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Abstract We characterize the performance of gradient- and
Hessian-based optimization methods for mesh quality im-
provement. In particular, we consider the steepest descent
and Polack-Ribiere conjugate gradient methods which are
gradient based. In the Hessian-based category, we consider
the quasi-Newton, trust region, and feasible Newton meth-
ods. These techniques are used to improve the quality of a
mesh by repositioning the vertices, where the overall mesh
quality is measured by the sum of the squares of individual
elements according to the aspect ratio metric. The effects
of the desired degree of accuracy in the improved mesh,
problem size, initial mesh configuration, and heterogeneity
in element volume on the performance of the optimization
solvers are characterized on a series of tetrahedral meshes.
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1 Introduction

Discretization methods, such as the finite element method,
are commonly used in the solution of partial differential equa-
tions (PDEs). The accuracy of the computed solution to the
PDE depends on the degree of the approximation scheme,
the number of elements in the mesh [1], and the quality of
the mesh [2,3]. More specifically, it is known that as the el-
ement dihedral angles become too large, the discretization
error in the finite element solution increases [4]. In addition,
the stability and convergence of the finite element method is
affected by poor quality elements. It is known that as the an-
gles become too small, the condition number of the element
matrix increases [5].

Recent research has shown the importance of perform-
ing mesh quality improvement before solving PDEs in order
to: (1) improve the condition number of the linear systems
being solved [6], (2) reduce the time to solution [7], and
(3) increase the solution accuracy. Therefore, mesh quality
improvement methods are often used as a post-processing
step in automatic mesh generation. In this paper, we focus
on mesh smoothing methods which relocate mesh vertices,
while preserving mesh topology, in order to improve mesh
quality.

The three major classes of unstructured mesh quality im-
provement methods are as follows: (1) point insertion/deleti-
on methods which refine/coarsen the mesh in order to im-
prove the local length scale of the mesh [8–11]; (2) local re-
connection methods which change the topology of the mesh
through edge or face swapping of a specified set of ver-
tices [11–14], and (3) mesh smoothing methods which re-
locate vertices in order to improve mesh quality while pre-
serving the topology of the mesh [15–17]. For this research,
we focus on mesh quality improvement methods in the third
class.

Despite the large number of papers on mesh smoothing
methods (e.g., [18–21,15–17]), little is known about the rel-
ative merits of using one solver over another in order to
smooth a particular unstructured, finite element mesh. For
example, it is not known in advance which solver will con-
verge to an optimal mesh faster or which solver will yield
a mesh with better quality in a given amount of time. It is
also not known which solver will most aptly handle mesh
perturbations or graded meshes with elements of heteroge-
neous volumes. The answers may likely depend on the con-
text. For example, one solver may find an approximate solu-
tion faster than the others, whereas another solver may im-
prove the quality of meshes with heterogeneous elements
more quickly than its competitors.

To answer the above questions, we use Mesquite [22],
a mesh quality improvement toolkit, to perform a numerical
study comparing the performance of several local and global
mesh quality improvement methods to improve the global
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objective function representing the overall mesh quality.We
investigate the performance of the following gradient-based
methods: steepest descent [23] and Polack-Ribiere conju-
gate gradient [23], and the following Hessian-based meth-
ods: quasi-Newton [23], trust region [23], and feasible New-
ton [24]. The optimization solvers are compared on the ba-
sis of efficiency and ability to smooth several realistic un-
structured tetrahedral finite element meshes to both accu-
rate and inaccurate levels of mesh quality as measured by
the aspect ratio mesh quality metric [25]. We took a “black-
box” approach and used the Mesquite solvers in their na-
tive state and with the default parameters. This approach
was taken since this is how the majority of the practitioners
use Mesquite and other such software packages [26]. Only
Mesquite was employed for this study so that differences
in solver implementations, data structures, and other factors
would not influence the results.

In this paper, we report the results of an initial explo-
ration of the factors stated above to determine the circum-
stances when the various solvers may be preferred over the
others. In an effort to make the number of experiments man-
ageable, we limit the number of free parameters. Hence, we
consider a fixed mesh type and objective function. In partic-
ular, we use unstructured tetrahedral meshes and an objec-
tive function which sums the squared qualities of individ-
ual tetrahedral elements. The free parameters we investigate
are the desired degree of accuracy in the improved mesh,
problem size, initial mesh configuration, and heterogeneity
in element volume.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe the mesh quality improvement problem.
In Section 3, we describe the mesh quality improvement
algorithms as implemented in Mesquite. In Section 4, we
describe our numerical experiments to determine the most
efficient solver in various contexts. Finally, we give some
conclusions and describe our plans for future reasearch in
Section 5.

2 Problem Statement

2.1 Element and Mesh Quality

Let V andE denote the vertices and elements, respectively,
of an unstructured mesh, and let|V| and|E| denote the num-
bers of vertices and elements, respectively. DefineVB and
VI to be the set of boundary and interior mesh vertices. Let
xv ∈ R

n denote the coordinates for vertexv∈V. For the pur-
poses of this paper,n= 3. Denote the collection of all vertex
coordinates byx∈ R

n×|V|. Let ebe an element inE. Finally,
let xe ∈ R

n×|e| the matrix of vertex coordinates fore.
We associate with the mesh a continuous functionq :

R
n×|e| →R to measure the mesh quality as measured by one

or more geometric properties of elements as a function of

their vertex positions. In particular, letq(xe) measure the
quality of elemente. We assume asmaller value ofq(xe)

indicates a better quality element. A specific choice ofq is
an element quality metric. There are various metrics to mea-
sure shape, size, and orientation of elements.

The overall quality of the mesh is a function of the indi-
vidual element qualities. The mesh quality depends on both
the choice of the element quality metricq and the function
used to combine them.

2.2 Aspect Ratio Quality Metric

An important consideration in this study is the choice of
mesh quality metric. In general, we expect that the results
could vary significantly depending on the choice of mesh
quality metric. However, in order to minimize the number
of free parameters, we consider only the aspect ratio quality
metric [6].

Various formulas have been used to compute the aspect
ratio. The aspect ratio definition we employ is the one im-
plemented in Mesquite. In particular, it is the average edge
length divided by the normalized volume. Thus for tetrahe-
dra, the aspect ratio is defined as follows:

(

l21 + l22 + · · ·+ l26
6

)

/

(

vol× 12√
2

)

,

where l i , i = 1,2, . . . ,6 represent the six edge lengths, and
vol represents its volume [27]. The range of values for this
metric is from 1 to∞. The optimal value of the metric is 1.

