

11: adaptively increase or decrease the distance based on
the objective function value

12: end while

13: update µ and t in the log-barrier objective function such

that
∂F (µ,t)

∂t
≈ 0

14: end while

problem through the use of the following log-barrier

objective function:

F (µ, t) = t+ µ

m∑

i=1

log (qi − t),

where qi is the quality of element i, µ and t < qi are
auxiliary terms, and m is the number of elements in

the mesh. Note that the constraints are added to the

objective function.

In this paper, we use the smooth aspect ratio quality
metric,

qi =
vol

(
∑6

j=1 l
2
j)

3/2
,

where vol is the volume of the mesh element and lj ,

1 ≤ j ≤ 6, are the lengths of the side of the tetrahe-

dron. We assume that a larger quality qi for an element
i implies that it is of better quality. We lower µ after

every iteration and maximize F (µ, t) so that we ulti-

mately end up maximizing t. We wish to maximize t so
that the quality of the elements also improves to some

value greater then t. Note that, due to the log-barrier

term, the method has a greater incentive to improve el-
ements whose quality are close to t rather than elements

that are already of good quality. Thus, our algorithm

preferentially improves the quality of poor elements.

In order to untangle meshes, we compute a hybrid

quality metric [48] that assumes the signed area or vol-

ume of an element as its quality if the element in in-

verted or assumes the aspect ratio as the quality of an
element if it is not inverted. The aspect ratio is usually

a function of the signed volume and the length of the

sides of the element. The hybrid metric can be made

4

smooth through a sigmoid function that provides rela-

tive weights for the signed volume and aspect ratio as
shown below:

Qi = wvolvoli + wqualqi,

where Qi is the hybrid quality, voli is the signed volume
of the element, qi is the signed quality of the elements,

and wvol and wqual are sigmoid weights. The sigmoid

weight are given by

wvol =
1

1− eαvoli
and wqual =

1

1− eβqi

,

where α and β are scaling factors. If the hybrid quality
of all elements is improved from a negative value to a

positive value, the mesh is untangled.

We have also shown that the log-barrier method

converges to a stationary point by satisfying the Kuhn-
Karush-Tucker (KKT) conditions [39]. The KKT con-

ditions for a generic constrained optimization problem

is described below. Consider a constrained optimiza-

tion problem of maximizing f(x), while respecting the
k constraints ci(x) ≤ 0, ∀i ∈ [1, k]. The Lagrangian is

given by

L(x, λ) = f(x) + λc(x),

where λ is a vector of Lagrange multipliers. The active

set is given by

A(x) = {i|ci(x) = 0}.

For a given point x, linear independence constraint qual-

ification (LICQ) holds if the active set gradients {∇ci(x)|
i ∈ A(x)} are linearly independent.

Suppose that x∗ is a solution to our constrained

optimization problem and that LICQ holds at x∗. Then

there is a Lagrange multiplier vector λ∗ such that the
following conditions (i.e., KKT conditions) are satisfied

at (x∗, λ∗):

– stationarity condition:

∇xL(x
∗, λ∗) = 0

– primal feasibility:

ci(x
∗) ≤ 0, ∀i ∈ [1, k]

– dual feasibility:

λ∗

i ≥ 0, ∀i ∈ [1, k]

– complementarity condition:

λ∗

i ci(x
∗) = 0, ∀i ∈ [1, k].

In addition, the satisfaction of the KKT conditions

at a point is a first-order necessary condition for the
algorithm to converge to a stationary point.

The results from our experiments indicate that the

quality improvement by our methods is better then
those seen by local mesh quality improvement tech-

niques for some cases. In fact, our technique is able to

untangle meshes in less time than existing techniques.

2.2 A Parallel Algorithm in a Distributed-Memory
Environment

In order to develop a parallel algorithm for a distributed-
memory system, the following questions must be an-

swered: (a) how should the data be distributed, (b) is

the algorithm “embarrassingly” parallel, (c) if not, how
can each step of the algorithm be implemented in paral-

lel, and (d) which data needs to be communicated from

one process to another for correct execution of the al-

gorithm.
In the context of mesh untangling and quality im-

provement, the data can be distributed through a suit-

able mesh partitioning technique in which each contigu-
ous part of a mesh is assigned to a process. In particular,

each vertex is assigned to a process, and the elements

that contain the vertex are also assigned to the pro-
cess. Note that an element can be assigned to more

than one process because it may contain vertices that

are assigned to different processes. It must be ensured

that only one of these processes computes the qual-
ity of the element when the log-barrier objective func-

tion is computed during mesh quality evaluation. Also,

“ghost” vertices, which are assigned to one of the pro-
cesses and are also neighbors of vertices in some other

process, are also present in all the relevant processes.

Clearly, the entire algorithm is not embarrassingly
parallel, but some of the steps in the algorithm can be

easily implemented in parallel, whereas other steps re-

quire synchronization. It is possible for each process to

compute the gradient of the objective function of its
own vertices, but each process also needs the gradient

of the neighboring vertices during the line search. The

gradients can be communicated among the processes
at the beginning of each iteration. If a nonlinear conju-

gate gradient algorithm is being employed to compute

the descent direction, the norm of the gradient and the
descent direction in the previous iteration are required.

Such reduction operations (finding the sum, finding the

minimum/maximum element in a vector, etc.) are easily

supported in several parallel programming constructs.
All the processes can independently move the vertices

during the line search step. Reduction operations are

again used to compute the new log-barrier objective

5

function value and appropriate decisions are taken to

increase or decrease the step size during this step. Since
the same deterministic technique is used by all pro-

cesses to adaptively change the step size, this can also

occur in parallel. After the line search, µ is updated by
multiplying it with a constant factor, and a new t is

computed. The computation of t is carried out using

the bisection method to determine t such that

∂F (µ, t)

∂t
≈ 0.

