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1 Introduction

Discretization methods, such as the finite element method,
are commonly used in the solution of partial differentialiag

. . tions (PDEs). The accuracy of the computed solution to the
Per for mance Char acterization of PDE depends on the degree of the approximation scheme,

nonlinear Opti mization methods the number of elements in the mesh [1], and the quality of
fOI’ mesh qual Ity improvement*T the mesh [2, 3]. More specifically, it is known that as the el-

ement dihedral angles become too large, the discretization
error in the finite element solution increases [4]. In adudii
Shankar Prasad Sastry - the stability and convergence of the finite element method is
Suzanne M. Shontz affected by poor quality elements. It is known that as the an-
gles become too small, the condition number of the element
matrix increases [5].

Recent research has shown the importance of perform-
ing mesh quality improvement before solving PDEs in order
to: (1) improve the condition number of the linear systems
being solved [6], (2) reduce the time to solution [7], and
63) increase the solution accuracy. Therefore, mesh gualit
Improvement methods are often used as a post-processing
rtep in automatic mesh generation. In this paper, we focus
n mesh smoothing methods which relocate mesh vertices,
pile preserving mesh topology, in order to improve mesh
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Abstract We characterize the performance of gradient- an
Hessian-based optimization methods for mesh quality im
provement. In particular, we consider the steepest desceR
and Polack-Ribiere conjugate gradient methods which ar@
gradient based. In the Hessian-based category, we considef"'s
the quasi-Newton, trust region, and feasible Newton methgua“ty' ) o

ods. These techniques are used to improve the quality of a 1 ne three major classes of unstructured mesh quality im-
mesh by repositioning the vertices, where the overall mesRrovementmethods are as follows: (1) point insertionfitele

quality is measured by the sum of the squares of individua®" methods which refine/coarsen the mesh in order to im-

elements according to the aspect ratio metric. The effectroVe the local length scale of the mesh [8-11]; (2) local re-
of the desired degree of accuracy in the improved mestEonnection methods which change the topology of the mesh

problem size, initial mesh configuration, and heterog@'neitt_hrough edge or face swapping of a specified set of ver-
in element volume on the performance of the optimizatiorf'c€S [11-14], and (3) mesh smoothing methods which re-

solvers are characterized on a series of tetrahedral meshedCate Vertices in order to improve mesh quality while pre-
serving the topology of the mesh [15-17]. For this research,

Keywords Mesh quality improvement optimization we focus on mesh quality improvement methods in the third
solvers- performance characterization class.

Despite the large number of papers on mesh smoothing
methods (e.g., [18-21,15-17]), little is known about tHe re
ative merits of using one solver over another in order to
smooth a particular unstructured, finite element mesh. For

* The work of the first author was funded in part by an Institate f example’ itis not known in advance which solver will con-
CyberScience grant from The Pennsylvania State Univefsitywork ~ Verge to an optimal mesh faster or which solver will yield
of the second author was funded in part by NSF grant CNS 0®074a mesh with better quality in a given amount of time. It is
and a Grace Woodward grant from The Pennsylvania State Witiye 5150 not known which solver will most aptly handle mesh

T A preliminary version of a portion of these results appeared perturbations or graded meshes with elements of heteroge-
shortened form in the Proceedings of the 2009 InternatiMEEihing neous volumes. The answers may ||ke|y depend on the con-

Roundtable. text. For example, one solver may find an approximate solu-
Shankar Prasad Sastry tion faster than the others, whereas another solver may im-
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objective function representing the overall mesh qualitg.  their vertex positions. In particular, let(Xxe) measure the

investigate the performance of the following gradientdzhs quality of element. We assume amallervalue ofqg(xe)

methods: steepest descent [23] and Polack-Ribiere conjindicates a better quality element. A specific choicel &

gate gradient [23], and the following Hessian-based methan element quality metric. There are various metrics to mea-

ods: quasi-Newton [23], trust region [23], and feasible New sure shape, size, and orientation of elements.

ton [24]. The optimization solvers are compared on the ba-  The overall quality of the mesh is a function of the indi-

sis of efficiency and ability to smooth several realistic un-vidual element qualities. The mesh quality depends on both

structured tetrahedral finite element meshes to both accithe choice of the element quality metgeand the function

rate and inaccurate levels of mesh quality as measured hysed to combine them.

the aspect ratio mesh quality metric [25]. We took a “black-

box” approach and used the Mesquite solvers in their na-

tive state and with the default parameters. This approach ] ] )

was taken since this is how the majority of the practitioners?-2 Aspect Ratio Quality Metric

use Mesquite and other such software packages [26]. Onl

Mesquite was employed for this study so that differencesxn importapt congideration in this study is the choice of

in solver implementations, data structures, and otheofact Mesh quality metric. In general, we expect that the results

would not influence the results. could vary significantly depending on the choice of mesh
In this paper, we report the results of an initial eXp|0_quality metric. However, in order to minimize the number

ration of the factors stated above to determine the circum@f frée parameters, we consider only the aspect ratio qualit

stances when the various solvers may be preferred over fgetric [6].

others. In an effort to make the number of experiments man-  Various formulas have been used to compute the aspect

ageable, we limit the number of free parameters. Hence, witio. The aspect ratio definition we employ is the one im-

consider a fixed mesh type and objective function. In particPlemented in Mesquite. In particular, it is the average edge

ular, we use unstructured tetrahedral meshes and an objdéngth divided by the normalized volume. Thus for tetrahe-

tive function which sums the squared qualities of individ-dra, the aspect ratio is defined as follows:

ual tetrahedral elements. The free parameters we invéstiga

are the desired degree of accuracy in the improved mesh, (If+|§+---+l§> / (vol y 12)

problem size, initial mesh configuration, and heteroggneit 6 V2)'

in element volume.

~ The rest of this paper is organized as follows. In Secwherel;,i = 1,2,...,6 represent the six edge lengths, and
tion 2, we describe the mesh quality improvement problemyo| represents its volume [27]. The range of values for this

In Section 3, we describe the mesh quality improvemenfnetric is from 1 towo. The optimal value of the metric is 1.
algorithms as implemented in Mesquite. In Section 4, we

describe our numerical experiments to determine the most
efficient solver in various contexts. Finally, we give some _
conclusions and describe our plans for future reasearch ia-3 Quality Improvement Problem

Section 5.
To improve the overall quality of the mesh, we assemble

the local element qualities as follow@:= S ¢q(%e)?, where

2 Problem Statement Q denotes the overall mesh quality, ane) is the quality
_ of elemente. We compute ax* € R™ V| such thaix* is a

LetV andE denote the vertices and elements, respectively, .

of an unstructured mesh, and &t and|E| denote the num- mme(x) (1)

bers of vertices and elements, respectively. Defigeand

Vi to be the set of boundary and interior mesh vertices. Lesubject to the constraint thay, = X,;, wherexy; are the

xv € R" denote the coordinates for vertex V. For the pur- initial boundary vertex coordinates. In addition, we requi

poses of this papemn,= 3. Denote the collection of all vertex that the initial mesh and subsequent meshes to be nonin-

coordinates by € R™ VI, Letebe an element . Finally,  verted. This translates to the constraiet(A®")) > 0 for ev-

let xe € R™I¢l the matrix of vertex coordinates fer ery element. In order to satisfy the two constraints, Metgqui
We associate with the mesh a continuous functian fixes the boundary vertices and explicity checks for mesh in-

R/ — R to measure the mesh quality as measured by oneersion at each iteration. All optimization problems insthi

or more geometric properties of elements as a function opaper are formulated as (1).



