
Noname manuscript No.
(will be inserted by the editor)

A Parallel Log Barrier-Based Mesh Warping
Algorithm for Distributed Memory Machines

Thap Panitanarak · Suzanne M. Shontz

Received: date / Accepted: date

Abstract Parallel dynamic meshes are essential for computational simula-
tions of large-scale scientific applications involving motion. To address this
need, we propose parallel LBWARP, a parallel log barrier-based tetrahedral
mesh warping algorithm for distributed memory machines. Our algorithm is
a general-purpose, geometric mesh warping algorithm that parallelizes the se-
quential LBWARP algorithm proposed by Shontz and Vavasis. The first step
of the algorithm involves computation of a set of local weights for each interior
node which describe the relative distances of the node to each of its neighbors.
The weight computation step is the most time consuming in the parallel al-
gorithm. Based on our choice of the mesh partition and the corresponding
distribution of data and assignment of tasks to processors, communication
among processors is avoided in an embarrassingly parallel computation of the
weights. Once this representation of the initial mesh is determined, a target
deformation of the boundary is applied, also in an embarrassingly parallel
manner. Finally, new coordinates of the interior nodes are obtained by solv-
ing a system of linear equations with multiple right-hand sides that is based
on the weights and boundary deformation. This linear system can be solved
using one of three parallel sparse linear solvers, i.e., the distributed block
BiCG, block GMRES, or LU algorithm, all of which support the solution of

T. Panitanarak
Department of Computer Science and Engineering
The Pennsylvania State University
University Park, Pennsylvania 16802
E-mail: txp214@cse.psu.edu

S. M. Shontz
Department of Electrical Engineering and Computer Science
Bioengineering Graduate Program
Information and Telecommunication Technology Center
University of Kansas
Lawrence, Kansas 66045
E-mail: shontz@ku.edu

2 Thap Panitanarak, Suzanne M. Shontz

linear systems with multiple right-hand side vectors. Our numerical results
demonstrate good efficiency and strong scalability of parallel LBWARP on
up to 64 processors, as the experiments show close to linear speedup in all
cases. Weak scalability is also demonstrated. The performance of the paral-
lel sparse linear solvers is dependent on factors such as the mesh size, the
amount of available memory, and the number of processors. For example, the
distributed LU algorithm gives better performance on small meshes, whereas
the distributed block BiCG and distributed block GMRES algorithms yield
better performance when the amount of available memory is limited. Finally,
we demonstrate the parallel LBWARP performance for a sequence of mesh de-
formations which can significantly reduce the runtime of the overall algorithm.
When applied to k deformations, parallel LBWARP reuses the weight matrix,
that was computed during the first deformation, when the distributed LU lin-
ear solver is employed. This gives close to k-time performance for sufficiently
many deformations.

Keywords parallel computing · mesh warping · mesh deformation ·
log-barrier method · tetrahedral meshes · sparse linear solvers · multiple
right-hand side problem

1 Introduction

Meshes are used to discretize the geometry as required by geometry-based
analysis techniques, such as methods for the numerical solution of partial dif-
ferential equations (PDEs). Such techniques are widely used in many computa-
tional simulations in engineering, science, and medicine. For example, meshes
have been used to enable accurate prediction of the performance, reliability,
and safety of solid propellant rockets [21]. In addition, meshes have been used
to enable computational simulations of heart function aiding physicians in
their understanding of the heart’s anatomy and physiology [53].

There are many applications, such as these, which involve a deformation of
the geometric domain as a function of time. For such applications, the mesh
must be updated at each timestep in response to the deforming domain bound-
ary in order for the mesh to remain a valid approximation to the geometry.
Several mesh warping techniques have been developed recently which update
the mesh by mapping it from the source onto the target domain to enable
the tracking of the deformation. For example, several PDE-based approaches
for solving the mesh-updating problem have been developed [17,31,64,65,73].
Other research has focused on the development of approaches based on elas-
ticity [63,66,74,76] or optimization [37]. These approaches assume that the
boundary map from the source domain to the target domain is specified at a
particular timestep. Several mesh warping methods [10,18,19,39,61] combine
node movement with other techniques which alter the mesh topology in order
to generate a high-quality mesh on the target domain. Biomedical engineer-
ing and medicine is one area in which mesh warping techniques have recently
become very popular [8,9,11,42,51,52,57,68–70].