This step also requires reduction operations which we

describe below.

2.3 Edge Coloring-Based Synchronized, Unstructured

Communication

Reduction operations are usually carried out in a struc-

tured manner, where a value is communicated from ev-

ery process to some other process, and the required
“reduced” value is communicated back to every pro-

cess through a series of steps optimized for the net-

work architecture. There is also a need for for unstruc-
tured communication in which each process transfers

the gradient of its boundary nodes to the correspond-

ing neighboring processes in our algorithm. Some pro-
cesses may communicate with just one other process,

whereas some processes may communicate with five or

more processes. We must ensure that every process is

aware of the processes with which it needs to commu-
nicate and to ensure that the order of communication

does not result in a deadlock.

We propose to use a greedy, edge coloring-based
algorithm to synchronize the unstructured communi-

cation. Based on the vertex connectivity, it is easy to

compute a graph of communicating processes. Such col-
oring algorithm have been used to synchronize commu-

nication in wireless networks [43]. A detailed analysis

of such algorithms can also be found in [43] and [19]. In

our implementation, we use an edge coloring algorithm.
Prior implementations have used node coloring algo-

rithms. A node in the graph corresponds to a process,

and an edge represents a communication requirement.
We employ a greedy algorithm to color the edges such

that no two edges incident on a node have the same

color. We carry out a breadth first search (BFS) of the
graph and choose an independent set of edges and pri-

oritize the corresponding communication. The BFS is

repeated until all the edges are accounted for. Since the

communication takes place among independent edges,
deadlocks do not occur, and the communications hap-

pen in parallel. Note that the number of processes are

very low compared to the size of the mesh, and the

coloring has to be computed only once. Thus, a serial

implementation of the algorithm will suffice for our pur-
poses.

2.4 Distributed Data Structure for Synchronized

Communication

In our implementation, serial steps at the beginning of

the algorithm involve (a) reading a mesh and its vertex
partition (after another algorithm is used to partition

the mesh), (b) determining the inter-process commu-

nication network and the corresponding edge coloring,
(c) determining the vertices whose gradients must be

communicated, (d) constructing a data structure that

facilitates a deadlock-free synchronized communication,

and (e) distributing the data structure to all the pro-
cesses. Steps (a), (b), (c), and (e) are all straightforward

to implement. Below, we discuss the construction of a

data structure that is used to determine the vertex gra-
dients which are communicated to other processes and

the order of the communication.

The vertex connectivity information is used to de-

termine the list of vertices whose gradients must be

communicated to other processes. For each process, a

separate array with the indices of the vertices is used
to denote the list. Similarly, vertices whose gradient has

to be obtained from other processes is also listed using

separate arrays for each process. Based on the edge col-
oring, an ordered list of processes is determined for each

process. For a particular process, the gradient commu-

tation should take place with other processes in that
order. Since the edge coloring determines the priority

of the edge communication, a local list of processes for

each process that respects the same priority does not

result in a deadlock. The serial steps of the algorithm
are described in Algorithm 2 below.

2.5 MPI-Based Parallel Implementation

Our detailed parallel mesh optimization algorithm based

on the discussion above is presented in Algorithm 3. Ev-

ery process executes the algorithm until convergence.
We have used message passing interface (MPI) con-

structs in our C++ implementation of the parallel al-

gorithm. Specifically, we used MPI Allreduce() for our
reduction operations and MPI Send() and MPI Recv()

for the gradient communication. In Algorithm 3,“use

reduction” is specified in parentheses for those steps

for which the reduction operation is necessary. In the
pseudocode, lines 1 to 4 obtain the data from the root

process. Lines 5 to 11 and lines 15 to 23 are identical to

the serial algorithm except for the use of the reduction

6

Algorithm 2 The serial steps in the parallel implementation of

the log-barrier method.

1: read the mesh vertex and element information

2: read the vertex partitioning information (obtained from
Metis, for instance)

3: distribute each partition (including ghost vertices) in separate
arrays for each process

4: find the network of communicating processes and color the
graph edges

5: for all partition i do

6: find the list of vertices whose gradient have to be commu-

nicated to/from partition j

7: store the list in listToj and listFromj , respectively
8: store the edge color-based order of the processes with

which partition i communicates in my order
9: send the information above to process i (lines 1-4 in Algo-

rithm 3)
10: end for

11: proceed to Algorithm 3 for the parallel mesh untangling and
quality improvement algorithm.

operator whenever necessary. In lines 12 to 15, the com-

puted gradient in the previous steps is communicated
to neighboring processes in an orderly manner. All the

steps are executed in parallel by all the processes.

3 Numerical Experiments

In this section, we describe the experimental setup and
report on the strong and weak scaling efficiency of our

algorithm. We compare the strong and weak scaling ef-

ficiency to that of Mesquite’s [6] implementation of a
parallel, MPI-based local mesh quality improvement al-

gorithm. Mesquite’s implementation is based on Freitag

et al.’s algorithm [21]. Both the log-barrier method and
the local mesh quality improvement method compute

the gradient of the objective function with respect to a

position of the vertices and carry out a line search to

optimize an objective function. Although, our objective
function is designed to untangle meshes, the types of

computations being performed in both algorithms are

identical. Thus, the comparison of the strong and weak
scaling efficiency of the two algorithms is appropriate.

3.1 Setting Up of the Experiments

We implemented our parallel algorithm in C++ using

MPI constructs. The same mesh and mesh partitioning
were used by both the local mesh quality improvement

technique and by our global log-barrier technique.

The algorithm used in Mesquite has been developed
for local smoothing, i.e., one vertex is optimized at a

time. Thus, a vertex coloring algorithm is used to de-

termine an independent set of vertices to be moved in

Algorithm 3 A parallel log-barrier method for mesh untangling

and quality improvement.