3 Improvement Algorithms 3.3 Quasi-Newton Method

In this paper, we consider the performance of five numericaRuasi-Newton methods [23] are line search (or trust-region
optimization methods, namely, the steepest descent, conjalgorithms which replace the exact Hessian in Newton’s me-
gate gradient, quasi-Newton, trust-region, and feasilelyN thod with an approximate Hessian in the computation of the
ton methods, as implemented in Mesquite. The steepest ddlewton step. Thus, quasi-Newton methods sdyey =
scent and conjugate gradient solvers are gradient-based, w—Of (x¢), for someBy ~ 0?f (x,) at each iteration in an at-
ereas the remaining three are Hessian-based, i.e., they ef@mpt to find a stationary point, i.e., a point whéré(x) =
ploy both the gradient and Hessian in the step computatiof). The quasi-Newton implementation in Mesquite [22] is a
We describe each method below. line search that approximates the Hessian using the griadien
and true values of the diagonal blocks of the Hessian.

3.1 Steepest Descent Method 3.4 Trust-Region Method

The steepest descent method [23] is a line search techniqd&Ust-région methods [23] are generalizations of line sear
which takes a step along the directipa= —f (x) at each algorithms |.n that thgy a!low the ppt|m|zat|on algorithm to
iteration. In Mesquite the steplengtn,, is chosen to satisfy take steps in any _dlrectlon provided that the steps are no
the Armijo condition [28], i.e., Iopger_t_han a maxmgm steplength. Step_s are computed by
minimizing a quadratic model of the function over the trust
region using a standard backtracking Armijo linesearch. A
block diagonal preconditioner is employed in Mesquite; the
preconditioner gets modified if the diagonal block is not-pos
for some constant; € (0,1), which ensures that the step itive definite. The trust region is expanded or contracted at
yields sufficient decrease in the objective function. Whereach iteration depending upon how reflective the model is of
the Armijo condition is not met, the step length is reducedhe objective function at the given iteration.

by a factor, namely the reduction parameter. Also, when the
step results in a tangled mesh, the step length is reduced b
a factor, namely the backtracking parameter.

f (Xk + akpk) <f (Xk) + a0 f (Xk)T Pk

.5 Feasible Newton Method

The feasible Newton method [24] is a specialized method
for mesh quality improvement. In particular, it uses an inex
3.2 Conjugate Gradient Method act Newton method [29, 23] with an Armijo line search [28]
to determine the direction in which to move the vertex coor-
The conjugate gradient method [23] is a line search techdinates. At each iteration, the algorithm solves the Newton
nique which takes a step in a direction which is a linear com&duations via a conjugate gradient method with a block Ja-
bination of the negative gradient at the current iteratiod a COPi preconditioner[29]. The solver also obtains goodloca
the previous direction, i.e.,. ity of reference by vertex and element reordering steps per-
formed as a preprocessing step using a breadth-first search.

Pk = —0OF (%) + BcPr-1
4 Numerical Experiments

wherepg = —Of(Xp). Conjugate gradient methods vary in ) i
their computatioEw o)Bk. The Polack-Ribiere conjugate gra- In thls sectlor), we repor.t results from a'set of three nu-
dient method implemented in Mesquite computes merlgal experiments designed to dgtermlne vyhen e_:agh of
the five solvers are preferred according to their quality im-
provement as a function of time. We consider both local and
global mesh quality improvement methods separately. All
solvers are implemented in Mesquite 2.0, the Mesh Quality
Improvement Toolkit [22], and were run with their default

Care is taken in the Armijo line search employed byparameter values (as shown in Table 1). We solve the opti-
Mesquite to compute a steplength yielding both a feasiblenization problem (1) on a series of tetrahedral meshes gen-
step (i.e., one which does not result in a tangled mesh) anerated with the CUBIT [30] and Tetgen [31] mesh genera-
an approximate minimum of the objective function along thetion packages. We consider the following geometries: distd
line of interest. ct, gear [26], and cube. In addition, we consider meshes on

BPR_ 0f (%07 Of (%)
K Of (xen) TOF (Xe1)




Solver Parameter Value containing approximately 1 million and 3 million elements.
Steepest descent|  Dacktracking parameter | 0.2 These meshes took approximately 600 and 1800 seconds to

Reduction parameter 0.5 . .
Backiracking parameter | 0.2 converge to an optimal mesh with the fastest solvers. Hence,

Conjugate gradien}  “p . \ction parameter 05 we ran this experiment for 3000 seconds before termination
Quasi-Newton and  Backtracking parameter | 0.5 to ensure that all solvers had enough time to converge to
Feasible Newton Reduction parameter | 0.5 the optimal mesh in the various contexts. The machine em-
Backtracking parameter 0.5 | d for this studv i . d with Intel P4
et Reduction parameter | 0.25 ployed for this study is equipped with an Intel P4 processor
rustregion Initial trust region radius | 1000 (3.33 GHz). The 32-bit machine has 4GB of RAM, a 2MB
Maximum trust region radiug 10?° L2 cache, and runs Linux.

Table 1 Default parameter values for the various solvers as imple-
mented in Mesquite.

4.1 Increasing problem size

To test the effect that increasing the problem size has on
the foam geometry in our Conclusions and Future Work secoptimization solver performance, we used CUBIT to gener-
tion. Sample meshes are shown in Figure 1. In the first threate a series of tetrahedral meshes with an increasing number
experiments, we study the effects of three different proble of vertices while maintaining uniform mesh quality. A se-
parameters on the improvement of the objective functionties of meshes were generated for the distduct and gear ge-
The problem parameters of interest are: the problem siz&@metries shown in Figures 1(a) and 1(b); for each series of
the initial mesh configuration, and the grading of mesh elemeshes, the number of elements is increased from approxi-
ments. Table 2 shows the the parameters that are held comately 5,000 to 3,000,000 elements.
stant and those that are varied for each experiment. In the creation of the test meshes, care was taken to en-

For each of the three parameters studied, we create a s&{'® that, for each mesh geometry, we achieve our goal of
of test meshes in which we isolate the parameter of interegf@intaining roughly uniform element size and mesh qual-
and allow it to vary; these experiments were inspired by [32!ty distributions. Table 3 shows the_mmal qualmes_ pfeth
33]. Particular attention was paid to ensure that the remairfistduct meshes. It also shows the final mesh qualities after
ing parameters were held as constant as possible. Due {3€ conjugate gradient and feasible Newton methods were
space limitations, we have omitted most of the tables of ini¥sed toiperform local and global mesh quality improvement,
tial mesh quality statistics which demonstrate this. respectively, on each mesh.