Parallel LBWARP for Distributed Memory Machines 3

As computational simulations become more complex and are often mul-
tiphysics and multiscale in nature, it is important that meshes be generated
and manipulated in parallel on either parallel clusters or multicore machines.
The SciDAC Interoperable Technologies for Advanced Petascale Simulations
(ITAPS) Center [3] is one example of a large project that addresses the needs
of petascale mesh simulations. Furthermore, several parallel mesh generation
techniques have been developed (see [23] for a survey); recent techniques have
been developed for parallel Delaunay mesh generation (e.g., [7,22,24,28,48]),
parallel advancing front mesh generation (e.g., [25,43–45]), and parallel edge
subdivision mesh generation (e.g., [20,25,50,54,55,77]).

There are several areas of active research involving parallel post processing
of meshes. For example, parallel mesh quality improvement and untangling
algorithms have been developed which employ numerical optimization methods
to untangle the mesh and improve its quality by repositioning the nodes [14,
58]. Parallel remeshing and mesh adaptation methods have also been proposed
which alter the mesh topology in order to improve its quality; often times this
is done in response to a change in the PDE solution [30,38,46].

However, in regards to parallel mesh warping, only a few algorithms have
been developed for use in dynamic computational simulations. Parallel algo-
rithms have been developed which combine mesh warping with topological
operations [59,60,62]. Other parallel mesh warping algorithms have been de-
signed for use in computational fluid dynamics (CFD) applications [29,75].
More recent research on parallel mesh warping algorithms includes meshless
techniques developed in [26,47] but still focuses on CFD applications.

In this paper, we propose parallel LBWARP, a parallel log barrier-based
mesh warping algorithm for distributed memory systems. Parallel LBWARP
is a parallel formulation of the general-purpose, geometric mesh warping algo-
rithm named LBWARP which was proposed by Shontz and Vavasis [64]. Even
though LBWARP is computationally intensive when a single deformation is
applied, it is rather efficient when multiple deformations are performed. In
this case, the computational complexity and also the overall run time of the
algorithm decreases significantly. We discuss this advantage of parallel LB-
WARP in more detail in the paper. The remainder of the paper is organized
as follows. In Sections 2 and 3, we provide overviews of the sequential LB-
WARP algorithm and sparse linear solvers used by the LBWARP algorithm,
respectively. Then, we describe our parallelization of the sequential LBWARP
method and introduce parallel LBWARP in Section 4. In Section 5, an analysis
of the run time of the parallel LBWARP algorithm is discussed. We describe
several numerical experiments which were designed to test the performance of
our parallel LBWARP method on 3D domains and the resulting run times,
speedup, and strong and weak scalability results in Section 6. In Sections 7,
we demonstrate an application of parallel LBWARP on heart motion prob-
lems. In Section 8, we summarize our work and discuss some future research
possibilities related to extensions of our parallel algorithm.

4 Thap Panitanarak, Suzanne M. Shontz

2 An Overview of LBWARP

LBWARP is a log barrier-based mesh warping algorithm which was proposed
by Shontz and Vavasis [64]. The algorithm consists of three main steps. The
first step is to generate a set of local weights (or inverse distances) describ-
ing the relationship of each interior node to its neighbors using a log barrier
technique. These sets of weights are computed using an interior point method
from nonlinear programming. Next, the boundary nodes are deformed by ap-
plying a transformation given by the user. Lastly, a system of linear equations
is constructed from the sets of weights in the first step and the new positions
of the transformed boundary nodes from the second step. This linear system
is then solved for the final positions of the interior nodes.

To compute the weights for interior nodes of a 3D mesh, a local optimiza-
tion problem is solved for the coordinates of each interior node using a log
barrier technique. The optimization problem is as follows

max
wij ,j∈Ni

∑
j∈Ni

log(wij)

subject to wij > 0,∑
j∈Ni

wij = 1,

xi =
∑
j∈Ni

wijxj ,

yi =
∑
j∈Ni

wijyj ,

and zi =
∑
j∈Ni

wijzj ,

(1)

where wij is the weight of node j acting on node i, Ni is the set of neighbors
of node i, (i.e., j ∈ Ni if and only if node j is connected to node i), and xi, yi,
and zi are the xyz-coordinates of node i. Since the objective function along
with the constraints forms a strictly convex optimization problem, there exists
a unique solution which can be found using an interior point method provided
an initial feasible point exists [64]. In this paper, we solve equation (1) using
the projected Newton method [15] with an initial feasible point in the interior
of the domain as described in [64].