1: obtain the list of vertices and elements (for this line and the
lines below, from Algorithm 2)

2: obtain the list of vertices, listToi, whose gradients should be
communicated to process i

3: obtain the list of vertices, listFromi, whose gradients should

be obtained from process i

4: obtain the order of the list of processes, my order, with which
my process communicates

5: start the iterations with a vector of vertex locations x.

6: while the quality of mesh is not satisfactory do

7: for all vertices in the mesh in my process do

8: if vertex i can be moved and it belongs to my process

then

9: compute the gradient and the descent vector
10: end if

11: end for

12: for all the processes with which my process is communi-
cating do

13: j = first/next process in my order
14: send and receive gradients for vertices in listToj and

listFromj , respectively
15: end for

{carry out a line search as described below:}

16: while the log-barrier objective function F (µ, t) is not max-
imized, i.e., the gradient has not vanished do

17: move all vertices along its descent direction by a dis-
tance proportional to the magnitude of the descent vec-

tor
18: compute the objective function value (use reduction)

19: adaptively increase or decrease the distance based on

the objective function value
20: end while

21: update the µ and t in the log-barrier objective function

such that
∂F (µ,t)

∂t
≈ 0 (use reduction)

22: end while

parallel. Also the new positions of vertices are com-
municated to all processes through the main process.

Thus, the communication is a serial process, i.e., ev-

ery process communicates the information to the main

process, and the main process sends the information
to all the other processes that need the information.

Our parallel algorithm is developed for global smooth-

ing, i.e., all the vertices are moved together. We use
an edge coloring algorithm to identify an independent

set of communicating processes. In every iteration, the

gradient of vertex positions with respect to each axis is
communicated to the neighboring partitions. This com-

munication happens in parallel.

3.1.1 Generation and Partitioning of Meshes.

We generated meshes containing 371,013 nodes and 1,8-

67,366 elements on the support domain and 1,515,275
nodes and 8,911,929 elements on the flange domain

(Fig. 1). Both domains were obtained from Inria’s sur-

face mesh database [16] for mechanical objects. Tet-

7

gen [51] was used to generate the meshes, and Metis [28]

was used to partition them. The objective of the Metis
partitioner was to lower the number of edge cuts as well

as to lower the maximum degree of partition connectiv-

ity so that the number of MPI send and receive oper-
ations employed in every iteration is minimized. Metis

ensures that the partitioning is well balanced, i.e., the

number of vertices assigned to each partition does not
vary by more than 3% between any two partitions.

3.1.2 Parallel Architecture.

An Intel Xeon CPU E-7-4870 cluster was used to ex-

ecute our algorithm on the meshes above for a fixed

number of iterations. The cluster contains 80 cores each
with a clock speed of 2.40GHz and 750 GB of RAM, and

it runs the OpenSUSE 12.2 (x86 64) operating system.

GCC 4.7 and OpenMPI 2.0 were used to compile our

code. Note that Mesquite [6] also uses the same com-
pilers.

(a) support domain

(b) flange domain

Fig. 1: The two domains on which we constructed large

meshes in order to examine the strong and weak scaling
efficiency of our parallel algorithm. The domains were

obtained from the Inria database [16].

3.2 Results

For our experiments, we report the time taken to exe-

cute the code excluding the time taken for input/output

operations and the time taken to distribute the mesh
among the processes. There are three main parts of the

code which contribute to the running time: (a) read-

ing the mesh, (b) distributing the mesh partitions, and

(c) running the parallel algorithm. We denote the time
taken for (a) and (b) as initialization time. For a single-

process execution, the time taken for (b) is not appli-

cable.

We carried out numerical experiments for both mes-

hes on 1, 2, 4, 8, 16, 32, and 64 cores. For the sup-
port mesh, we carried out 40 iterations of mesh qual-

ity improvement, and for the flange mesh, we carried

out 10 iterations of mesh optimization. The number
of iterations were chosen so that sufficient computa-

tion cycles were present in the execution to eliminate

the effect of other factors that may affect the running
time of the code. In addition, convergence was obtained

for this many iterations. Note that the effectiveness of

our algorithm has been discussed in detail in our pre-

vious two papers [47, 48]. In particular, we proved that
our mesh optimization algorithm satisfies the Karush-

Kuhn-Tucker (i.e., KKT) conditions for constrained op-

timization and hence converges to a stationary point [47,
48]. Our optimization method explicitly checks to be

sure that it moves the mesh vertices in a direction of as-

cent (i.e., in order to maximize the objective function).
In addition, our mesh quality improvement technique

can be used with any smoothly-varying mesh quality

metric [47, 48]. Our mesh untangling technique can be

used with any smoothly-varying metric for which the
gradient of the objective function points towards the

ideal element and the magnitude of the gradient is pro-

portional to the distance from the ideal element [47].
Thus, we will focus mainly on the strong scaling effi-

ciency of our parallel algorithm in this paper. We define

the strong scaling efficiency of our algorithm as follows:

T1

(p× Tp)
× 100%,

where p is the number of processes, Tp is the time taken
to complete the execution of code for p processes, and

T1 is the time taken by a single process to complete the

execution of the code.

A weak scaling efficiency analysis is useful when the

number of floating point operations for an algorithm

has a direct correlation with the size of the problem.

For our problem, the number of floating point opera-
tions is not directly related to the size of the problem.

Specifically, during the line search to determine the step

length by which the vertices must be moved, it is not
possible to determine the number of required function

evaluations in advance. The number of function evalu-

ations depends on the problem itself in addition to its
size. For mesh quality improvement, in order to carry

out a reasonable weak scaling efficiency analysis, the

number of function evaluations during the line search

has to be kept constant. We carry out weak scaling
efficiency tests in our paper and briefly describe the re-

sults at the end of this section; however, weak scaling

efficiency is not the main focus of this paper. We define

8

the weak scaling efficiency of our algorithm as follows:

T1

Tp
× 100%,

where Tp is the time taken to complete the execution

of code for p processes and T1 is the time taken by a
single process to complete the execution of the code.