— . . Table 4 shows the times and numbers of iterations re-
Because the objective functions used for our experiments

are nonconvex, the optimization techniques may converge t ullred fgr the_tl)ozal Snd gtlobal mesh tqute;]hty m:_prO\l/emeEt
different local minima. To ensure that this did not effect ou S0 Vo' > described above o converge fo the optimal meshes

study, we verified for each experiment whether or not the®" the distduct geometry. Such improvements in mesh qual-

solvers converge to the same optimal mesh by comparin'é[;y v;erg(;ymzaltof the_restlélts seetn I;.thls texple rlmfent. .
vertex coordinates of the optimal meshes. Unless indicated testl es Ie e(rjmtlnlng_ ethmosde |c]1en Sover or?glvenh
otherwise, the optimization methods converged to the same niext, We aiso determine fhe order of convergence for eac
optimal mesh. solver as a function of problem size for this experiment. The

. . _ order of convergence, is given by the following formula:
In the following subsections, we describe the problem

characteristics of the test meshes in terms of the numbers t=kxn?,

of vertices and elements, initial mesh quality (accordimg t

the aspect ratio quality metric), and parameter values-of inwheret is the time to convergence;s the number of mesh
terest (such as the magnitude of the perturbation). We theygrtices, and > 0 is a constant. In order to determioe a
specify performance results for the five optimization sedve least squares fit can be computed by taking the logarithm of
In all cases, the solution is considered optimal when it ha§oth sides.

converged to six significant digits. The majority of our ex-  We now summarize the results of performing local and
periments were run for 300 seconds before they were termglobal mesh smoothing for this experiment.

nated in order to obtain the results; this was an appropriate

length of time for the experiments in that most meshes with.1.1 Local Smoothing

up to 500,000 elements can be smoothed in under 300 sec-

onds using the various solvers. When the fastest solves weFor each mesh geometry, when the aspect ratio mesh qual-
employed, meshes with 500,000 elements were smoothed ity metric was employed, the time to convergence required
approximately 100 seconds. For the first experiment whiclincreased linearly with an increase in problem size. Figure
focuses on problem size scaling, we also smoothed mesh#sistrates this trend for the use of the various solversten t



Experiment #| Experiment name Parameters held constaft Parameters varied

4.1 Increasing problem size average mesh quality mesh size

42.1 Initial mesh configuration - random perturbatign mesh size number of vertices perturbed
422 Initial mesh configuration - translation mesh size magnitude of vertex translation
4.3 Graded meshes mesh size magnitude of grading of elements

Table 2 Parameters that were held constant and varied in each okgegiments. For experiment 4.1, unperturbed CUBIT-gemergear and
distduct meshes were used. We verified that the average nueditygvas approximately the same for these meshes. Foriexgets 4.2.1 and
4.2.2, perturbed versions of these meshes were employtgenFgenerated cube meshes were employed for experingnt 4.

(&) Gear mesh (b) Distduct mesh (c) Cube mesh (d) Foam mesh

Fig. 1 Sample meshes on the gear, distduct, and cube geometrigsieBees (a), (b), and (d) were provided to us by Dr. Patrickipp of Sandia
National Laboratories [26].

distduct geometry. The behavior of the solvers was identiand Q¢ony is the value of objective function for the fully-
cal on the gear geometry; thus, additional figures have beetonverged mesh. Note that although inaccurate mesh smooth-
omitted. It was also verified that the solvers convergedéo thing can be performed, in order to determine the percentage
same optimal meshes for a given geometry. This is expecteaf improvementQcony must be determined through an ini-
as the number of iterations required to converge is more diial run of accurate mesh smoothing, i.e., it is not known
less a constant, and the time per iteration increases linearapriori. We chose 85% and 90% smoothing for inaccurate
with the number of elements used for local mesh smoothsmoothing because the optimization methods are able to im-
ing. This is because the tetrahedral meshes are generated psove the mesh quality by the desired amount in just 2 or 3
ing CUBIT and hence are already close to optimal. Theraterations.
are instances where a deviation from linear scaling is seen
when smoothing larger meshes. This is because they took |n gJl the cases, i.e., for the 85% 90%-—, and 100%-
one to two additional iterations to attain the desired duali converged solutions, the five optimization solvers conedrg
By computing the least squares fit of the data, we found thabwards the same optimal mesh. For the 85¢6nverged
the value ofx for local smoothingiis very close to 1 for fully- - solutions, feasible Newton is the fastest method to reach an
converged meshes. Thus, we conclude that local smoothinghtimal solution (see Figure 2(a)); few iterations were re-
scales linearly with the mesh size. quired since the initial CUBIT-generated meshes were of
We now examine the behavior of the various solvers offajrly good quality. Feasible Newton was the quickest mdtho
the distduct meshes. For engineering applications, aytghl since it took fewer iterations than the other methods. Al-
accurate solution is not often needed or even desired. Thugyough each iteration took a greater amount of time than for
we consider partially-converged as well as fully-converge the other solvers, the amount of time to convergence was
solutions for minimizing (1). We define a fully-converged |ess than that required by the other solvers. The ranking of
solution to be one which is accurate to 6 digits. For eachy|l solvers in order of fastest to slowest on the largest mesh
solver, we consider smoothing with 85%, 90%, and 100%sis: Conjugate gradien{ steepest descent feasible New-
converged solutions; the results are shown in Figure 2.8 hegon < trust region< quasi-Newton. For the small meshes,
percentages specify the amount of mesh smoothing perfornthe rank-ordering is: conjugate gradient feasible New-

ed and is defined as ton < steepest descenrt trust region< quasi-Newton. In
Qi —Q« general, the gradient-based solvers (i.e, steepest desugn
X= 7Q‘ Qconv’ conjugate gradient) performed better than the Hessiaaebas
| — \<conv

solvers (trust region and quasi-Newton) due to their lower
wherex s the percentage of smoothing which has been comeomputational complexity. As the number of mesh elements
pleted,Q; is the initial value of the objective functioQy is  increased to 1 million and beyond, the gap between the steep-
the value of the objective function aftg? of smoothing, est descent and other solvers increased. Clearly the rank-



Distduct Mesh Smoothing Mesh Quality (Aspect Ratio)
# Vertices  # Elementg min avg ms max  std. dev,
Initial 1.00557 1.33342 1.35118 2.71287 0.218363
1,262 5,150 Final (local) | 1.00077 1.27587 1.28932 2.83607 0.185684
Final (global) | 1.00077 1.27587 1.28932 2.83604 0.185686
Initial 1.00156 1.31327 1.33023 5.23155 0.211758
2,347 10,181| Final (local) | 1.00015 1.20092 1.21025 10.31880 0.150045
Final (global) | 1.00315 1.24561 1.25762 460388 0.173392
Initial 1.00146 1.30004 1.31688 6.81820 0.209909
5,292 24,860| Final (local) | 1.00281 1.22567 1.23718 6.81820 0.168317
Final (global) | 1.00280 1.22567 1.23717 6.81820 0.168334
Initial 1.00282 1.28901 1.30397 7.84040 0.196944
10,326 50,649| Final (local) | 1.00110 1.21313 1.22273 7.84040 0.152960
Final (global) | 1.00111 1.21310 1.22271 7.84040 0.152984
Initial 1.00033 1.28333 1.29898 9.06301 0.201012
14,858 74,641| Final (local) | 1.00054 1.20605 1.21582 9.06301 0.153753
Final (global) | 1.00063 1.20595 1.21572 9.06301 0.153828
Initial 1.00070 1.28014 1.29531 10.3188 0.197718
19,602 99,895 Final (local) | 1.00065 1.21742 1.22755 4.86240 0.157424
Final (global) | 1.00009 1.20054 1.20991 10.31880 0.150359
Initial 1.00111 1.27886 1.29358 11.91700 0.194351