Consider the convex combinations of xi, yi, and zi in (1), by defining an
m × n weight matrix A where A(i, j) = −wij and A(i, i) = 1. Assuming the
interior nodes are numbered first, and the boundary nodes are numbered last,
the matrix A can be written as [AI AB]. Similarly, let x, y, and z be vectors
of the x-, y-, and z-coordinates of all of the mesh nodes, respectively. Thus, we
have x = [xI xB]T , y = [yI yB]T , and z = [zI zB]T . For m interior nodes and
n total nodes, AI is an m×m matrix specifying how each node is connected to
each of its interior neighbors, and AB is an m× (n−m) matrix specifying how
each interior node is connected to each of its boundary neighbors. Each of the

Parallel LBWARP for Distributed Memory Machines 5

subvectors xI , yI , and zI contain coordinates of the m interior nodes, and each
of the subvectors xB , yB , and zB contain coordinates of the n−m boundary
nodes. Hence, we can write the resulting linear system in (1) as follows

AI [xI yI zI] = −AB [xB yB zB]. (2)

Once the representation of the initial mesh has been determined, a user-
specified boundary deformation can be applied as follows:

[xB yB zB]→ [x̂B ŷB ẑB]. (3)

Final positions of the interior nodes in the deformed mesh, i.e., x̂I , ŷI ,
and ẑI are then determined by solving the following linear system based on
equation (2) and the updates in equation (3);

AI [x̂I ŷI ẑI] = −AB [x̂B ŷB ẑB]. (4)

See [64] for more details.
Although the LBWARP algorithm is initially computationally intensive

due to the construction of the weight matrix, once the weight matrix has
been computed, the LBWARP algorithm can reuse this matrix in additional
mesh deformations provided an LU factorization method is used to solve the
linear system. In other words, only the boundary deformation and the linear
solution steps are performed for additional deformations. The complexity is
then typically O(m2) for additional deformations but depends on the number
of nonzero elements in AI , i.e., nnz(AI) per deformation [16].

3 Sparse Linear Solvers with Multiple Right-Hand Sides

The choice of linear solver which is employed to solve (4) affects the runtime
of the warping algorithm. Certainly, the sparsity and structural symmetry of
AI should be taken into account when selecting a linear solver.

Moreover, each deformation requires three linear solves, i.e., one for each
of the x-, y- and z-coordinates (for 3D tetrahedral meshes). Each linear solve
employs the same left-hand side matrix but a different right-hand side (RHS)
vector. Thus, a single linear solver which takes into account the above prop-
erties and is able to address the multiple right-hand side problem should be
employed.

Both direct and iterative methods can be used to solve (4), and both cat-
egories of methods have their advantages and disadvantages. Direct solvers
directly support multiple RHS vectors, but their use can increase the num-
ber of nonzero elements in the matrix during row elimination. Thus, matrix
reordering is required to minimize any nonzero fill-in. On the other hand, it-
erative solvers do not require reordering but instead need to be modified to
support multiple RHS.

Thus, in this paper, we consider the use of three different parallel sparse
linear solvers for the solution of (4) in parallel LBWARP. Next, we give an

6 Thap Panitanarak, Suzanne M. Shontz

overview of the serial versions of these methods.

Block BiCG (BiConjugate Gradient) [49] is a modified version of the
biconjugate gradient (BiCG) method [27] to support multiple RHS. Block
BiCG is essentially identical to the standard BiCG method with the only
difference being that operations are performed with multivectors instead of
single vectors. Thus, both methods are based on the conjugate gradient (CG)
method [32] with an extension to provide a capability for solving nonsymmetric
linear systems Ax = b. As in CG, the method uses search directions,

d(i+1) = r(i+1) + βid
(i)

to update the residuals, r(i+1), and solution approximations, x(i+1), such that

r(i+1) = r(i) − αiAd
(i) and x(i+1) = x(i) + αid

(i),

where αi = r(i)
T

r(i)/d(i)
T

Ad(i) and βi = r(i+1)T r(i+1)/r(i)
T

r(i).