Note that the problem size should be proportional to

the number of processes in order to compute the weak

scaling efficiency.

To examine the strong scaling efficiency of our algo-
rithm, we compare it against that of the parallel local

mesh quality improvement algorithm [21] implemented

in Mesquite [6]. The quality versus iteration plot of
this experiment is provided in Fig. 2. We can see that

the mesh quality has converged. The strong scaling effi-

ciency results of the experiments are provided in Fig. 3.

In Fig. 3(a), the timing results for the support mesh are
shown for all the parallel executions. The objective was

to improve the root-mean-square quality of the mesh

elements. The mesh quality was improved from 0.49 to
0.64, where the quality was normalized to be 1 for an

equilateral element and 0 for a degenerate element. For

a single-core execution, the time taken was 23 minutes
and 48 seconds. The strong scaling efficiency is close to

100% until about 16 cores, but soon drops off to 50% for

32 and 64 cores. This is probably due to the serialized

communication technique used in their implementation.
For the flange mesh, the results are shown in Fig. 3(b).

The results follow the same trend. The time taken for a

single-core execution in this case is 30 minutes and 47
seconds, and the root-mean-square mesh quality was

improved from 0.33 to 0.61. Note that Mesquite ex-

pects the input mesh is already partitioned and split
into several files that each process independently reads.

Table 1 provides the time taken by all the processes

to read the file containing its own partition. The time

mostly reduces with the increase in number of parti-

tions because the mesh has already been partitioned,
and the connectivity and neighborhood information is

provided as part of the input. Thus, each process has

to read smaller files with the increase in the number of
partitions. Fig. 6 provides the time taken by both local

and global techniques for support and flange meshes.

The figures excludes the initialization and file I/O time,
and the data from the table has been used in Fig. 3 and

Fig. 5.

For the log-barrier mesh quality improvement and

untangling method, we first randomly perturbed the

boundary nodes of the mesh by a small amount so that
some of the mesh elements were inverted. Our algorithm

was then used to untangle the resulting mesh. The worst

element quality versus iteration plots are provided in

0 10 20 30 40
0.45

0.5

0.55

0.6

0.65

Number of Iterations

A
ve

ra
ge

 E
le

m
en

t Q
ua

lit
y

(a) support mesh

0 2 4 6 8 10

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Number of Iterations

A
ve

ra
ge

 E
le

m
en

t Q
ua

lit
y

(b) flange mesh

Fig. 2: The average quality vs. number of iterations

plot of the parallel local mesh quality improvement al-

gorithm in [20].

Fig. 4. The initial worst element quality is negative be-

cause the mesh is inverted. The hybrid quality metric

assumes the signed volume of the element as the qual-

ity of the element. As soon as the mesh is untangled,
the shape-based aspect ratio is assume to be the quality

of the element. Hence, there appears a discontinuity in

the plot. The worst element quality of the mesh con-
verges, but other poor quality elements in the mesh are

still being improved during those iterations. The strong

scaling efficiency results for our experiments for the log-
barrier method are provided in Fig. 5. In Fig. 5(a), the

timing results for the support mesh are shown for all

the parallel executions. It took 25 iterations to success-

fully untangle the mesh. Forty iterations were carried
out in total for the purpose of evaluation of our code.

For a single-core execution, the time taken was 24 min-

utes and 46 seconds. The strong scaling efficiency for
the parallel executions is very close to 100% until eight

cores. The strong scaling efficiency starts to slowly drop

after eight cores to about 60% for 64 cores.

The strong scaling efficiency results for the flange
mesh are provided in Fig. 5(b). It took six iterations for

our algorithm to successfully untangle the mesh. Ten it-

erations of untangling and mesh quality improvement

were carried out in this experiment for the purpose of
evaluation. This is a larger mesh, and better strong scal-

ing efficiency is observed. This is because the volume of

gradient communication is proportional to the number

9

1 2 4 8 16 32 64
0

20

40

60

80

100

Number of Processes

E
ffi

ci
en

cy
 (

in
 %

)

(a) support mesh

1 2 4 8 16 32 64
0

20

40

60

80

100

Number of Processes

E
ffi

ci
en

cy
 (

in
 %

)

(b) flange mesh

Fig. 3: The strong scaling efficiency of the parallel local

mesh quality improvement algorithm in [20] for the two

meshes for 1 to 64 processes.

of mesh vertices that border two partitions. Typically,

it grows slower than the total number of mesh vertices.
For this case, a single-core execution took 42 minutes

and 58 seconds. For two, four, eight, and sixteen cores,

the strong scaling efficiency is greater than 100%. This
is due to availability of additional resources, such as

the cache memory space, with the greater number of

cores. As the number of partitions increases, the parti-
tion size gets smaller. Therefore, it is more likely that

the partition fits in the cache memory. As a result, the

memory access time reduces, and sometimes, the strong

scaling efficiency is greater than 100%. For more cores,
the strong scaling efficiency drops gradually to about

80% for 64 cores. Thus, for larger problems, the strong

scaling efficiency is better for a large number of cores.

Table 1 provides the initialization time that includes

the time taken to read the file containing the entire
mesh, the time taken to read the file containing the

vertex partitioning information, the time taken to dis-

tribute the mesh among all the processes, and the time
taken to construct the data structure that facilitates

the synchronized unstructured communication. For a

single-process execution, only the time taken to read

the mesh is applicable. Since this is a single-process ex-
ecution, the time taken to read the entire mesh is the

same for any number processes used to execute the al-

gorithm.