33,128 1,72,479 Final (local) | 1.00025 1.20569 1.21472 3.44530 0.147858
Final (global) | 1.00023 1.19746 1.20601 11.91700 0.143376
Initial 1.00090 1.27189 1.28648 13.20510 0.193164
47,361 249,975 Final (local) | 1.00008 1.19900 1.20730 3.47083 0.141801
Final (global) | 1.00035 1.22353 1.23745 6.43000 0.065702
Initial 1.00087 1.27160 1.28636 14.71870 0.194342
64,685 345,114 Final (local) | 1.00038 1.19077 1.19900 13.36920 0.140402
Final (global) | 1.00027 1.18908 1.19737 13.36820 0.140705
Initial 1.00036 1.27132 1.28586 17.51110 0.192819
80,025 429,578 Final (local) | 1.00014 1.19101 1.19924 17.51110 0.140236
Final (global) | 1.00014 1.18853 1.19679 17.51110 0.140397
Initial 1.00009 1.27055 1.28513 18.55920 0.193054
92,316 498,151 Final (local) | 1.00004 1.18949 1.19770 18.55920 0.139968
Final (global) | 1.00009 1.18757 1.19580 18.55920 0.140Q090
Initial 1.00014 1.27476 1.28717 5.56563 0.178268
184,006 995,308 Final (local) | 1.00010 1.20567 1.21391 2.76560 0.141226
Final (global) | 1.00009 1.20567 1.21392 2.76551 0.141230
Initial 1.00004 1.24995 1.26111 3.53242 0.167390
532,789 2,951,272 Final (local) | 1.00003 1.19667 1.20448 3.00381  0.136930
Final (global) | 1.00004 1.19646 1.20428 2.96445 0.136953

Table3 Initial and final mesh quality after smoothing the distduetsimes with the conjugate gradient method for local smogthimd the feasible
Newton method for global smoothing. Results from differsoivers were chosen for the local and global smoothing atsitas these two methods
represent the fastest solvers in the two contexts, respécti

100

100

O Steepest Descent ! O Steepest Descent | O Steepest Descent
A Conjugate Gradient A Conjugate Gradient 300/ A Conjugate Gradient
80 Quasi-Newton 80 Quasi-Newton ¢ Quasi-Newton
Trust Region ¥ Trust Region % 9250 Trust Region +
* Feasible Newton #* Feasible Newton #+ Feasible Newton

60 60

40 40

Time of convergence
Time of convergence
Time of convergence

1=
S

2 * 2 8 9
8 5 3
A o .u‘gﬂ A (fﬁj@ c
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
Number of Elements (in thousands) Number of Elements (in thousands) Number of Elements (in thousands)
(a) 85%-converged solution (b) 90%-converged solution (c) 100%-converged solution

Fig. 2 Local Smoothing: Smoothing of the gear meshes to variousergance levels: (a) 85%-converged solution; (b) 90%-eaged solution;
(c) 100%-converged solution.



ordering of the solvers depends on the mesh size as notddl.2 Global Smoothing
above.

In the majority of the 90%-converged solution cases (see

Figure 2(b)), the conjugate gradient algorithm reached contpare are a few differences between the results from the
vergence faster than the other. methods. This was f.ollowe%Cal and global smoothing contexts. Figure 3 shows that
by the steepest descent, feasible Newton, trust region, anfls ethod scales superlinearly with respect to the problem
quasi-Newton metr_]ods, respect.|ve|y. This ordering is dlf'size for all the solvers except the trust region method. The
ferent than that which was obtained for the 85% case. Be\?alue ofa for the least squares fit was close t@1This

cau_se local mesh smoothing wa_s performed, only one V€Ean be attributed to the inherent computational complexity
tex in the mesh is 'moved at a time. The steepegt descegf the solvers. As the number of unknowns increases, the
and conjugate gradient methods use only the gradient of th§‘0Ivers scale superlinearly. In global smoothing, the num-
objective_ function to.move a vertgx to its 'optimal location. o of unknown variables is proportional to the number of
The conjugate gradient method is superior to the steepegfieior vertices in the mesh. The trust region solver is an

descent method since it uses gradient history to determing .o ntion 1o this trend as the movement of the vertices is
the optimal vertex position. The remaining methods also USEonstrained by the trust region. Additional trust-region e

the HeSS|an_of the object|vc_e function to move_wach Vertexperiments were performed which determined that as the ini-
The _calculatlon of_the Hessian adds computatlopal EXPENSRa)| trust region radius was increased, the convergence of
making the Hessian-based methods comparatively slowef,q st region solver to the optimal mesh was significantly
However, Hessians may effect local mesh smoothing res“,"l%ster. This demonstrates that the trust region radiusiig-li

less than global mesh smoothing results where the Hessign, 16 progress of the optimization method, and, hence, the
matrices are'much 'afger- The difference between the 1BSteSo|ver takes smaller steps toward the optimal mesh regultin
two solvers is approximately 16%, whereas the dlf'l‘erencer\n linear scaling of the method

between the fastest and the slowest solvers is approxiynatel
66%.

In the majority of the 100%-converged solution case (see In Figure 3, global mesh smoothing results for smooth-
Figure 2(c)), the conjugate gradient algorithm was theefitst ing @ gear mesh are shown; such results are typical for global
to reach convegence for smaller meshes; however, the Steé’ﬁESh smoothing. As in the local case, we examine the nature
est descent method proved to be faster for larger meshe@f solvers at various amounts of smoothing. When only 85%
This is due to the increase in memory which is requiredsmoothing is required, the rank ordering of solvers from
for larger meshes. Eventually the increased requirements dastest to slowest is steepest deseesbnjugate gradient
the performance of the cache may slow down the conjugat@asible Newton< quasi-Newton< trust region. Typically,
gradient algorithm relative to the steepest descent algari  We see that the fesible Newton method, although slow in
since it must store and access an additional vector. For exbe begining, ends up being the fastest solver closer to con-
ample, for the distduct mesh with 500,000 elements and ap‘ergence. This can be seen in the plots for 90% smoothing
proximately 100,000 vertices, each additional vector s a(see Figure 3(b). The rank ordering remains the same ex-
approximate length of 300,000. Since each component ¢fept for feasible Newton which emerges as the fastest solver
the vector consumes four bytes of memory, Storing one adn almost all cases. The feasible Newton method uses the
ditional vector corresponds to a 1.1MB increase in memonyiessian to compute the direction. Although it is more com-
In addition, the number of iterations remained the same foPutationally complex than the gradient-based methods, it i
all solvers. This is because we are moving only one verteRlso more accurate. Despite the fact that each iteratia@stak
at a time. All of the solvers move the vertex in almost the@ greater amount of time, only a few iterations are necessary
same direction and magnitude. Hence, the additional confor convergence. Hence the total amount of time required to
plexity and accuracy is not necessary in the context of locaggonvergence is lower than that of the gradient-based meth-
smoothing. The difference between the fastest two solverdds. The rank ordering in this case is feasible Newton
is approximately 125%, whereas the difference between thgteepest descert conjugate gradient. quasi-Newton<
fastest and the slowest solvers is approximately 225%.  trust region. When 100% smoothing is required, feasible