2.3 Quality Improvement Problem

To improve the overall quality of the mesh, we assemble
the local element qualities as follows:Q = ∑eq(xe)

2, where
Q denotes the overall mesh quality, andq(xe) is the quality
of elemente. We compute anx∗ ∈ R

n×|V| such thatx∗ is a
locally optimal solution to

min
x

Q(x) (1)

subject to the constraint thatxvB = xvB, wherexVB are the
initial boundary vertex coordinates. In addition, we require
that the initial mesh and subsequent meshes to be nonin-
verted. This translates to the constraintdet(A(i)) > 0 for ev-
ery element. In order to satisfy the two constraints, Mesquite
fixes the boundary vertices and explicity checks for mesh in-
version at each iteration. All optimization problems in this
paper are formulated as (1).
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3 Improvement Algorithms

In this paper, we consider the performance of five numerical
optimization methods, namely, the steepest descent, conju-
gate gradient, quasi-Newton, trust-region, and feasible New-
ton methods, as implemented in Mesquite. The steepest de-
scent and conjugate gradient solvers are gradient-based, wh-
ereas the remaining three are Hessian-based, i.e., they em-
ploy both the gradient and Hessian in the step computation.
We describe each method below.

3.1 Steepest Descent Method

The steepest descent method [23] is a line search technique
which takes a step along the directionpk =−∇ f (xk) at each
iteration. In Mesquite the steplength,αk, is chosen to satisfy
the Armijo condition [28], i.e.,

f (xk + αkpk) ≤ f (xk)+c1αk∇ f (xk)
T pk

for some constantc1 ∈ (0,1), which ensures that the step
yields sufficient decrease in the objective function. When
the Armijo condition is not met, the step length is reduced
by a factor, namely the reduction parameter. Also, when the
step results in a tangled mesh, the step length is reduced by
a factor, namely the backtracking parameter.

3.2 Conjugate Gradient Method

The conjugate gradient method [23] is a line search tech-
nique which takes a step in a direction which is a linear com-
bination of the negative gradient at the current iteration and
the previous direction, i.e.,.

pk = −∇ f (xk)+ βkpk−1,

wherep0 = −∇ f (x0). Conjugate gradient methods vary in
their computation ofβk. The Polack-Ribiere conjugate gra-
dient method implemented in Mesquite computes

β PR
k =

∇ f (xk)
T ∇ f (xk)

∇ f (xk−1)T ∇ f (xk−1)
.

Care is taken in the Armijo line search employed by
Mesquite to compute a steplength yielding both a feasible
step (i.e., one which does not result in a tangled mesh) and
an approximate minimum of the objective function along the
line of interest.

3.3 Quasi-Newton Method

Quasi-Newton methods [23] are line search (or trust-region)
algorithms which replace the exact Hessian in Newton’s me-
thod with an approximate Hessian in the computation of the
Newton step. Thus, quasi-Newton methods solveBkpk =

−∇ f (xk), for someBk ≈ ∇2 f (xk) at each iteration in an at-
tempt to find a stationary point, i.e., a point where∇ f (x) =

0. The quasi-Newton implementation in Mesquite [22] is a
line search that approximates the Hessian using the gradient
and true values of the diagonal blocks of the Hessian.

3.4 Trust-Region Method

Trust-region methods [23] are generalizations of line search
algorithms in that they allow the optimization algorithm to
take steps in any direction provided that the steps are no
longer than a maximum steplength. Steps are computed by
minimizing a quadratic model of the function over the trust
region using a standard backtracking Armijo linesearch. A
block diagonal preconditioner is employed in Mesquite; the
preconditionergets modified if the diagonal block is not pos-
itive definite. The trust region is expanded or contracted at
each iteration depending upon how reflective the model is of
the objective function at the given iteration.

3.5 Feasible Newton Method

The feasible Newton method [24] is a specialized method
for mesh quality improvement. In particular, it uses an inex-
act Newton method [29,23] with an Armijo line search [28]
to determine the direction in which to move the vertex coor-
dinates. At each iteration, the algorithm solves the Newton
equations via a conjugate gradient method with a block Ja-
cobi preconditioner [29]. The solver also obtains good local-
ity of reference by vertex and element reordering steps per-
formed as a preprocessing step using a breadth-first search.

4 Numerical Experiments

In this section, we report results from a set of three nu-
merical experiments designed to determine when each of
the five solvers are preferred according to their quality im-
provement as a function of time. We consider both local and
global mesh quality improvement methods separately. All
solvers are implemented in Mesquite 2.0, the Mesh Quality
Improvement Toolkit [22], and were run with their default
parameter values (as shown in Table 1). We solve the opti-
mization problem (1) on a series of tetrahedral meshes gen-
erated with the CUBIT [30] and Tetgen [31] mesh genera-
tion packages. We consider the following geometries: distdu-
ct, gear [26], and cube. In addition, we consider meshes on
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Solver Parameter Value

Steepest descent
Backtracking parameter 0.2

Reduction parameter 0.5

Conjugate gradient
Backtracking parameter 0.2

Reduction parameter 0.5
Quasi-Newton and Backtracking parameter 0.5
Feasible Newton Reduction parameter 0.5

Trust region

Backtracking parameter 0.5
Reduction parameter 0.25

Initial trust region radius 1000
Maximum trust region radius 1020

Table 1 Default parameter values for the various solvers as imple-
mented in Mesquite.

the foam geometry in our Conclusions and Future Work sec-
tion. Sample meshes are shown in Figure 1. In the first three
experiments, we study the effects of three different problem
parameters on the improvement of the objective function.
The problem parameters of interest are: the problem size,
the initial mesh configuration, and the grading of mesh ele-
ments. Table 2 shows the the parameters that are held con-
stant and those that are varied for each experiment.

For each of the three parameters studied, we create a set
of test meshes in which we isolate the parameter of interest
and allow it to vary; these experiments were inspired by [32,
33]. Particular attention was paid to ensure that the remain-
ing parameters were held as constant as possible. Due to
space limitations, we have omitted most of the tables of ini-
tial mesh quality statistics which demonstrate this.

Because the objective functions used for our experiments
are nonconvex, the optimization techniques may converge to
different local minima. To ensure that this did not effect our
study, we verified for each experiment whether or not the
solvers converge to the same optimal mesh by comparing
vertex coordinates of the optimal meshes. Unless indicated
otherwise, the optimization methods converged to the same
optimal mesh.

In the following subsections, we describe the problem
characteristics of the test meshes in terms of the numbers
of vertices and elements, initial mesh quality (according to
the aspect ratio quality metric), and parameter values of in-
terest (such as the magnitude of the perturbation). We then
specify performance results for the five optimization solvers.
In all cases, the solution is considered optimal when it has
converged to six significant digits. The majority of our ex-
periments were run for 300 seconds before they were termi-
nated in order to obtain the results; this was an appropriate
length of time for the experiments in that most meshes with
up to 500,000 elements can be smoothed in under 300 sec-
onds using the various solvers. When the fastest solvers were
employed, meshes with 500,000 elements were smoothed in
approximately 100 seconds. For the first experiment which
focuses on problem size scaling, we also smoothed meshes

containing approximately 1 million and 3 million elements.
These meshes took approximately 600 and 1800 seconds to
converge to an optimal mesh with the fastest solvers. Hence,
we ran this experiment for 3000 seconds before termination
to ensure that all solvers had enough time to converge to
the optimal mesh in the various contexts. The machine em-
ployed for this study is equipped with an Intel P4 processor
(3.33 GHz). The 32-bit machine has 4GB of RAM, a 2MB
L2 cache, and runs Linux.