As opposed to the local vertex movement case, the

time taken increases with the number of partitions be-
cause the mesh has to be divided among the processes,

and the connectivity and neighborhood information has

to be explicitely evaluated. In fact, we use the same
code to partition a mesh and write the partitioned mesh

files for Mesquite’s parallel local smoothing algorithm.

Therefore, the timing results provided in Table 1 must
be interpreted accordingly. For the local vertex move-

ment case, the timing results are for cases where the

mesh is already partitioned, and for the global vertex

movement case, the timing results are for a case where
the mesh is partitioned from a single file and then dis-

tributed among various processes. Note that we had

partitioned the mesh separately using Metis [28] and
stored the results in a separate file. We use the sepa-

rate file in our implementation to distribute the mesh

among the processes. The timing for Metis is not in-
cluded because Mesquite does not include it. Both lo-

cal and global mesh quality improvement algorithms

can use either form of input described above.

As the number of mesh partitions increase, the vol-

ume of gradient communication increases, as there are

more vertices on the partition boundary. The number of
neighboring partitions for a given partition is likely to

stabilize to a constant value as the number of partitions

increases. As a result, the effect of network latency is
likely to become constant as the number of partitions

increase. Since the volume of data to be communicated

increases, the strong scaling efficiency of our parallel al-

gorithm drops with the increase in number of processes
used for the execution. Table 2 provides the number of

vertices whose gradients were communicated to neigh-

boring partitions when the meshes were divided into
various number of submeshes. It can be clearly seen

that the number of vertices increases with the number

of partitions.

We also carried out a set of numerical experiments

for examining the weak scaling efficiency of our algo-

rithm. We generated meshes on the Flange domain of
various sizes that were proportional to the number of

processors on which the mesh quality improvement al-

gorithm was executed. Table 3 provides the mesh sizes
and the number of processors used to improve their

quality. We executed our global mesh quality improve-

ment and untangling algorithm for 25 iterations. The
table also provides the results for our experiments. Ide-

ally, the time for execution should remain a constant

as the number of processors increases proportionally to

the size of the mesh. In our experiment, the time for ex-
ecution increases as we move from one processor to four

processors and then oscillates up to 64 processors. The

reason for the increase in the time is possibly due to ad-

10

ditional communication requirements as we increase the

number of processors and the necessary synchronization
operations. Since the same problem is not being solved,

oscillation in the time taken to complete the execution

is seen in our experiments. The results are comparable
to the results reported in [20]. Since the problems we

solve are unstructured in nature, it is very difficult to

obtain a constant running time as the number of proces-
sors and the problem size are proportionally increased.

Oscillation in the reported solution times are hard to

model in unstructured problems because of factors such

as the volume of communication, load balancing, and
uncertainty in the number of floating point operations

required to solve the problem. Also, the communica-

tion latency and bandwidth between any two proces-
sors varies as a function of their physical proximity and

the network topology on the chip.

0 10 20 30 40
0

5

10

15

20
x 10

−4

Number of Iterations

W
or

st
 E

le
m

en
t Q

ua
lit

y

(a) support mesh

0 2 4 6 8 10
0

1

2

3

4

5
x 10

−4

Number of Iterations

W
or

st
 E

le
m

en
t Q

ua
lit

y

(b) flange mesh

Fig. 4: The worst element quality vs. iterations plot for

the parallel log-barrier algorithm. The number of data

points that appear very close to zero are negative qual-
ities associated with the signed volume of the inverted

elements. As soon as the mesh is untangled, the qual-

ity improves drastically, as the shape-based aspect ratio

quality is improved.

4 Conclusions and Future Work

We have proposed a parallel mesh optimization algo-

rithm based on a log barrier technique and implemented

1 2 4 8 16 32 64
0

20

40

60

80

100

Number of Processes

E
ffi

ci
en

cy
 (

in
 %

)

(a) support mesh

1 2 4 8 16 32 64
0

20

40

60

80

100

120

Number of Processes

E
ffi

ci
en

cy
 (

in
 %

)

(b) flange mesh

Fig. 5: The strong scaling efficiency of the parallel log-

barrier mesh quality improvement and untangling algo-

rithm for the two meshes for 1 to 64 processes.

in MPI and C++. As shown in [47, 48], our algorithm

satisfies the KKT conditions and converges to a station-

ary point of the objective function. Our method explic-

itly checks to see that it moves the mesh vertices in a
direction of ascent (i.e., so that the objective function

is maximized). Also, our mesh quality improvement al-

gorithm can be used with any smoothly-varying mesh
quality metric [47, 48]. Any smoothly-varying metric

for which the gradient of the objective function points

towards the ideal element and the magnitude of the
gradient is proportional to the distance from the ideal

element can be used with our mesh untangling algo-

rithm [47]. All of these properties also hold for our par-

allel mesh optimization algorithm.

In this paper, we demonstrated the effectiveness of
our global algorithm on mesh untangling and mesh qual-

ity improvement of 3D tetrahedral volume meshes. In

particular, our results demonstrate the strong scaling
efficiency of the parallel implementation of our log-barrier

mesh untangling and mesh quality improvement algo-

rithm. We have compared the strong scaling efficiency
of our algorithm with that of the parallel local mesh

quality improvement algorithm by Freitag et al. [21]

and have observed an increase in the performance. The

strong scaling efficiency of our algorithm can be mainly
attributed to the edge coloring-based synchronized par-

allel communication technique we employed which was

not present in earlier work. The algorithm in [21] relied

11

Vertex Movement Domain
Number of Processes

1 2 4 8 16 32 64

Local
Support 7.75 6.46 3.81 3.17 3.46 4.48 4.83
Flange 39.23 32.53 13.80 5.81 6.13 5.60 5.90

Global
Support 2.90 6.98 7.12 6.95 7.65 12.26 15.93

Flange 14.15 34.17 35.43 30.57 32.93 44.44 56.23

Table 1: The time taken (in seconds) for the initialization steps for the mesh quality improvement algorithms. For

the local vertex movement, the mesh has already been partitioned, and each partition was written into separate
files. The table provides the time taken by all processes to read its own partition. For global vertex movement,

the root process reads the file containing the mesh and the vertex partitioning and then distributes the mesh

to other processes. The times also include the time taken for constructing the data structure that facilitates the
synchronized unstructured communication.