Newton continues to be the fastest solver. The differenee be

In conclusion, the behavior of the optimization solvers istween the fastest two solvers is approximately 150%, wiserea
influenced by the degree of accuracy desired in the solutiothe difference between the fastest and slowest solvers is ap
and the size of the mesh. Most of the time, the gradientproximately 2500%. Figure 3 illustrates that the trust oegi
based optimization solvers exhibited superior perforreancmethod takes significantly longer than the other four salver
to that of the Hessian-based solvers. to converge to the optimal mesh.



Vertices  Elements Smoothing Time Tsiterations Time Tg(l)terations Time Tml?erations
1,262 5,150 E?SEL 8:85 3(14) 8:83 2(22) 8:83 2(22)
2347 10,181 E?SE‘; 8:% 3(25) 8:23 3(30) 8:23 3(30)
5292 24,860 E?SE‘; 8:;3 3(19) 8:6133 3(29) 8:23 3(29)
10,326 50,649 E?SE‘; 8:22 3(25) 2:% 3(37) gigg 3(37)
14858 74,641 E?SE‘; 8:;; 3(26) 2:% 3(39) 1% 3(39)
19,602 99,895 E?gﬁlal 11'.313 2(29) %33 2(43) %:3? 2(43)
33128 172,479 lc_s?glil; gég 2(36) g:ég 2(52) 2:82 2(52)
47361 249,079 O° S0 2(40) S 3(61) o 2(61)
64,685 345114 Ic_s?gS; g:gg 2(23) 1?)'.23 2(35) 1?)'.3; 2(35)
80,025 429,578 Ic_s?gS; g:slag 2(23) 12'.%3?1 2(30) E:gi 2(30)
92,316 498,151 Ic_s?gS; g:gg 2(21) 12.22 2(31) ig:gg 2(31)

184,006 995,308 Ic_s?gS; 1421?.% 2(61) 1%22?3% 10 (72) 1382'.% il (79)

532,789 2,951,272 Ic_s?gS; 11?2%; 2(31) 11(1)'.% 2(31) iéé:ig }1(242)

Table 4 Timing results for the fastest local (i.e., conjugate geatl and global (feasible Newton) mesh smoothing methodmézcurate and
accurate mesh smoothing. The table shows the time takendotkrthe distduct meshes for the respective solvies.Too, andTigp are the times
taken to achieve 85%, 90%, and 100% of the locally optimaltgmh. The number of iterations represent the number ofrdteeations for each
solver. The numbers in parentheses represent the totalewwfitinear conjugate gradient iterations (i.e., the nunddenner iterations) for the
feasible Newton solver. For local smoothing using the coaje gradient method, the number of inner iterations is ydwme and hence is not
shown.
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Fig. 3 Global Smoothing: Smoothing of the gear meshes to variongargence levels: (a) 85%-converged solution; (b) 90%emed solution;
(c) 100%-converged solution.

4.2 Initial mesh configuration signed. In particular, the meshes were completely smoothed
initially. Then, random or systematic perturbations wege a

In order to investigate the effect that the initial mesh con—p”ed to the interior vertices of the optimal mesh. For ali ex
eriments, the perturbations were applied to all interier v

figuration (as measured by the distance from the optima?

1 i i 0,
mesh) had on the performance of the five solvers, a Serietlsces and to randomly chosen subsets of vertices of size 5%,

0, 0, 0, 1 1 1
of perturbed meshes, based on the 500,000 element distdl%lg%rﬁhf;s?é?{;}it%?tﬁ’r?);?snguar?:2;?;:?;5\/2?r vertices. The

and gear meshes from the previous experiment, were de-



Random: ¥ = X, + ayr, wherer is a vector of random due to the lower complexity of the algorithm). When the per-
numbers generated using the rand function,apid a mul-  turbations are small, the fine-scale smoothing requiresnent
tiplicative factor controlling the amount of perturbatidfor  imply that the Hessian-based methods will converge faster.
our experiments, we chose a random valuedfgthe result-  This was indeed seen in the small perturbation case. The
ing meshes were checked to verify that they were of pooconjugate gradient method’s performance was better than
quality. oy, was chosen such that it did not tangle the meshthat of steepest descent in such cases. However, the Hessian
If the random value generated fay, was too large, it was based methods were slower because of their inherent com-
gradually decreased until the mesh was untangigsalues putational complexity. Figure 4(a) shows typical objeetiv
range from 0001 to 155. function versus time plots for our experiments.

Translational: x = x,+ as, wheres s a direction vec- The behavior of the trust region method was distinctly
tor giving the coordinates to be shifted, aodis a multi-  different than that of the other algorithms. For small per-
plicative factor controlling the degree of perturbatiamttiis  turbations from the optimal mesh, the behavior of the trust
case, we consider the shift wigh=[1 0 0. In addition,a  region method almost coincided with that of the other meth-
values ranging from @16 to 152 were used to maximize ods in the quality versus time plots. Figure 4(b) below Hlus
the amount of perturbation a particular mesh could withtrates an example of such behavior. The difference between
stand before the elements became inverted. Thus, the spie fastest two solvers is approximately 12%, whereas the
cific value ofa chosen for a mesh depended upon the sizelifference between the fastest and slowest solvers is appro

of the elements. imately 60%.
However, when the perturbations were large, the trust
4.2.1 Random Perturbations region method was much slower than the other methods in

terms of time to convergence. This behavior is due to the
For this experiment, the vertices of the meshes to be wereonstraint of the trust region bounding the maximum accept-
perturbed from the CUBIT-generated meshes. Thus, the inable step length at each iteration. For large perturbativas
tial meshes are of poorer quality. Starting with these pooran the steepest descent method for longer and confirmed
quality meshes, i.e., far away from an optimal mesh, had &at it does not converge to the same optimal mesh as the
very significant impact on the performance of the solversother methods. This is a nonconvex optimization problem;
Table 5 shows the results of smoothing a highly perturbe@n optimization method may converge to any one of the lo-

disduct mesh with the various solvers. cal minima. In particular, it converged to an optimal mesh
) with a higher objective function value than the meshes ob-
4.2.1.1 Local smoothing tained when other algorithms were used. The plot shown in