4.1 Increasing problem size

To test the effect that increasing the problem size has on
optimization solver performance, we used CUBIT to gener-
ate a series of tetrahedral meshes with an increasing number
of vertices while maintaining uniform mesh quality. A se-
ries of meshes were generated for the distduct and gear ge-
ometries shown in Figures 1(a) and 1(b); for each series of
meshes, the number of elements is increased from approxi-
mately 5,000 to 3,000,000 elements.

In the creation of the test meshes, care was taken to en-
sure that, for each mesh geometry, we achieve our goal of
maintaining roughly uniform element size and mesh qual-
ity distributions. Table 3 shows the initial qualities of the
distduct meshes. It also shows the final mesh qualities after
the conjugate gradient and feasible Newton methods were
used to perform local and global mesh quality improvement,
respectively, on each mesh.

Table 4 shows the times and numbers of iterations re-
quired for the local and global mesh quality improvement
solvers described above to converge to the optimal meshes
on the distduct geometry. Such improvements in mesh qual-
ity were typical of the results seen in this experiment.

Besides determining the most efficient solver for a given
context, we also determine the order of convergence for each
solver as a function of problem size for this experiment. The
order of convergence,α, is given by the following formula:

t = k∗nα ,

wheret is the time to convergence,n is the number of mesh
vertices, andk > 0 is a constant. In order to determineα, a
least squares fit can be computed by taking the logarithm of
both sides.

We now summarize the results of performing local and
global mesh smoothing for this experiment.

4.1.1 Local Smoothing

For each mesh geometry, when the aspect ratio mesh qual-
ity metric was employed, the time to convergence required
increased linearly with an increase in problem size. Figure2
illustrates this trend for the use of the various solvers on the
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Experiment # Experiment name Parameters held constant Parameters varied
4.1 Increasing problem size average mesh quality mesh size
4.2.1 Initial mesh configuration - random perturbation mesh size number of vertices perturbed
4.2.2 Initial mesh configuration - translation mesh size magnitude of vertex translation
4.3 Graded meshes mesh size magnitude of grading of elements

Table 2 Parameters that were held constant and varied in each of the experiments. For experiment 4.1, unperturbed CUBIT-generated gear and
distduct meshes were used. We verified that the average mesh quality was approximately the same for these meshes. For experiments 4.2.1 and
4.2.2, perturbed versions of these meshes were employed. Tetgen-generated cube meshes were employed for experiment 4.3.

(a) Gear mesh (b) Distduct mesh (c) Cube mesh (d) Foam mesh

Fig. 1 Sample meshes on the gear, distduct, and cube geometries. Geometries (a), (b), and (d) were provided to us by Dr. Patrick Knupp of Sandia
National Laboratories [26].

distduct geometry. The behavior of the solvers was identi-
cal on the gear geometry; thus, additional figures have been
omitted. It was also verified that the solvers converged to the
same optimal meshes for a given geometry. This is expected
as the number of iterations required to converge is more or
less a constant, and the time per iteration increases linearly
with the number of elements used for local mesh smooth-
ing. This is because the tetrahedral meshes are generated us-
ing CUBIT and hence are already close to optimal. There
are instances where a deviation from linear scaling is seen
when smoothing larger meshes. This is because they took
one to two additional iterations to attain the desired quality.
By computing the least squares fit of the data, we found that
the value ofα for local smoothing is very close to 1 for fully-
converged meshes. Thus, we conclude that local smoothing
scales linearly with the mesh size.

We now examine the behavior of the various solvers on
the distduct meshes. For engineering applications, a highly-
accurate solution is not often needed or even desired. Thus,
we consider partially-converged as well as fully-converged
solutions for minimizing (1). We define a fully-converged
solution to be one which is accurate to 6 digits. For each
solver, we consider smoothing with 85%, 90%, and 100%-
converged solutions; the results are shown in Figure 2. These
percentages specify the amount of mesh smoothing perform-
ed and is defined as

x =
Qi −Qx

Qi −Qconv
,

wherex is the percentage of smoothing which has been com-
pleted,Qi is the initial value of the objective function,Qx is
the value of the objective function afterx% of smoothing,

and Qconv is the value of objective function for the fully-
convergedmesh. Note that although inaccurate mesh smooth-
ing can be performed, in order to determine the percentage
of improvement,Qconv must be determined through an ini-
tial run of accurate mesh smoothing, i.e., it is not known
apriori. We chose 85% and 90% smoothing for inaccurate
smoothing because the optimization methods are able to im-
prove the mesh quality by the desired amount in just 2 or 3
iterations.

In all the cases, i.e., for the 85%−, 90%−, and 100%−
converged solutions, the five optimization solvers converged
towards the same optimal mesh. For the 85%−converged
solutions, feasible Newton is the fastest method to reach an
optimal solution (see Figure 2(a)); few iterations were re-
quired since the initial CUBIT-generated meshes were of
fairly good quality. Feasible Newton was the quickest method
since it took fewer iterations than the other methods. Al-
though each iteration took a greater amount of time than for
the other solvers, the amount of time to convergence was
less than that required by the other solvers. The ranking of
all solvers in order of fastest to slowest on the largest mesh
is: conjugate gradient< steepest descent< feasible New-
ton < trust region< quasi-Newton. For the small meshes,
the rank-ordering is: conjugate gradient< feasible New-
ton < steepest descent< trust region< quasi-Newton. In
general, the gradient-based solvers (i.e, steepest descent and
conjugate gradient) performed better than the Hessian-based
solvers (trust region and quasi-Newton) due to their lower
computational complexity. As the number of mesh elements
increased to 1 million and beyond, the gap between the steep-
est descent and other solvers increased. Clearly the rank-
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Distduct Mesh
Smoothing

Mesh Quality (Aspect Ratio)
# Vertices # Elements min avg rms max std. dev.

1,262 5,150
Initial 1.00557 1.33342 1.35118 2.71287 0.218363
Final (local) 1.00077 1.27587 1.28932 2.83607 0.185684
Final (global) 1.00077 1.27587 1.28932 2.83604 0.185686

2,347 10,181
Initial 1.00156 1.31327 1.33023 5.23155 0.211758
Final (local) 1.00015 1.20092 1.21025 10.31880 0.150045
Final (global) 1.00315 1.24561 1.25762 4.60388 0.173392

5,292 24,860
Initial 1.00146 1.30004 1.31688 6.81820 0.209909
Final (local) 1.00281 1.22567 1.23718 6.81820 0.168317
Final (global) 1.00280 1.22567 1.23717 6.81820 0.168334

10,326 50,649
Initial 1.00282 1.28901 1.30397 7.84040 0.196944
Final (local) 1.00110 1.21313 1.22273 7.84040 0.152960
Final (global) 1.00111 1.21310 1.22271 7.84040 0.152984

14,858 74,641
Initial 1.00033 1.28333 1.29898 9.06301 0.201012
Final (local) 1.00054 1.20605 1.21582 9.06301 0.153753
Final (global) 1.00063 1.20595 1.21572 9.06301 0.153828

19,602 99,895
Initial 1.00070 1.28014 1.29531 10.3188 0.197718
Final (local) 1.00065 1.21742 1.22755 4.86240 0.157424
Final (global) 1.00009 1.20054 1.20991 10.31880 0.150259