Domain
Number of Processes

2 4 8 16 32 64

Support 2308 5162 8818 14241 22804 34984

Flange 15395 27031 48797 74183 115888 169042

Table 2: The number of vertices for which the gradient information was transferred to neighboring partitions for

both the support and flange mesh for various number of partitions.

Mesh Size
Number of Processors Time of Execution

of Vertices # of Elements

196,288 836,443 1 200

390,748 1,991,752 2 419
788,300 4,450,220 4 807

1,592,272 9,408,742 8 661
3,184,281 19,329,705 16 816

6,380,652 39,371,494 32 789
12,583782 78,536,484 64 738

Table 3: Results from the numerical experiment to determine the weak scaling efficiency of our algorithm. The

meshes were generated on the Flange domain. Ideally, the time taken should be constant as the size of the mesh
is proportional to the number of processors. In our experiments, we find the the time taken is around 800s when

more than four processors are used.

on a serial communication strategy where all the data
was first sent to the root node and then distributed to

the respective nodes.

We found that our parallel mesh optimization algo-

rithm achieves about 60% strong scaling efficiency for

64 processes for smaller meshes and about 80% strong
scaling efficiency for larger meshes. We also found that

the strong scaling efficiency is more then 100% for a

small number of cores for large meshes. We also found
that our algorithm has reasonable weak scaling effi-

ciency beyond four processors, i.e., the time of execu-

tion oscillates around 800 seconds when the size of mesh

is proportional to the number of processors used to ex-
ecute the algorithm. Thus, we expect that the parallel

algorithm will scale well for meshes stemming from real-

world applications that are employed in large-scale sci-

entific computation codes on machines with hundreds
of cores.

For future work, we plan to further reduce the run-
time of our parallel mesh smoothing and untangling al-

gorithms by improving the partition of the constraints

similar to the approach in [59]. We will also investigate
parallel Newton-based and primal-dual Newton-based

approaches, which may result in faster convergence. We

also plan to study other edge coloring techniques to
synchronize unstructured communication seen in sci-

entific computing applications. In order to reduce the

additional time due to network latency, vertex gradi-

ents may be communicated through intermediate pro-
cesses when the volume of communication is small. Fi-

nally, we plan to use our parallel mesh smoothing and

untangling techniques in parallel simulations involving

12

1 2 4 8 16 32 64
10

0

10
1

10
2

10
3

10
4

Number of Processes

T
im

e
(in

 s
ec

on
ds

)

support
flange

(a) parallel local mesh quality improve-
ment

1 2 4 8 16 32 64
10

0

10
1

10
2

10
3

10
4

Number of Processes

T
im

e
(in

 s
ec

on
ds

)

support
flange

(b) parallel log-barrier mesh quality im-
provement and untangling

Fig. 6: The time taken (in seconds) for (a) parallel lo-
cal mesh quality improvement [20] and (b) parallel log-

barrier mesh quality improvement and untangling algo-

rithms (excluding the I/O and initialization time). For
the support mesh, fourteen iteration were executed, and

for the flange mesh, ten iterations were executed. This

data was used for the bar plots in Fig. 3 and Fig. 5.

Note that the y-axis is logarithmic.

dynamic meshes arising from applications in medicine
and mechanical engineering.

Acknowledgments

The authors are indebted to Thap Panitanarak for the

use of his partitioned mesh data structure from his MPI
implementation of a parallel log-barrier mesh warping

algorithm (PLBWARP) in [41]. The work of the first

author was supported by the NIH/NIGMS Center for
Integrative Biomedical Computing grant 2P41 RR0112-

553-12 and DOE NET DE-EE0004449 grant. The work

of the second author is supported in part by NSF CA-
REER grant ACI-1330056 (formerly ACI-1054459). The

authors would also like to thank the three anonymous

referee for their comments which improved the paper.

References

1. P.K. Agarwal, B. Sadri, and H. Yu. Untangling triangulations
through local explorations. In Proc. of the 2008 Symposium

on Computational Geometry (SoCG 2008), 2008.
2. S. Aliabadi, A. Johnson, J. Abedi, and B. Zellars. High per-

formance computing of fluid-structure interactions in hydro-

dynamics applications using unstructured meshes with more

than one billion elements. In Proc. of the 2002 Conference
on High Performance in Computing, Lecture Notes in Com-

puter Science Volume 2552, pages 519–533, 2002.

3. R.E. Bank and R.K. Smith. Mesh smoothing using a pos-
teriori error estimates. SIAM J. Numer. Anal., 34:979–997,
1997.

4. D. Beńıtez, E. Rodŕıguez, J. Escobar, and R. Montenegro.
Performance evaluation of a parallel algorithm for simulta-

neous untangling and smoothing of tetrahedral meshes. In

Proc. of the 22nd International Meshing Roundtable, pages

579–598. Springer International Publishing, 2013.
5. S. Bhowmick and S.M. Shontz. Towards high-quality, untan-

gled meshes via a force-directed graph embedding approach.

Proc. of the 2010 International Conference on Computa-

tional Science, Procedia Computer Science, 1:357–366, 2010.
6. M. Brewer, L. Freitag Diachin, P. Knupp, T. Leurent, and

D. Melander. The Mesquite Mesh Quality Improvement

Toolkit. In Proc. of the Twelfth International Meshing
Roundtable, pages 239–250. Sandia National Laboratories,
2003.