To handle nonsymmetric systems, instead of using only one orthogonal se-
quence of residuals and conjugate directions as in CG, BiCG uses two mutually
orthogonal sequences (or two sequences of residuals and conjugate directions).
In addition to computing d(i) and r(i), d̃(i) and r̃(i) are also computed similarly
by replacing A with AT . Moreover, the computations of αi and βi are replaced
by

αi = r̃(i)
T

r(i)/d̃(i)
T

Ad(i) and βi = r̃(i+1)T r(i+1)/r̃(i)
T

r(i).

Thus, the cost per iteration of BiCG is approximately twice that of CG. The
cost per iteration of BiCG is approximately the cost of computing two inner
products, five scalar-vector multiplications and additions, and two matrix-
vector products or O(12m+ 2m2).

To handle multiple RHS, BiCG can be modified to solve all RHS at once
or to solve the system AX = B where X and B are m × c matrices and c is
the number of right-hand side vectors. To update the approximations to the
solution, the following formulas are now used

D(i+1) = R(i+1) +D(i)B(i), R(i+1) = R(i) −AD(i)A(i),

D̃(i+1) = R̃(i+1) + D̃(i)B(i), R̃(i+1) = R̃(i) −AD̃(i)A(i),

and

X(i+1) = X(i) +D(i)A(i)

where

A(i) = (D̃(i)TAD(i))−1R̃(i)TR(i) and B(i) = (R̃(i)TR(i))−1R̃(i+1)TR(i+1).

Note that D and R are now m× c matrices, while A and B are c× c matrices.
As we can see, the complexity of the algorithm has increased, as it requires

Parallel LBWARP for Distributed Memory Machines 7

more matrix operations. Furthermore, the convergence and stability of the
algorithm are also affected. Thus, additional efforts to maintain these proper-
ties are needed such as deflation, i.e., removing some right-hand sides from the
process (see [49,71]). Since operations on vectors are now performed using ma-
trices, for c right-hand sides, the complexity of block BiCG is O(12cm+2cm2).

Block GMRES (Generalized minimal residual) [72] is a modified ver-
sion of GMRES [56] to support multiple RHS using a similar approach as
the block BiCG method. GMRES itself is an extension of the minimal resid-
ual (MINRES) method which can only be used to solve symmetric systems.
Similar to MINRES, it approximates the solution by generating a sequence
of orthogonal vectors with minimal residual. However, without symmetry, all
previously generated vectors are needed and must be retained to construct the
approximations as follows:

x(i) = x(0) + y1v
(1) + · · ·+ yiv

(i),

where yk minimizes ‖b−Ax(i)‖ and v(i+1) = w(i)/‖w(i)‖.

For each i, w(i) is initialized with Av(i) and explicitly updated by w(i) =
w(i) − (w(i), v(k))v(k) for k = 1, . . . , i. By defining r(0) = b − Ax(0) and
the (k + 1) × k upper Hessenburg matrix Hk from the Arnoldi’s relation
AVk = Vk+1Hk where Vk is the orthonormal basis of the Krylov subspace
Kk(A, r(0)) built by the Arnoldi procedure, we can compute yk = ‖r(0)‖H−1k e1.
The cost of the the kth iteration of GMRES (without restarting) is approx-
imately the total time of k + 1 inner products, k + 1 scalar-vector multipli-
cations and additions, and one matrix-vector product or O(3(k + 1)m+m2).
Consequently, the extension to block GMRES results in O(3(k+ 1)cm+ cm2)
complexity.

LU Decomposition is a factorization of a matrix A into LU 1, where L and
U are m×m unit lower triangular and upper triangular matrices, respectively.
This factorization can be used to indirectly solve the linear system Ax = b
with the equivalent system LUx = b which can be solved by performing two
triangular solves as follows:

Ax = b⇔ LUx = L(Ux) = Ly = b.

More specifically, forward substitution is performed to solve for y from Ly = b,
and then backward substitution is performed to solve for x from Ux = y.

The LU decomposition can be directly applied to any matrix including
sparse matrices. However, a row operation during the decomposition can re-
sult in the generation of additional nonzero elements which were previously
zero (called nonzero fill-in). This increases memory usage and the number of

1 The factor LU exists only if A is nonsingular. In the event an element on the diagonal
of A is zero or nearly zero, partial pivoting is required.