The results obtained here differ somewhat from the result§19Ure 4_(0) is a good example of the poor pe_rformance ofthe
obtained from the scalability experiment above. They ardrustregionand steepest descentmethods in the large-pertu
similar in that the gradient-based methods performed bel_t_)atlon ca;e. The difference between t_he fastest two solvers
ter than the Hessian-based methods. This can be attributijaPProximately 32%, whereas the difference between the
to the greater computational expense of computing the Hedastest and slowest solvers is approximately 90%.
sian matrices for a smaller payoff in terms of a decrease In conclusion, the rank-ordering of the opt|m|zat|o_n solv-
in the objective function. The main difference here is that€rs depends upon the amount of random perturbations ap-
in almost all cases, the steepest descent algorithm pesforrﬁ’“ed to the initial meshes in the context of local mesh smoot
better than the conjugate gradient algorithm. However, th&ing. In particular, all five methods performed competityve
conjugate gradient method performs better than the steepd§" the small perturbation case; however, the steepest de-
descent method when the quality of the input mesh is reascent and conjugate gradient methods performed the best. In
sonably good. the case of medium-sized perturbations, the steepestritesce
When poor quality initial meshes are smoothed, the inimethod performed the best, and the trust region rnfethod per-
tial movement of the vertices is large. However, once seviormed very slowly. The other three methods exhibited aver-
eral iterations of smoothing have been performed, the xerte?9€ Performance. Finally, for the case of large perturiatio
movement is small and can be obtained efficiently obtainel€ trust region method is very slow to converge, and the
through the use of Hessian-based solvers. The gradieetiba$t€epest descent method may converge to a mesh of lesser
solvers are less accuarate, and hence more iterations-are Flity-
quired to converge Fo the optimal mesh. As a result, theya_z_l_z Global smoothing
usually take more time than Hessian-based solvers do to
converge. In most cases, because the perturbation was lardéne results from global smoothing are similar to the those
vertices had to move by large distance. As a result, the pefrom local smoothing in that they can be classified into three
formance of steepest descent was the best (which was alstain categories: small, medium, and large perturbation. In
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Fig. 4 Local Smoothing: Typical results from the random pertudratexperiment. Results were obtained by smoothing theB@0element
meshes. (a) Gear mesh with 10% of its vertices perturbed l[$edurbations); (b) Distduct mesh with 10% of its versgeerturbed (Medium
perturbations); (c) Distduct mesh with 5% of its verticestpdbed. Observe that the scaling of the vertical axis ifedint in each plot (Large
perturbations).

Smoothing Algorithm min avg rms max std. deV]

Initial 1.00021 1.95294 244.23100 162,866.0000 244.223D00
Steepest Descent*l 1.00009 1.51455 230.75800 162,866.0000 230.753000

Conjugate Gradienf 1.00010 1.18758 1.19581 18.5592 0.140066

Local Feasible Newton | 1.00014 1.18759 1.19582 18.5592 0.140035
Trust Region** 1.00018 1.69459 239.91600 161,087.0000 239.910000
Quasi-Newton 1.00018 1.18761 1.19583 18.5592 0.140006

Steepest Descent*{ 1.00021 1.95294 244.23100 162,866.0000 244.223000

Conjugate Gradient 1.00018 1.18773 1.19594 18.5592 0.139916

Global Feasible Newton | 1.00009 1.18757 1.19580 18.5592 0.140090
Trust Region** 1.00021 1.95078 243.57000 162,440.0000 243.562000

Quasi-Newton 1.00019 1.18796 1.19622 18.5592 0.140374

Table 5 Mesh quality results obtained by smoothing a 500,000 vedistduct mesh with 5% of its vertices perturbed by a large @maoA *'
denotes convergence to a bad quality mesh, and a ** dertbt#ghe solver did not converge in 300 seconds.
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Fig. 5 Global Smoothing: Typical results from the random perttidvaexperiment. Results were obtained by smoothing the(®0element
meshes. (a) Gear mesh with 10% of its vertices perturbed l[$erdurbations); (b) Distduct mesh with 10% of its versgeerturbed (Medium
perturbations); (c) Distduct mesh with 5% of its verticestpdbed. Observe that the scaling of the vertical axis ifedit in each plot (Large
perturbations).
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each case, results similar to those from local smoothingwerNewton< trust region< quasi-Newton. This rank ordering

obtained. demonstrates that methods for which every iteration igfast
Typical results for global smoothing of the randomly converge before methods for which each iteration is slower.

perturbed meshes are shown in Figure 5. In comparing thesehe difference between the fastest two solvers is approx-

results with those for local smoothing (Figure 5), we sedmately 100%, whereas the difference between the fastest

that the results are very similar except for couple of differ and the slowest solvers is approximately 400%.

ences. First, the trust region solver converges to theisaolut In conclusion, the optimization solvers exhibited a dis-

very slowly even in the case of a small perturbation. It cartinct rank ordering. In particular, the rank-ordering was a

be deduced from the plots that the trust region radius estri follows: steepest descert conjugate gradient feasible

tion has a greater impact when performing global smoothingNewton< trust region< quasi-Newton.

than when performing local smoothing. This is due to the

increased impact that scaling of the objective function has

on the performance of the trust region solver. The second

difference is that the steepest descent method converges4a.2.2 Global smoothing

a different minimum when global smoothing is perf.o.rmed.For the translation meshes, the global smoothing resudts ar

We ran the trust region solver on all meshes and verified that

. . completely different from the local smoothing results. In
solver converges to same optimal meshes as did the oth%r )
solvers. the local smoothing context, we saw that there was a def-

inite hierarchy in the rank ordering of the solvers. In the
global smoothing context, the hierarchy is not present. In-
stead, we see that feasible Newton eventually overtakes the

other solvers and becomes the fastest solver. For larges-tra

In order to determine the effect that translation had on th? . . :
T ) ations, it takes longer before the feasible Newton method
performance of the optimization solvers, the affine (trans-

lation) perturbation shown above was applied to all interio overtakes the other methods. The conjugate gradient and

tpe steepest descent algorithms are almost identical in per

mesh vertices once the appropriate initial 500,000 eIemer? rmance most of the time. The performance of the quasi-
distduct and gear meshes were smoothed. Refer to Table’\% Ime. b quasi

for results of smoothing highly translated disduct mesHwit ewton and the trust region methods are in are general not
various solvers as good the performances of the other methods.