33,128 1,72,479
Initial 1.00111 1.27886 1.29358 11.91700 0.194551
Final (local) 1.00025 1.20569 1.21472 3.44530 0.147858
Final (global) 1.00023 1.19746 1.20601 11.91700 0.143376

47,361 249,975
Initial 1.00090 1.27189 1.28648 13.20510 0.193164
Final (local) 1.00008 1.19900 1.20730 3.47083 0.141801
Final (global) 1.00035 1.22353 1.23745 6.43000 0.065702

64,685 345,114
Initial 1.00087 1.27160 1.28636 14.71870 0.194342
Final (local) 1.00038 1.19077 1.19900 13.36920 0.140402
Final (global) 1.00027 1.18908 1.19737 13.36820 0.140705

80,025 429,578
Initial 1.00036 1.27132 1.28586 17.51110 0.192819
Final (local) 1.00014 1.19101 1.19924 17.51110 0.140236
Final (global) 1.00014 1.18853 1.19679 17.51110 0.140397

92,316 498,151
Initial 1.00009 1.27055 1.28513 18.55920 0.193054
Final (local) 1.00004 1.18949 1.19770 18.55920 0.139968
Final (global) 1.00009 1.18757 1.19580 18.55920 0.140090

184,006 995,308
Initial 1.00014 1.27476 1.28717 5.56563 0.178268
Final (local) 1.00010 1.20567 1.21391 2.76560 0.141226
Final (global) 1.00009 1.20567 1.21392 2.76551 0.141230

532,789 2,951,272
Initial 1.00004 1.24995 1.26111 3.53242 0.167390
Final (local) 1.00003 1.19667 1.20448 3.00381 0.136930
Final (global) 1.00004 1.19646 1.20428 2.96445 0.136953

Table 3 Initial and final mesh quality after smoothing the distduct meshes with the conjugate gradient method for local smoothing and the feasible
Newton method for global smoothing. Results from differentsolvers were chosen for the local and global smoothing contexts, as these two methods
represent the fastest solvers in the two contexts, respectively.

(a) 85%-converged solution (b) 90%-converged solution (c) 100%-converged solution

Fig. 2 Local Smoothing: Smoothing of the gear meshes to various convergence levels: (a) 85%-converged solution; (b) 90%-converged solution;
(c) 100%-converged solution.
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ordering of the solvers depends on the mesh size as noted
above.

In the majority of the 90%-converged solution cases (see
Figure 2(b)), the conjugate gradient algorithm reached con-
vergence faster than the other methods. This was followed
by the steepest descent, feasible Newton, trust region, and
quasi-Newton methods, respectively. This ordering is dif-
ferent than that which was obtained for the 85% case. Be-
cause local mesh smoothing was performed, only one ver-
tex in the mesh is moved at a time. The steepest descent
and conjugate gradient methods use only the gradient of the
objective function to move a vertex to its optimal location.
The conjugate gradient method is superior to the steepest
descent method since it uses gradient history to determine
the optimal vertex position. The remaining methods also use
the Hessian of the objective function to move wach vertex.
The calculation of the Hessian adds computational expense,
making the Hessian-based methods comparatively slower.
However, Hessians may effect local mesh smoothing results
less than global mesh smoothing results where the Hessian
matrices are much larger. The difference between the fastest
two solvers is approximately 16%, whereas the difference
between the fastest and the slowest solvers is approximately
66%.

In the majority of the 100%-convergedsolution case (see
Figure 2(c)), the conjugate gradient algorithm was the fastest
to reach convegence for smaller meshes; however, the steep-
est descent method proved to be faster for larger meshes.
This is due to the increase in memory which is required
for larger meshes. Eventually the increased requirements on
the performance of the cache may slow down the conjugate
gradient algorithm relative to the steepest descent algorithm
since it must store and access an additional vector. For ex-
ample, for the distduct mesh with 500,000 elements and ap-
proximately 100,000 vertices, each additional vector has an
approximate length of 300,000. Since each component of
the vector consumes four bytes of memory, storing one ad-
ditional vector corresponds to a 1.1MB increase in memory.
In addition, the number of iterations remained the same for
all solvers. This is because we are moving only one vertex
at a time. All of the solvers move the vertex in almost the
same direction and magnitude. Hence, the additional com-
plexity and accuracy is not necessary in the context of local
smoothing. The difference between the fastest two solvers
is approximately 125%, whereas the difference between the
fastest and the slowest solvers is approximately 225%.

In conclusion, the behavior of the optimization solvers is
influenced by the degree of accuracy desired in the solution
and the size of the mesh. Most of the time, the gradient-
based optimization solvers exhibited superior performance
to that of the Hessian-based solvers.

4.1.2 Global Smoothing

There are a few differences between the results from the
local and global smoothing contexts. Figure 3 shows that
the method scales superlinearly with respect to the problem
size for all the solvers except the trust region method. The
value of α for the least squares fit was close to 1.2. This
can be attributed to the inherent computational complexity
of the solvers. As the number of unknowns increases, the
solvers scale superlinearly. In global smoothing, the num-
ber of unknown variables is proportional to the number of
interior vertices in the mesh. The trust region solver is an
exception to this trend as the movement of the vertices is
constrained by the trust region. Additional trust-region ex-
periments were performed which determined that as the ini-
tial trust region radius was increased, the convergence of
the trust region solver to the optimal mesh was significantly
faster. This demonstrates that the trust region radius is limit-
ing the progress of the optimization method, and, hence, the
solver takes smaller steps toward the optimal mesh resulting
in linear scaling of the method.

In Figure 3, global mesh smoothing results for smooth-
ing a gear mesh are shown; such results are typical for global
mesh smoothing. As in the local case, we examine the nature
of solvers at various amounts of smoothing. When only 85%
smoothing is required, the rank ordering of solvers from
fastest to slowest is steepest descent< conjugate gradient<
feasible Newton< quasi-Newton< trust region. Typically,
we see that the fesible Newton method, although slow in
the begining, ends up being the fastest solver closer to con-
vergence. This can be seen in the plots for 90% smoothing
(see Figure 3(b). The rank ordering remains the same ex-
cept for feasible Newton which emerges as the fastest solver
in almost all cases. The feasible Newton method uses the
Hessian to compute the direction. Although it is more com-
putationally complex than the gradient-based methods, it is
also more accurate. Despite the fact that each iteration takes
a greater amount of time, only a few iterations are necessary
for convergence. Hence the total amount of time required to
convergence is lower than that of the gradient-based meth-
ods. The rank ordering in this case is feasible Newton<

steepest descent< conjugate gradient< quasi-Newton<
trust region. When 100% smoothing is required, feasible
Newton continues to be the fastest solver. The difference be-
tween the fastest two solvers is approximately 150%, whereas
the difference between the fastest and slowest solvers is ap-
proximately 2500%. Figure 3 illustrates that the trust region
method takes significantly longer than the other four solvers
to converge to the optimal mesh.
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Vertices Elements Smoothing
T85 T90 T100