7. S. Canann, M. Stephenson, and T. Blacker. Optismoothing:

An optimization-driven approach to mesh smoothing. Finite
Elem. Anal. Des., 13:185–190, 1993.

8. J.G. Castanos and J.E. Savage. Pared: A framework for the

adaptive solution of PDEs. In Proc. of the 8th IEEE Sym-
posium on High Performance Distributed Computing, 1999.

9. A.N. Chernikov and N.P. Chrisochoides. Parallel guaran-
teed quality planar Delaunay mesh generation by concurrent

point insertion. In Proc. of the 14th Fall Workshop on Com-
putational Geometry, pages 55–56, 2004.

10. A.N. Chernikov and N.P. Chrisochoides. Practical and ef-
ficient point insertion scheduling method for parallel guar-

anteed quality Delaunay refinement. In Proc. of the 18th

Annual International Conference on Supercomputing, pages
48–57. ACM Press, 2004.

11. L.P. Chew, N. Chrisochoides, and F. Sukup. Paral-
lel constrained Delaunay meshing. In Proc. of the
ASME/ASCE/SES Summer Meeting, Special Symposium on

Trends in Unstructured Mesh Generation, pages 89–96, 1997.

12. N. Chrisochoides, C. Antonopoulos, F. Blagojevic,
A. Chernikov, and D. Nikolopoulos. A multigrain De-

launay mesh generation method for multicore SMT-based

architectures. J. Parallel Distr. Com., 2009.
13. N. Chrisochoides, A. Chernikov, A. Fedorov, A. Kot,

L. Linardakis, and P. Foteinos. Towards exascale parallel De-

launay mesh generation. In Proc. of the 18th International

Meshing Roundtable, pages 319–336, 2009.
14. N.P. Chrisochoides. A survey of parallel mesh generation

methods. In A.M. Bruaset and A. Tveito, editors, Numer-
ical Solution of Partial Differential Equations on Parallel

Computers. Springer, 2006.
15. B. Clark, N. Ray, and X. Jiao. Surface mesh optimization,

adaption, and untangling with high-order accuracy. Proc. of

the 21st International Meshing Roundtable, pages 385–402,
2013.

16. Inria Mesh Database. http://www-
roc.inria.fr/gamma/gamma/download/download.php.

17. H.L. De Cougny and M.S. Shephard. Parallel refinement
and corasening of tetrahedral meshes. Int. J. Meth. Eng.,
46:1101–1125, 1999.

18. H.N. Djidjev. Force-directed methods for smoothing unstruc-
tured triangular and tetrahedral meshes. In Proc. of the

13

9th International Meshing Roundtable, pages 395–406. San-
dia National Laboratories, 2000.

19. D. Durand, R. Jain, and D. Tseytlin. Distributed schedul-

ing algorithms to improve the performance of parallel data
transfers. SIGARCH Comput. Archit. News, 22(4):35–40,
1994.

20. L. Freitag, M. Jones, and P. Plassmann. An efficient parallel

algorithm for mesh smoothing. In Proc. of the 4th Interna-
tional Meshing Roundtable, pages 1–18, 1995.

21. L. Freitag, M. Jones, and P. Plassmann. A parallel algorithm

for mesh smoothing. SIAM J. Sci. Comput., 20(6):2023–
2040, 1999.

22. L. Freitag and P. Plassmann. Local optimization-based sim-
plicial mesh untangling and improvement. Int. J. Numer.

Meth. Eng., 49:109–125, 2000.
23. L. Freitag and P. Plassmann. Local optimization-based un-

tangling algorithms for quadrilateral meshes. In Proc. of the
10th International Meshing Roundtable, pages 397–406. San-

dia National Laboratories, 2001.
24. L.A. Freitag and P. Plassmann. Local optimization-based

simplicial mesh untangling and improvement. Int. J. Num.

Meth. Eng., 49:109–125, 2000.
25. J. Galtier and P.L. George. Prepartioning as a way to mesh

subdomains in parallel. In Proc. of the ASME/ASCE/SES
Summer Meeting, Special Symposium on Trends in Unstruc-
tured Mesh Genration, pages 107–122, 1997.

26. V.A. Garanzha and L.N. Kudriavtseva. Gradient projection
based optimization methods for untangling and optimization
of 3D meshes in implicit domains. In Proc. of the II Interna-
tional Conference on Optimization and Applications (OP-
TIMA 2011), 2011.

27. G.J. Gorman, J. Southern, P.E. Farrell, M.D. Piggott,

G. Rokos, and P.H.J. Kelly. Hybrid OpenMP/MPI
anisotropic mesh smoothing. Proc. of the 2012 International
Conference on Computational Science, ICCS 2012, Procedia
Computer Science, 9:1513–1522, 2012.

28. George Karypis and Vipin Kumar. MeTis: Unstructured
Graph Partitioning and Sparse Matrix Ordering System, Ver-
sion 4.0. http://www.cs.umn.edu/~metis, 2009.

29. J. Kim, T. Panitanarak, and S.M. Shontz. A multiobjective
mesh optimization framework for mesh quality improvement
and untangling. Int. J. Numer. Meth. Engng., 94:20–42,
2013.

30. P. Knupp. Achieving finite element mesh quality via opti-
mization of the Jacobian matrix norm and associated quan-
tities, Part 1 - A framework for surface mesh optimization.
Technical Report SAND 99-0110J, Sandia National Labora-
tories, 1999.

31. P.M. Knupp. Hexahedral and tetrahedral mesh untangling.
Eng. Comput., 17:261–268, 2001.

32. D. Komatitsch, S. Tsuboi, C. Ji, and J. Tromp. A 14.6 billion
degrees of freedom, 5 teraflops, 2.5 terabyte earthquake sim-
ulation on the Earth simulator. In Proc. of the ACM/IEEE
SC2003 Conference, pages 1–58113–695–1/03, 2003.