Figure 7 shows the results that were explained above.
You can clearly see the absence of a fixed hierarchy. Instead,
during the initial iterations, the rank ordering of the saiy
is: feasible Newton< steepest descert conjugate gradi-
ent< quasi-Newtork trust region. In subsequent iterations,
The qualities of the interior elements of the perturbed reesh steepest descent trades places with conjugate gradieht, an
were still fairly good since the transformation applied wasthe order becomes: feasible Newtarconjugate gradient
affine; however, the qualities of the boundary elements wasteepest desceat quasi-Newtork trust region.
much worse. The initial meshes were created by applying as
large an affine perturbation as possible before mesh inver-
sion occurred, thus generating meshes rather far away from.3 Graded Meshes
the optimal ones. This behavior of the solvers is observed
in the plots shown in Figure 6. The time taken per nonlin-Our second test set was generated using Tetgen in order to
ear iteration varies with the computational complexitytat test the effect that grading of mesh elements has on the per-
algorithm. However, the objective function values (for theformance of the five optimization solvers, as graded meshes
various solvers) remain rather similar over the first few it- have a larger distribution of element mesh qualities. Fisr th
erations. Eventually, more vertex movement occurs, and thexperiment, three sets of structured tetrahedral meshes we
objective function values become less predictable. After 2 generated which contain the same numbers of vertices and
iterations, the objective function values are completély d elements but whose elements have different volumes. The
ferent for the various solvers. However, all solvers cogeer meshes were constructed on a cube domain having a side
to the same optimal mesh. length of 20 units. In the first set of meshes, the vertices

The steepest descent method, being the least computaere evenly distributed in two of the three axes, but, for
tionally expensive method, spends less time per iteration a the other axis, half of the vertices were placed in first 10%,
converges to an optimal mesh fairly quickly. The ranking 0f20%, 30%, or 40% of the volume. Two additional sets of
the optimization solvers for the affine perturbation mesbes test meshes were created with the density of vertices vary-
as follows: steepest descentonjugate gradient feasible ing in two and three directions instead of variation in only

4.2.2 Translation

4.2.2.1 Local smoothing
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Fig. 6 Local Smoothing: Typical results for the affine perturbatéxperiment for local mesh smoothing. The results are fadhing the distduct
and gear meshes with 500,000 elements after all interidicesrwere affinely perturbed.

Algorithm min avg rms max std. dev,
Initial 1.00024 1.22465 1.24143 41.6410 0.203427
Steepest Descent| 1.00008 1.18757 1.19580 18.5592 0.140091
Conjugate Gradien§ 1.00009 1.18759 1.19583 18.5592  0.1401/08
Local Feasible Newton | 1.00010 1.18769 1.19593 18.5592 0.140153
Trust Region 1.00012 1.18782 1.19606 18.5592 0.140206
Quasi-Newton 1.00012 1.18783 1.19608 18.5592 0.140213
Steepest Descent| 1.00024 1.18970 1.19802 18.5592 0.140887
Conjugate Gradienf 1.00029 1.18872 1.19700 18.5592  0.1403555
Global Feasible Newton | 1.00009 1.18757 1.19580 18.5592  0.140Q90
Trust Region 1.00016 1.19787 1.20645 18.5592 0.143625
Quasi-Newton 1.00024 1.19038 1.19873 18.5592 0.141267

Table6 Typical mesh quality results obatined from smoothing a 800 vertex translated distduct mesh with the vertices laéed the maximum
distance possible without mesh tangling.

Smoothing

one direction. After the point clouds were created, Tetgemmain difference between the two experiments is the behav-
was used to create a volume mesh of the cube domain. Ther of the conjugate gradient method. For the graded meshes,
resulting Delaunay meshes, which were created without ughere is a definite hierarchy among the other four solvers;
ing any quality control features, were used for the gradedhe rank-ordering is as follows: steepest deseeffi¢asible
mesh experiment. Figure 1(c) shows an example of a meddewton< trust region< quasi-Newton. However, the rank
created with half of its vertices occupying 30% of the spaceof the conjugate gradient method with respect to the other
in all three axes and distributed uniformly throughout thesolvers varies as a function of time.

rest of the cube volume. The similarity in results from local smoothing of the

This mesh generation technique results in a structureftansiated and graded meshes is seen because graded meshes
mesh with heterogeneous elements in terms of volume. Iye generated are similar to the translated meshes. To cre-
particular, approximately one-fourth, one-half, and doe-  te a translated mesh, all the vertices were moved a certain
rth of the mesh elements can be considered small, mediurgistance in a fixed direction. To create a graded mesh, half
and large, respectively. All of the meshes generated aontaiof the vertices were moved to a corner, and fewer vertices
8000 vertices and 41,154 tetrahedra. Table 7 shows the rrere left behind in the opposite corner. This is similar to

sults of smoothing a highly graded cube mesh with the varitransiating vertices from a uniform mesh from one corner to
ous solvers. another.

In conclusion, the rank ordering of the conjugate gradi-
4.3.1 Local Smoothing ent method varied as a function of time as the graded meshes
were smoothed. However, the rank-ordering of the remain-
The results obtained from this experiment are shown in Figing four optimization solvers was as follows: steepest de-
ure 8. The mesh smoothing results for the graded meshes aseent< feasible-Newton< trust region< gquasi-Newton.
similar to those observed in the affine perturbation case. ThThe difference between the fastest two solvers is approx-
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Algorithm Min Avg Rms Max Std. Dev.
Initial 1.76933 3.01439 3.25715 4.57034 1.233900
Steepest Descent| 1.04097 2.14383 2.23283 5.76333 0.624099
Conjugate Gradienf 1.04098 2.14384 2.23283 5.76326 0.624068
Local Feasible Newton | 1.04098 2.14384 2.23283 5.76313 0.624061
Trust Region 1.04098 2.14384 2.23283 5.76313 0.624061
Quasi-Newton 1.04098 2.14384 2.23283 5.76316 0.624061
Steepest Descent| 1.08081 2.16411 2.24952 5.79640 0.613983
Conjugate Gradienf 1.04130 2.14489 2.23315 5.76358 0.621615
Global Feasible Newton | 1.04098 2.14384 2.23283 5.76313 0.624061
Trust Region 1.04098 2.14384 2.23283 5.76313 0.624061
Quasi-Newton 1.04103 2.14449 2.23300 5.76323 0.622458

Table 7 Mesh quality results obatined from smoothing a cube mesh gvitded elements; 50% of vertices are present in 10% of #eesp

Smoothing

imately 300%, whereas the difference between the fastest Solver Parameter Value
and slowest solvers is approximately 400%. Backtracking parameter | 0.5

Trust region Reduction parameter 0.25
] 9 Initial trust region radius 10
4.3.2 Global Smoothing Maximum trust region radiug 10?°

. . Table 8 The most efficient combination of trust region parameters fo
We saw in the context of local smoothing that the results fogiobal smoothing for the majority of the meshes considered.

graded meshes were similar to those of translated meshes.
This is also true within the global smoothing context. How-
ever in this case, all five methods were competitive. Feasi-

ble Newton outperformed the others, but among the remairpthers. Thus, in this section, we investigate the effect of
ing solvers, there was no clear winner. In some instanceghanging the default parameters that are shown in Table 1
steepest descent or conjugate gradient is the best, whergasattempt to improve the performance of the trust region
in other instances, quasi Newton or trust region end up besplver. In addition, we investigate the sensitivity of thieey
ing the fastest solver. solvers to changes in the default parameter values.