Time Iterations Time Iterations Time Iterations

1,262 5,150
Local 0.02 2 0.03 3 0.03 3
Global 0.03 2 (14) 0.07 3 (22) 0.07 3 (22)

2,347 10,181
Local 0.04 2 0.06 3 0.06 3
Global 0.10 2 (25) 0.20 3 (30) 0.20 3 (30)

5,292 24,860
Local 0.13 2 0.19 3 0.41 5
Global 0.30 2(19) 0.60 3 (29) 0.60 3 (29)

10,326 50,649
Local 0.27 2 0.27 3 0.86 5
Global 0.65 2 (25) 1.30 3 (37) 1.30 3 (37)

14,858 74,641
Local 0.77 3 0.77 3 1.17 5
Global 0.85 2 (26) 1.70 3 (39) 1.70 3 (39)

19,602 99,895
Local 1.23 3 1.23 3 1.88 5
Global 11.40 2 (29) 2.77 3 (43) 2.77 3 (43)

33,128 172,479
Local 2.16 3 2.16 3 3.31 5
Global 2.52 2 (36) 5.02 3 (52) 5.02 3 (52)

47,361 249,975
Local 3.30 3 3.30 3 5.05 5
Global 3.92 2 (40) 7.77 3 (61) 7.77 3(61)

64,685 345,114
Local 4.56 3 4.56 3 9.47 5
Global 5.32 2 (23) 10.57 3 (35) 10.57 3 (35)

80,025 429,578
Local 6.19 3 6.19 3 12.93 6
Global 6.98 2 (23) 13.84 3 (30) 13.84 3 (30)

92,316 498,151
Local 6.92 3 7.98 4 14.35 6
Global 8.05 2 (21) 15.96 3 (31) 15.96 3 (31)

184,006 995,308
Local 46.17 3 14.91 3 38.94 6
Global 121.25 8 (61) 155.63 10 (72) 172.17 11 (79)

532,789 2,951,272
Local 46.17 3 70.42 4 221.86 10
Global 111.72 3 (31) 111.72 3 (31) 165.48 4 (42)

Table 4 Timing results for the fastest local (i.e., conjugate gradient) and global (feasible Newton) mesh smoothing methods for inaccurate and
accurate mesh smoothing. The table shows the time taken to smooth the distduct meshes for the respective solvers.T85, T90, andT100 are the times
taken to achieve 85%, 90%, and 100% of the locally optimal solution. The number of iterations represent the number of outer iterations for each
solver. The numbers in parentheses represent the total number of linear conjugate gradient iterations (i.e., the number of inner iterations) for the
feasible Newton solver. For local smoothing using the conjugate gradient method, the number of inner iterations is always one and hence is not
shown.

(a) 85% Smoothing (b) 90% Smoothing (c) 100% Smoothing

Fig. 3 Global Smoothing: Smoothing of the gear meshes to various convergence levels: (a) 85%-converged solution; (b) 90%-converged solution;
(c) 100%-converged solution.

4.2 Initial mesh configuration

In order to investigate the effect that the initial mesh con-
figuration (as measured by the distance from the optimal
mesh) had on the performance of the five solvers, a series
of perturbed meshes, based on the 500,000 element distduct
and gear meshes from the previous experiment, were de-

signed. In particular, the meshes were completely smoothed
initially. Then, random or systematic perturbations were ap-
plied to the interior vertices of the optimal mesh. For all ex-
periments, the perturbations were applied to all interior ver-
tices and to randomly chosen subsets of vertices of size 5%,
10%, 25%, and 100% of the number of interior vertices. The
formulas for the perturbations are as follows:
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Random: xv = xv + αvr, wherer is a vector of random
numbers generated using the rand function, andαv is a mul-
tiplicative factor controlling the amount of perturbation. For
our experiments, we chose a random value forαv; the result-
ing meshes were checked to verify that they were of poor
quality.αv was chosen such that it did not tangle the mesh.
If the random value generated forαv was too large, it was
gradually decreased until the mesh was untangles.αv values
range from 0.001 to 1.55.

Translational: xv = xv + αs, wheres is a direction vec-
tor giving the coordinates to be shifted, andα is a multi-
plicative factor controlling the degree of perturbation. In this
case, we consider the shift withs= [1 0 0]T . In addition,α
values ranging from 0.016 to 1.52 were used to maximize
the amount of perturbation a particular mesh could with-
stand before the elements became inverted. Thus, the spe-
cific value ofα chosen for a mesh depended upon the size
of the elements.

4.2.1 Random Perturbations

For this experiment, the vertices of the meshes to be were
perturbed from the CUBIT-generated meshes. Thus, the ini-
tial meshes are of poorer quality. Starting with these poor
quality meshes, i.e., far away from an optimal mesh, had a
very significant impact on the performance of the solvers.
Table 5 shows the results of smoothing a highly perturbed
disduct mesh with the various solvers.

4.2.1.1 Local smoothing

The results obtained here differ somewhat from the results
obtained from the scalability experiment above. They are
similar in that the gradient-based methods performed bet-
ter than the Hessian-based methods. This can be attributed
to the greater computational expense of computing the Hes-
sian matrices for a smaller payoff in terms of a decrease
in the objective function. The main difference here is that,
in almost all cases, the steepest descent algorithm performs
better than the conjugate gradient algorithm. However, the
conjugate gradient method performs better than the steepest
descent method when the quality of the input mesh is rea-
sonably good.

When poor quality initial meshes are smoothed, the ini-
tial movement of the vertices is large. However, once sev-
eral iterations of smoothing have been performed, the vertex
movement is small and can be obtained efficiently obtained
through the use of Hessian-based solvers. The gradient-based
solvers are less accuarate, and hence more iterations are re-
quired to converge to the optimal mesh. As a result, they
usually take more time than Hessian-based solvers do to
converge. In most cases, because the perturbation was large,
vertices had to move by large distance. As a result, the per-
formance of steepest descent was the best (which was also

due to the lower complexity of the algorithm). When the per-
turbations are small, the fine-scale smoothing requirements
imply that the Hessian-based methods will converge faster.
This was indeed seen in the small perturbation case. The
conjugate gradient method’s performance was better than
that of steepest descent in such cases. However, the Hessian-
based methods were slower because of their inherent com-
putational complexity. Figure 4(a) shows typical objective
function versus time plots for our experiments.

The behavior of the trust region method was distinctly
different than that of the other algorithms. For small per-
turbations from the optimal mesh, the behavior of the trust
region method almost coincided with that of the other meth-
ods in the quality versus time plots. Figure 4(b) below illus-
trates an example of such behavior. The difference between
the fastest two solvers is approximately 12%, whereas the
difference between the fastest and slowest solvers is approx-
imately 60%.

However, when the perturbations were large, the trust
region method was much slower than the other methods in
terms of time to convergence. This behavior is due to the
constraint of the trust region bounding the maximum accept-
able step length at each iteration. For large perturbations, we
ran the steepest descent method for longer and confirmed
that it does not converge to the same optimal mesh as the
other methods. This is a nonconvex optimization problem;
an optimization method may converge to any one of the lo-
cal minima. In particular, it converged to an optimal mesh
with a higher objective function value than the meshes ob-
tained when other algorithms were used. The plot shown in
Figure 4(c) is a good example of the poor performance of the
trust region and steepest descent methods in the large pertur-
bation case. The difference between the fastest two solvers
is approximately 32%, whereas the difference between the
fastest and slowest solvers is approximately 90%.