8 Thap Panitanarak, Suzanne M. Shontz

computations in the algorithm. In this paper, we use nested dissection, a fill-
reducing ordering, in order to minimize nonzero fill-in which occurs during the
LU decomposition.

4 Parallel LBWARP

In this section, we describe our parallel formation of the LBWARP algorithm;
the resulting method is referred to as parallel LBWARP. The parallel LB-
WARP method contains three steps, i.e., weight generation, boundary defor-
mation, and linear solution.

4.1 Parallelization of Weight Generation Step

As described in the previous section, the first step of the LBWARP algorithm
is to use optimization to generate a set of local weights which specifies how
a given interior node is represented as a convex combination of its neighbors.
To parallelize this step, it is important that the interior nodes are equally
distributed among the processors to balance the workload. Assume that p
processors are used for solving m optimization problems corresponding to the
m interior nodes. A subset of dm/pe consecutive interior nodes are assigned
to each processor for simplicity to identify the ownership of the distributed
interior nodes. As the computation during the weight generation step is node-
based, we represent a mesh as a graph such that each graph node and edge
represent the corresponding mesh node and edge, respectively, and the con-
nectivity among nodes is preserved.

Before the actual computation of the weight matrix begins, the neighbors of
each subset of the interior nodes are pre-computed and sent to the correspond-
ing processors. There will be redundant copies of nodes among processors, i.e.,
one node can be assigned to more than one processor, and the amount of mem-
ory required by each processor varies since the number of neighbors for each
subset of the interior nodes is different. Even though mesh partitioning can be
used to balance the distribution, it also introduces additional complexity, and
can decrease the overall performance.

Fig. 1 demonstrates our partitioning approach. First, interior nodes are
determined as shown (Fig. 1(a)). Then, they are equally distributed to the
processors (Fig. 1(b)). After that, the neighbors of each subset of interior nodes
are computed and sent to the corresponding processors (Fig. 1(c)). Once all
processors receive their subsets of interior nodes and the subset’s neighboring
nodes, they compute their local weights independently in an embarrassingly
parallel manner using the projected Newton method without communication
during the weight computations.

During the weight generation step, the m × n matrix A = [AI AB] is
constructed by formulating and solving m local optimization problems. More
specifically, solving a single optimization problem for the ith interior node

Parallel LBWARP for Distributed Memory Machines 9

given by (1) yields the ith row of A. With the parallel approach described
above, since each processor acquires a subset of approximately dm/pe con-
secutively numbered interior nodes and all of their neighbors, approximately
dm/pe consecutive rows of the matrix A can be generated simultaneously on
p processors without communication. After the processors finish generating
the local weights for their assigned interior nodes, each processor owns non-
overlapping, consecutive rows of the weight matrix A, (i.e., processor zero
generates rows one through dm/pe, processor two generates rows dm/pe + 1
through 2dm/pe, and so on).

(a) (b)

(c)

Fig. 1 (a) The original mesh before partitioning; the black and white nodes represent the
interior and boundary nodes, respectively. (b) For computational load balance during the
weight gneration step, first, only interior nodes are partitioned and sent to processors. (c)
Then, neighbors of each subset of interior nodes are computed and sent to the corresponding
processors.

4.2 Parallelization of Boundary Deformation Step

The next step is to apply the deformation of the boundary nodes in parallel.
This step involves computing the right-hand side of equation (4). Since part
of the matrix AB is generated and owned locally by each processor during
the weight generation step, the boundary deformation step can also be per-
formed in an embarrassingly parallel manner by sending each processor the
coordinates of the boundary nodes, i.e., x̂B , ŷB , and ẑB . Although there is

10 Thap Panitanarak, Suzanne M. Shontz

redundancy in all of the processors owning the entire set of boundary nodes,
this allows the processors to simultaneously compute their respective parts
of the right-hand side vector without communication. This is equivalent to
computing a portion of the right-hand side vector locally on each processor.

4.3 Parallelization of Linear Solution Step

The last step is to solve the three linear systems in equation (4) for the fi-
nal positions of the interior nodes in the deformed mesh, i.e., x̂I , ŷI , and ẑI .
The parallel linear solver which is used in the linear solution step with the
distributed matrix AI should take advantage of its sparsity and also support
multiple right-hand side vectors.