There are some common trends that occurred between For each of the solvers, we changed the default values

the translation and graded meshes experiment. As additionﬁ) determine the ones that resulted in the fastest conver-

grading was introduced, feasible Newton took more 'tera'gence time. We found that the performance of the steep-

tions to _surpass the oth_er solvers. The performance Of_thgstdescent, conjugate gradient, feasible Newton, and-quas
trust region solver was directly related to the extent tockhi Newton solvers were rather insensitive to these changes in
the meshes wgre graded. Highly graded meshes were Oﬁfe parameter values. The plots of objective function ver-
served to deteriorate 'the performance _Of the solver, as t s time were nearly coincident with the correspondingsplot
mpvement of the vertices were constrained by the trust "®5ased on the default parameter values. However, the perfor-
glon. : i . mance of the trust region method was very sensitive to the
Figure 9 shows th? results from Fh|s experiment. Agamparameter changes. In particular, the rankings of the uario
we ObS‘?rY? the fol!owmg rank Orde””g of _the solyers. Dur'solvers were significantly influenced within the context of
ing the initial iterations, the rank ordering is: feasiblewt global smoothing. In the remainder of the section, we pro-
ton< steepest descemconjuggte gr_adlenrt q_uaS|—Nev§/ton vide additional details as to the changes made to the default
< trus_t region. In subsequent iterations, as in the. aﬁ'ne_perf)arameters and how they influenced the trust region solver
turbation case, steepest descent trades places with me]ugperformance.
gradient. Hence the order is: feasible Newtarconjugate

radient< steepest desceat quasi-Newton< trust region. . ,
g P a g )geveral large perturbation test cases. Although this was th

Again, the trust region method is surpasses all solvers e for both local and alobal h thin. it
cept feasible newton as the fastest solver. The differamce jcase for both focal and global mesh Smoothing, It was es-
ecially the case for global smoothing. This is because for

time for converging to an optimal mesh between the fasteﬁI bal h thi Il of the el ¢ h lt
two solvers is approximately 75%. global mesh smoothing, all of the element mesh qualities are

squared and added together to obtain the objective function

Thus, the value of the objective function increases as the
4.4 Effect of Parameter Changes number of mesh elements increases (subject to the quality

of individual elements remaining the same). Since the abjec
As noted in Sections 4.1-3, the trust region solver perfarmetive function is not scaled according to the number of mesh
well on some mesh optimization problems and poorly orelements, the optimization solver needs to take the scafing

Previously, the trust region solver performed poorly for
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Fig. 7 Global Smoothing: Typical results for the affine perturbati
experiment for global mesh smoothing. The results are favathing
the gear meshes with 500,000 elements after all interidioesr were
affinely perturbed. Observe that the scaling of the vertioas is dif-

ferent for each plot.
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Fig. 8 Local Smoothing: A typical result for smoothing a cube mesh

with graded elements; 50% of its vertices are present in 10%he
space.

the objective function into account. However, the initralst
region radius in Mesquite is not chosen based on the prob-
lem scaling. Thus, we performed additional experiments in
which we varied the value of the initial trust region radius
from 1000 to 16 (as shown in Table 8). In addition, we var-
ied the number of inner iterations from 1 to 5 to allow the
trust region to increase or decrease on each iteratione(Not
this was necessary due to the way in which the trust region
solver is coded in Mesquite.)

Figs. 10, 11, and 12 illustrate the resulting performance
of the trust region solver as compared to the performances of
the other solvers for global mesh smoothing in several con-
texts. As shown in Fig. 10, the trust region solver quickly
converged to an optimal mesh after the changes were made
to the trust region solver when used on a randomly-perturbed
distduct mesh. Fig. 11 shows that the trust region solver
smoothed the translated gear mesh quickly when the new
parameters were used. As shown in Fig. 12, the trust region
method smoothed the graded cube mesh faster than the other
methods. These results were selected because they demon-
strate the greatest improvement possible for the trusbregi
solver when these parameters were varied and set equal to
the values in Table 8. In many cases, the performance of the
trust region solver was as good as the performance of the
feasible Newton solver.

5 Conclusions and Future Work

The main results of this study are as follows: (1) the belravio
of the optimization solvers, i.e., their rank ordering,nflu-
enced by the degree of accuracy desired in the solution and
the size of the mesh; (2) most of the time, the gradient-based
local mesh optimization solvers exhibited superior perfor
mance compared to that of the Hessian-based local mesh op-
timization solvers; (3) for global mesh smoothing, the slas

of optimization solver (i.e., gradient or Hessian) - which e



15

Objective Function Objective Function

Objective Function

1068

10°°

o

526 Quasi-Newton

5.7

—6— Steepest Descent

—A—Conjugate Gradient
Quasi-Newton
Trust Region

—+—Feasible Newton

o
=3
®

Time

(a) Low grading

—6— Steepest Descent
—A—Conjugate Gradient

Trust Region
—+—Feasible Newton

Time
(b) Medium grading

—o— Steepest Descent

—+— Conjugate Gradient

—+— Quasi-Newton
Trust Region

—— Feasible Newton

10° 10°
Time

(c) Fairly high grading

Objective Function

—&—Steepest Descent

—A—Conjugate Gradient
Quasi-Newton
Trust Region

—+—Feasible Newton

-2

10° 10° 10*
Time

(d) High Grading
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both axes are on a

logarithmic scale.

x 10
—6— Steepest Descent
) -A- Conjugate Gradient
25 \ Quasi-Newton

c 1 Trust Region
S 9 ', = & - Feasible Newton
’('C) I
g
[ 1-5| '
> '
= "
8 o
FCN
8 ! Y

! \

osf N

- \

1 .-

1 AN

o A AAAAAAAA A AN A AN LA n
0 20 40 60 80 100

Time
Fig. 10 Global Smoothing: Result for smoothing a distduct mesh with
5% of its vertices randomly perturbed. Notice how the perfance
of the trust region method is improved after the default galof the
initial trust region radius and the number of inner iterai@re changed
to those in Table 8. Compare this figure with Fig. 5(c).
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in Table 8. Compare this figure with Fig. 9(d).
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hibited superior performance is context-dependent; () thrank ordering of the solver changes. Figures 13(a) to 13(d)
rank-ordering of the optimization solvers depends on theshow that the choice of the mesh quality metric influenced
amount of random perturbation applied; (5) the rank-orttri the global smoothing results on the gear and foam meshes.
of the local mesh optimization solvers exhibits a definite hi In particular, it influenced the relative ranking of the guas
erarchy on the affine perturbation meshes; (6) feasible NewNewton solver.

ton exhibited superior performance when compared to the

other global mesh optimization solvers on the affine per-
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Fig. 13 Global Smoothing: Results from smoothing the gear and foash®s of various sizes. The choice of mesh quality metrigénties the
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Experiment #| Experiment Local Smoothing Global Smoothing
Fastest Method Fastest Method
4.1 Increasing problem size conjugate gradient steepest descent (inaccurate)
feasible Newton (accurate)
4.2.1 Initial mesh configuration - random perturbatignsteepest descent (small pert.)steepest descent (small pert.)
conjugate gradient (large pert|) conjugate gradient (large pert|)
422 Initial mesh configuration - translation steepest descent feasible Newton
4.3 Graded meshes steepest descent feasible Newton

Table9 Summary of key results from each of the experiments. Noteg$ts from the translation and graded mesh experimeatgeay similar.
‘Inaccurate’ refers to inaccurate smoothing, and 'ac@inafers to accurate smoothing; 'small pert.’ refers to aBperturbation, whereas ’large
pert.’ refers to a large perturbation.
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