In conclusion, the rank-orderingof the optimization solv-
ers depends upon the amount of random perturbations ap-
plied to the initial meshes in the context of local mesh smoot-
hing. In particular, all five methods performed competitively
for the small perturbation case; however, the steepest de-
scent and conjugate gradient methods performed the best. In
the case of medium-sized perturbations, the steepest descent
method performed the best, and the trust region method per-
formed very slowly. The other three methods exhibited aver-
age performance. Finally, for the case of large perturbations,
the trust region method is very slow to converge, and the
steepest descent method may converge to a mesh of lesser
quality.

4.2.1.2 Global smoothing

The results from global smoothing are similar to the those
from local smoothing in that they can be classified into three
main categories: small, medium, and large perturbation. In
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(a) Small perturbations (b) Medium perturbations (c) Large perturbations

Fig. 4 Local Smoothing: Typical results from the random perturbation experiment. Results were obtained by smoothing the 500,000 element
meshes. (a) Gear mesh with 10% of its vertices perturbed (Small perturbations); (b) Distduct mesh with 10% of its vertices perturbed (Medium
perturbations); (c) Distduct mesh with 5% of its vertices perturbed. Observe that the scaling of the vertical axis is different in each plot (Large
perturbations).

Smoothing
Algorithm min avg rms max std. dev.

Initial 1.00021 1.95294 244.23100 162,866.0000 244.223000

Local

Steepest Descent* 1.00009 1.51455 230.75800 162,866.0000 230.753000
Conjugate Gradient 1.00010 1.18758 1.19581 18.5592 0.140066

Feasible Newton 1.00014 1.18759 1.19582 18.5592 0.140035
Trust Region** 1.00018 1.69459 239.91600 161,087.0000 239.910000
Quasi-Newton 1.00018 1.18761 1.19583 18.5592 0.140006

Global

Steepest Descent* 1.00021 1.95294 244.23100 162,866.0000 244.223000
Conjugate Gradient 1.00018 1.18773 1.19594 18.5592 0.139916

Feasible Newton 1.00009 1.18757 1.19580 18.5592 0.140090
Trust Region** 1.00021 1.95078 243.57000 162,440.0000 243.562000
Quasi-Newton 1.00019 1.18796 1.19622 18.5592 0.140374

Table 5 Mesh quality results obtained by smoothing a 500,000 vertexdistduct mesh with 5% of its vertices perturbed by a large amount. A ’*’
denotes convergence to a bad quality mesh, and a ’**’ denotesthat the solver did not converge in 300 seconds.

(a) Small perturbations (b) Medium perturbations (c) Large perturbations

Fig. 5 Global Smoothing: Typical results from the random perturbation experiment. Results were obtained by smoothing the 500,000 element
meshes. (a) Gear mesh with 10% of its vertices perturbed (Small perturbations); (b) Distduct mesh with 10% of its vertices perturbed (Medium
perturbations); (c) Distduct mesh with 5% of its vertices perturbed. Observe that the scaling of the vertical axis is different in each plot (Large
perturbations).
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each case, results similar to those from local smoothing were
obtained.

Typical results for global smoothing of the randomly
perturbed meshes are shown in Figure 5. In comparing these
results with those for local smoothing (Figure 5), we see
that the results are very similar except for couple of differ-
ences. First, the trust region solver converges to the solution
very slowly even in the case of a small perturbation. It can
be deduced from the plots that the trust region radius restric-
tion has a greater impact when performing global smoothing
than when performing local smoothing. This is due to the
increased impact that scaling of the objective function has
on the performance of the trust region solver. The second
difference is that the steepest descent method converges to
a different minimum when global smoothing is performed.
We ran the trust region solver on all meshes and verified that
solver converges to same optimal meshes as did the other
solvers.

4.2.2 Translation

In order to determine the effect that translation had on the
performance of the optimization solvers, the affine (trans-
lation) perturbation shown above was applied to all interior
mesh vertices once the appropriate initial 500,000 element
distduct and gear meshes were smoothed. Refer to Table 6
for results of smoothing highly translated disduct mesh with
various solvers.

4.2.2.1 Local smoothing

The qualities of the interior elements of the perturbed meshes
were still fairly good since the transformation applied was
affine; however, the qualities of the boundary elements was
much worse. The initial meshes were created by applying as
large an affine perturbation as possible before mesh inver-
sion occurred, thus generating meshes rather far away from
the optimal ones. This behavior of the solvers is observed
in the plots shown in Figure 6. The time taken per nonlin-
ear iteration varies with the computational complexity of the
algorithm. However, the objective function values (for the
various solvers) remain rather similar over the first few it-
erations. Eventually, more vertex movement occurs, and the
objective function values become less predictable. After 20
iterations, the objective function values are completely dif-
ferent for the various solvers. However, all solvers converge
to the same optimal mesh.

The steepest descent method, being the least computa-
tionally expensive method, spends less time per iteration and
converges to an optimal mesh fairly quickly. The ranking of
the optimization solvers for the affine perturbation meshesis
as follows: steepest descent< conjugate gradient< feasible

Newton< trust region< quasi-Newton. This rank ordering
demonstrates that methods for which every iteration is faster
converge before methods for which each iteration is slower.
The difference between the fastest two solvers is approx-
imately 100%, whereas the difference between the fastest
and the slowest solvers is approximately 400%.

In conclusion, the optimization solvers exhibited a dis-
tinct rank ordering. In particular, the rank-ordering was as
follows: steepest descent< conjugate gradient< feasible
Newton< trust region< quasi-Newton.

4.2.2.2 Global smoothing

For the translation meshes, the global smoothing results are
completely different from the local smoothing results. In
the local smoothing context, we saw that there was a def-
inite hierarchy in the rank ordering of the solvers. In the
global smoothing context, the hierarchy is not present. In-
stead, we see that feasible Newton eventually overtakes the
other solvers and becomes the fastest solver. For larger trans-
lations, it takes longer before the feasible Newton method
overtakes the other methods. The conjugate gradient and
the steepest descent algorithms are almost identical in per-
formance most of the time. The performance of the quasi-
Newton and the trust region methods are in are general not
as good the performances of the other methods.

Figure 7 shows the results that were explained above.
You can clearly see the absence of a fixed hierarchy. Instead,
during the initial iterations, the rank ordering of the solvers
is: feasible Newton< steepest descent< conjugate gradi-
ent< quasi-Newton< trust region. In subsequent iterations,
steepest descent trades places with conjugate gradient, and
the order becomes: feasible Newton< conjugate gradient<
steepest descent< quasi-Newton< trust region.