33. L. Linardakis and N. Chrisochoides. Delaunay decoupling
method for parallel guarantee quality planar mesh refine-
ment. SIAM J. Sci. Comput., 27:1394–1423, 2006.

34. R. Löhner. A 2nd generation parallel advancing front grid
generator. In Proc. of the 21st International Meshing
Roundtable, pages 457–474, 2013.

35. R. Löhner, J. Camberos, and M. Marsha. Unstructured scien-

tific compuation on scalable multiprocessors. In P. Hehrotra
and J. Saltz, editors, Parallel Unstructured Grid Generation,
pages 31–64. MIT Press, 1990.

36. R. Löhner and J.R. Cebral. Parallel advancing front grid
generation. In Proc. of the 8th International Meshing

Roundtable, pages 67–74, 1999.
37. A.A. Mezentsev. A generalized graph-theoretic mesh opti-

mization model. In Proc. of the 13th International Meshing

Roundtable, pages 255–264. Sandia National Laboratories,
2004.

38. D. Nave, N. Chrisochoides, and L.P. Chew. Guaranteed-
quality parallel Delaunay refinement for restricted polyhedral
domains. In Comp. Geom-Theor. Appl., volume 28, pages
191–215, 2004.

39. J. Nocedal and S. J. Wright. Numerical Optimization.

Springer, New York, 2nd edition, 2006.
40. L. Oliker, R. Biswas, and H. Gabow. Parallel tetrahedral

mesh adaptation with dynamic load balancing. Parallel
Comput., pages 1583–1608, 2000.

41. T. Panitanarak and S.M. Shontz. A parallel log-barrier based
mesh warping algorithm for distributed memory machines.
Submitted to Parallel Computing, July 2013.

42. J. Park and S. Shontz. Two derivative-free optimization

algorithms for mesh quality improvement. In Proc. of the
2010 International Conference on Computational Science,
volume 1, pages 387–396, 2010.

43. S. Parthasarathy and R. Gandhi. Distributed algorithms for
coloring and domination in wireless adhoc networks. In Ka-
mal Lodaya and Meena Mahajan, editors, FSTTCS 2004:
Foundations of Software Technology and Theoretical Com-
puter Science, volume 3328 of Lecture Notes in Computer
Science, pages 447–459. Springer Berlin Heidelberg, 2004.

44. V.N. Parthasarathy and S. Kodiyalam. A constrained opti-

mization approach to finite element mesh smoothing. Finite
Elem. Anal. Des., 9:309–320, 1991.

45. M.-C. Rivara, C. Carlderon, D. Pizaro, A. Fedorov, and
N. Chrisochoides. Parallel decoupled terminal-edge bisection
algorithm for 3D meshes. Eng. Comput., 2005.

46. M.-C. Rivara, D. Pizarro, and N. Chrisochoides. Parallel
refinement of tetrahedral edges using terminal-edge bisec-
tion algorithm. In Proc. of the 13th International Meshing

Roundtable, 2004.
47. S. Sastry, S. Shontz, and S. Vavasis. A log-barrier method for

mesh quality improvement. In Proc. of the 20th International

Meshing Roundtable, pages 329–346, 2011.
48. S.P. Sastry, S.M. Shontz, and S.A. Vavasis. A log-barrier

method for mesh quality improvement and untangling. Eng.
Comput., pages 1–15, 2012.

49. M. Shephard and M. Georges. Automatic three-dimensional
mesh generation by the finite octree technique. Int. J. Num.
Meth. Eng., 32:709–749, 1991.

50. J. Shewchuk. What is a good linear element? Interpolation,
conditioning, and quality measures. In Proc. of the 11th

International Meshing Roundtable, pages 115–126, 2002.
51. Hang Si. TetGen: A Quality Tetrahedral Mesh Generator

and Three-Dimensional Delaunay Triangulator, 2007.
52. M.L. Staten, S.A. Canann, and J.R. Tristano. An ap-

proach to combined Laplacian and optimization-based mesh
smoothing for triangular, quadrilateral, and quad-dominant
meshes. In Proc. of the 7th International Meshing
Roundtable, pages 479–494. Sandia National Laboratories,
1998.

53. T.J. Tautges and R. Jain. Creating geometry and mesh
models for nuclear reactor core geometries using a lattice
hierarchy-based approach. Eng. Comput., 28:319–329, 2012.

54. T. Toulorge, C. Geuzaine, J.-F. Remacle, and J. Lambrechts.

Roubst untangling of curvilinear meshes. J. Comput. Phys.,
254:8–26, 2013.

55. P. Vachal, R.V. Garimella, and M.J. Shashkov. Untangling of

2D meshes in ALE simulations. J. Comput. Phys., 196:627–
644, 2004.

14

56. R. Williams. Adaptive parallel meshes with complex geome-
try. In Numerical Grid Generation in Computational Fluid
Dynamics and Related Fields, 1991.

57. T.J. Wilson, J. Sarrate, X. Roca, R. Montenegro, and J.M.
Escobar. Untangling and smoothing of quadrilateral and
hexahedral meshes. In B.H.V. Topping, editor, Proc. of the
8th International Conference on Engineering Computational

Technology, 2012.
58. H. Xu and T.S. Newman. An angle-based optimization ap-

proach for 2D finite element mesh smoothing. Finite Elem.

Anal. Des., 42:1150–1164, 2006.
59. Y. Xu and Y. Chen. A framework for parallel nonlinear

optimization by partitioning localized constraints. In Proc.
of the International Symposium on Parallel Architectures,
Algorithms, and Programming (PAAP-08), 2008.

60. T. Zhou and K. Shimada. An angle-based approach to two-
dimensional mesh smoothing. In Proc. of the 9th Interna-
tional Meshing Roundtable, pages 373–384. Sandia National

Laboratories, 2000.