4.3 Graded Meshes

Our second test set was generated using Tetgen in order to
test the effect that grading of mesh elements has on the per-
formance of the five optimization solvers, as graded meshes
have a larger distribution of element mesh qualities. For this
experiment, three sets of structured tetrahedral meshes were
generated which contain the same numbers of vertices and
elements but whose elements have different volumes. The
meshes were constructed on a cube domain having a side
length of 20 units. In the first set of meshes, the vertices
were evenly distributed in two of the three axes, but, for
the other axis, half of the vertices were placed in first 10%,
20%, 30%, or 40% of the volume. Two additional sets of
test meshes were created with the density of vertices vary-
ing in two and three directions instead of variation in only
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(a) Distduct mesh (smoothing translated
vertices)

(b) Gear mesh (smoothing translated ver-
tices)

Fig. 6 Local Smoothing: Typical results for the affine perturbation experiment for local mesh smoothing. The results are for smoothing the distduct
and gear meshes with 500,000 elements after all interior vertices were affinely perturbed.

Smoothing
Algorithm min avg rms max std. dev.

Initial 1.00024 1.22465 1.24143 41.6410 0.203427

Local

Steepest Descent 1.00008 1.18757 1.19580 18.5592 0.140091
Conjugate Gradient 1.00009 1.18759 1.19583 18.5592 0.140108

Feasible Newton 1.00010 1.18769 1.19593 18.5592 0.140153
Trust Region 1.00012 1.18782 1.19606 18.5592 0.140206

Quasi-Newton 1.00012 1.18783 1.19608 18.5592 0.140213

Global

Steepest Descent 1.00024 1.18970 1.19802 18.5592 0.140887
Conjugate Gradient 1.00029 1.18872 1.19700 18.5592 0.140555

Feasible Newton 1.00009 1.18757 1.19580 18.5592 0.140090
Trust Region 1.00016 1.19787 1.20645 18.5592 0.143625

Quasi-Newton 1.00024 1.19038 1.19873 18.5592 0.141267

Table 6 Typical mesh quality results obatined from smoothing a 500,000 vertex translated distduct mesh with the vertices translated the maximum
distance possible without mesh tangling.

one direction. After the point clouds were created, Tetgen
was used to create a volume mesh of the cube domain. The
resulting Delaunay meshes, which were created without us-
ing any quality control features, were used for the graded
mesh experiment. Figure 1(c) shows an example of a mesh
created with half of its vertices occupying 30% of the space
in all three axes and distributed uniformly throughout the
rest of the cube volume.

This mesh generation technique results in a structured
mesh with heterogeneous elements in terms of volume. In
particular, approximately one-fourth, one-half, and one-fou-
rth of the mesh elements can be considered small, medium,
and large, respectively. All of the meshes generated contain
8000 vertices and 41,154 tetrahedra. Table 7 shows the re-
sults of smoothing a highly graded cube mesh with the vari-
ous solvers.

4.3.1 Local Smoothing

The results obtained from this experiment are shown in Fig-
ure 8. The mesh smoothing results for the graded meshes are
similar to those observed in the affine perturbation case. The

main difference between the two experiments is the behav-
ior of the conjugate gradient method. For the graded meshes,
there is a definite hierarchy among the other four solvers;
the rank-ordering is as follows: steepest descent< feasible
Newton< trust region< quasi-Newton. However, the rank
of the conjugate gradient method with respect to the other
solvers varies as a function of time.

The similarity in results from local smoothing of the
translated and graded meshes is seen because graded meshes
we generated are similar to the translated meshes. To cre-
ate a translated mesh, all the vertices were moved a certain
distance in a fixed direction. To create a graded mesh, half
of the vertices were moved to a corner, and fewer vertices
were left behind in the opposite corner. This is similar to
translating vertices from a uniform mesh from one corner to
another.

In conclusion, the rank ordering of the conjugate gradi-
ent method varied as a function of time as the graded meshes
were smoothed. However, the rank-ordering of the remain-
ing four optimization solvers was as follows: steepest de-
scent< feasible-Newton< trust region< quasi-Newton.
The difference between the fastest two solvers is approx-
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Smoothing
Algorithm Min Avg Rms Max Std. Dev.

Initial 1.76933 3.01439 3.25715 4.57034 1.233900

Local

Steepest Descent 1.04097 2.14383 2.23283 5.76333 0.624099
Conjugate Gradient 1.04098 2.14384 2.23283 5.76326 0.624068

Feasible Newton 1.04098 2.14384 2.23283 5.76313 0.624061
Trust Region 1.04098 2.14384 2.23283 5.76313 0.624061

Quasi-Newton 1.04098 2.14384 2.23283 5.76316 0.624061

Global

Steepest Descent 1.08081 2.16411 2.24952 5.79640 0.613983
Conjugate Gradient 1.04130 2.14489 2.23315 5.76358 0.621615

Feasible Newton 1.04098 2.14384 2.23283 5.76313 0.624061
Trust Region 1.04098 2.14384 2.23283 5.76313 0.624061

Quasi-Newton 1.04103 2.14449 2.23300 5.76323 0.622458

Table 7 Mesh quality results obatined from smoothing a cube mesh with graded elements; 50% of vertices are present in 10% of the space.

imately 300%, whereas the difference between the fastest
and slowest solvers is approximately 400%.

4.3.2 Global Smoothing

We saw in the context of local smoothing that the results for
graded meshes were similar to those of translated meshes.
This is also true within the global smoothing context. How-
ever in this case, all five methods were competitive. Feasi-
ble Newton outperformed the others, but among the remain-
ing solvers, there was no clear winner. In some instances,
steepest descent or conjugate gradient is the best, whereas
in other instances, quasi Newton or trust region end up be-
ing the fastest solver.

There are some common trends that occurred between
the translation and graded meshes experiment. As additional
grading was introduced, feasible Newton took more itera-
tions to surpass the other solvers. The performance of the
trust region solver was directly related to the extent to which
the meshes were graded. Highly graded meshes were ob-
served to deteriorate the performance of the solver, as the
movement of the vertices were constrained by the trust re-
gion.

Figure 9 shows the results from this experiment. Again,
we observe the following rank ordering of the solvers. Dur-
ing the initial iterations, the rank ordering is: feasible New-
ton< steepest descent< conjugate gradient< quasi-Newton
< trust region. In subsequent iterations, as in the affine per-
turbation case, steepest descent trades places with conjugate
gradient. Hence the order is: feasible Newton< conjugate
gradient< steepest descent< quasi-Newton< trust region.
Again, the trust region method is surpasses all solvers ex-
cept feasible newton as the fastest solver. The difference in
time for converging to an optimal mesh between the fastest
two solvers is approximately 75%.

4.4 Effect of Parameter Changes

As noted in Sections 4.1-3, the trust region solver performed
well on some mesh optimization problems and poorly on

Solver Parameter Value

Trust region

Backtracking parameter 0.5
Reduction parameter 0.25

Initial trust region radius 107

Maximum trust region radius 1020

Table 8 The most efficient combination of trust region parameters for
global smoothing for the majority of the meshes considered.

others. Thus, in this section, we investigate the effect of
changing the default parameters that are shown in Table 1
in attempt to improve the performance of the trust region
solver. In addition, we investigate the sensitivity of the other
solvers to changes in the default parameter values.

For each of the solvers, we changed the default values
to determine the ones that resulted in the fastest conver-
gence time. We found that the performance of the steep-
est descent, conjugate gradient, feasible Newton, and quasi-
Newton solvers were rather insensitive to these changes in
the parameter values. The plots of objective function ver-
sus time were nearly coincident with the corresponding plots
based on the default parameter values. However, the perfor-
mance of the trust region method was very sensitive to the
parameter changes. In particular, the rankings of the various
solvers were significantly influenced within the context of
global smoothing. In the remainder of the section, we pro-
vide additional details as to the changes made to the default
parameters and how they influenced the trust region solver
performance.

Previously, the trust region solver performed poorly for
several large perturbation test cases. Although this was the
case for both local and global mesh smoothing, it was es-
pecially the case for global smoothing. This is because for
global mesh smoothing, all of the element mesh qualities are
squared and added together to obtain the objective function.
Thus, the value of the objective function increases as the
number of mesh elements increases (subject to the quality
of individual elements remaining the same). Since the objec-
tive function is not scaled according to the number of mesh
elements, the optimization solver needs to take the scalingof
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(a) Small affine perturbation

(b) Medium affine perturbation

(c) Large affine perturbation

(d) Huge affine perturbation

Fig. 7 Global Smoothing: Typical results for the affine perturbation
experiment for global mesh smoothing. The results are for smoothing
the gear meshes with 500,000 elements after all interior vertices were
affinely perturbed. Observe that the scaling of the verticalaxis is dif-
ferent for each plot.

Fig. 8 Local Smoothing: A typical result for smoothing a cube mesh
with graded elements; 50% of its vertices are present in 10% of the
space.

the objective function into account. However, the initial trust
region radius in Mesquite is not chosen based on the prob-
lem scaling. Thus, we performed additional experiments in
which we varied the value of the initial trust region radius
from 1000 to 107 (as shown in Table 8). In addition, we var-
ied the number of inner iterations from 1 to 5 to allow the
trust region to increase or decrease on each iteration. (Note
this was necessary due to the way in which the trust region
solver is coded in Mesquite.)

Figs. 10, 11, and 12 illustrate the resulting performance
of the trust region solver as compared to the performances of
the other solvers for global mesh smoothing in several con-
texts. As shown in Fig. 10, the trust region solver quickly
converged to an optimal mesh after the changes were made
to the trust region solver when used on a randomly-perturbed
distduct mesh. Fig. 11 shows that the trust region solver
smoothed the translated gear mesh quickly when the new
parameters were used. As shown in Fig. 12, the trust region
method smoothed the graded cube mesh faster than the other
methods. These results were selected because they demon-
strate the greatest improvement possible for the trust region
solver when these parameters were varied and set equal to
the values in Table 8. In many cases, the performance of the
trust region solver was as good as the performance of the
feasible Newton solver.

5 Conclusions and Future Work

The main results of this study are as follows: (1) the behavior
of the optimization solvers, i.e., their rank ordering, is influ-
enced by the degree of accuracy desired in the solution and
the size of the mesh; (2) most of the time, the gradient-based
local mesh optimization solvers exhibited superior perfor-
mance compared to that of the Hessian-based local mesh op-
timization solvers; (3) for global mesh smoothing, the class
of optimization solver (i.e., gradient or Hessian) - which ex-
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(a) Low grading

(b) Medium grading

(c) Fairly high grading

(d) High Grading

Fig. 9 Global Smoothing: Typical mesh smoothing results for the
graded meshes. Note that when the mesh is highly graded, trust re-
gion method doesn’t converge as fast as other methods. Observe that
both axes are on a logarithmic scale.

Fig. 10 Global Smoothing: Result for smoothing a distduct mesh with
5% of its vertices randomly perturbed. Notice how the performance
of the trust region method is improved after the default values of the
initial trust region radius and the number of inner iterations are changed
to those in Table 8. Compare this figure with Fig. 5(c).

Fig. 11 Global Smoothing: Result for smoothing a translated gear
mesh after the trust region method parameter values were changed as
shown in Table 8. Compare this figure with Fig. 7(d).

Fig. 12 Global Smoothing: Result for smoothing a cube mesh with
graded elements (with 50% of its vertices present in 10% of the space)
after the trust region method parameter values were changedas shown
in Table 8. Compare this figure with Fig. 9(d).
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hibited superior performance is context-dependent; (4) the
rank-ordering of the optimization solvers depends on the
amount of random perturbation applied; (5) the rank-ordering
of the local mesh optimization solvers exhibits a definite hi-
erarchy on the affine perturbation meshes; (6) feasible New-
ton exhibited superior performance when compared to the
other global mesh optimization solvers on the affine per-
turbation meshes; (7) the rank ordering of the majority of
the local mesh optimization solvers is the same for graded
meshes; however, the rank of the conjugate gradient method
is a function of time; (8) feasible Newton exhibited supe-
rior performance when compared to the other global mesh
optimization solvers on the graded meshes.

Table 9 provides a brief summary of results, which can
be used a guideline for choosing the most efficient smooth-
ing method. For a typical user, we recommend use of the
conjugate gradient solver if local mesh smoothing is to be
performed. Though the steepest descent solver is faster than
other solvers in many cases, it is more likely to converge to
a local minimum corresponding to a poorer quality mesh. If
local smoothing of a graded mesh is desired, the steepest de-
scent method is recommended instead. For graded meshes,
this technique does not converge to a mesh of poorer quality.
If, on the other hand, global mesh smoothing is desired, the
feasible Newton solver is recommended. For graded meshes,
the feasible Newton and trust region methods are the fastest.
However, the feasible Newton method requires the Hessian
of the objective function which might be difficult to obtain.
It also requires a longer set-up time. We also recommend
that the Mesquite developers initialize the trust region ra-
dius as a function of the mesh size, especially for global
mesh smoothing.

The results in this study are specific to mesh quality im-
provement of unstructured tetrahedral meshes via five opti-
mization solvers, namely, the steepest descent, Polack-Ribie-
re conjugate gradient, quasi-Newton, trust-region, and feasi-
ble Newton methods, with mesh quality measured accord-
ing to the aspect ratio quality metric. Note that we have
employed a black-box approach to mesh smoothing in this
paper. We have used the default parameters in Mesquite to
run our numerical experiments. It is possible that the results
of this study would change if the parameter values of the
solvers were allowed to change. Because, vertex ordering
has been shown to play an important role in convergence
of the Feasnewt solver when used for local mesh optimiza-
tion [34], we plan to investigate the effect of vertex ordering
in the future. We also plan to examine the role that other non-
shape quality metrics have on the mesh optimization meth-
ods with the goal of identifying other contexts where qual-
ity metrics influence optimization solver behavior. Figure10
shows an example where the choice of quality metric influ-
ences the results. In particular, when the inverse mean ratio
mesh quality metric is instead used to smoothe the mesh, the

rank ordering of the solver changes. Figures 13(a) to 13(d)
show that the choice of the mesh quality metric influenced
the global smoothing results on the gear and foam meshes.
In particular, it influenced the relative ranking of the quasi-
Newton solver.
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