To this end, we consider parallel versions of block BiCG, block GMRES,
and LU decomposition for distributed memory machines for use in the lin-
ear solution step of parallel LBWARP. We refer to them as DistBlBiCG,
DistBlGMRES, and DistLU, respectively. We chose these three algorithms
based on our preliminary experiments with the parallel block GMRES and
SuperLU DIST algorithms [40] implemented in the Amesos2 and Belos pack-
ages [13] for the Trilinos project [4]. Our preliminary results with the Trilinos
package demonstrated good speedups when solving linear systems based on
multiple RHS solvers on matrices generated from the weight generation step.
By implementing our own linear solvers, we can control a consistency among
the solvers as we can implement them under the same environments such as
data structures and compilers.

Distributed block BiCG and distributed block GMRES: Our imple-
mentations of DistBlBiCG and DistBlGMRES are based on [12,49,71,72]. The
m×m sparse matrix is distributed based on a row-wise distribution among the
p processors. Thus, each processor owns a non-overlapping dm/pe consecutive
rows of the original matrix. A RHS vector corresponding to the matrix is also
distributed in a similar manner. Thus, matrices that normally cannot be fit
in memory on a single processor can be processed with this approach. How-
ever, there is a trade-off in terms of processing time since some matrix-matrix
and/or matrix-vector operations typically require off-processor information in
the form of message-passing communication. The two main parallel routines
in the main loop of both solvers are matrix-vector multiplication and vector
dot product. For parallel matrix-vector multiplication, this can be done by dis-
tributing the vectors (d or v for DistBlBiCG or DistBlGMRES, respectively)
to all processors according to the rows of matrix that each processor owns.
Then, each processor multiplies the received vector with its own rows and the
result vector is stored. For parallel dot product, each processor computes the
partial result of the inner product from the rows which it owns. After that,
these partial results are summed globally using MPI Reduce to obtain the
inner product.

Parallel LBWARP for Distributed Memory Machines 11

We performed a set of preliminary experiments in order to determine
whether or not it was necessary to perform either reordering on AI or pre-
conditioning when solving the linear system in equation (4). We experimented
with the use of the nested dissection (ND) reordering and application of an
ILU(0) preconditioner on block GMRES using the Belos package. Typical re-
sults from our preliminary experiments can be seen in Fig. 2. Although ap-
plying the preconditioner increases the convergence rate (Fig. 2(a)), it only
reduces the linear solution time when up to 16 processors are used. For a
larger number of processors, (i.e., 32 processors or more), the overhead of
computing the preconditioner becomes more visible, as the size of our deform-
ing mesh problem is not large enough, (i.e., our preliminary experiments are
for a deforming mesh with approximately 6M nodes) for this strategy to pay
off (Fig. 2(b)). (For this problem, the linear solution step takes less than 10%
of the overall warping time, which is around 20 seconds.) Given the relatively
low condition number of the weight matrix, (i.e., 37 for this problem), the lin-
ear systems can be solved without use of a preconditioner and can still obtain
a good convergence rate. In such cases, it should be clear that is it the most
beneficial to employ block GMRES without either reordering or precondition-
ing. Thus, we do not use either reordering or preconditioning when solving
the linear systems in equation (4) with the DistBlBiCG and DistBlGMRES
solvers.

0 50 100 150
10

−15

10
−10

10
−5

10
0

Iteration numbers

R
el

at
iv

e
re

si
du

al

No reordering and preconditioner
Reordering only (ND)
Preconditioner only (ILU(0))
ND+ILU(0)

(a) Convergence rate

124 8 16 32 64

10
1

Number of processors

R
un

tim
e

(i
n

se
co

nd
s)

No reordering and preconditioner
Reordering only (ND)
Preconditioner only (ILU(0))
ND+ILU(0)

100.8

101.5

(b) Runtime

Fig. 2 The effect of the nested dissection reordering and ILU(0) preconditioner on the
performance of the block GMRES solver.

Distributed LU: Like other sparse LU factorizations, our DistLU algorithm
consists of reordering to reduce fill-in, symbolic factorization, numerical fac-
torization, and triangular solves. While partial pivoting is essential for general
matrices, the factorization of AI does not require partial pivoting since AI is
weakly diagonally dominant. Without partial pivoting, some communication

12 Thap Panitanarak, Suzanne M. Shontz

(a) (b) (c)

(d) (e) (f)

Fig. 3 (a) A mesh with natural ordering, (b) its adjacency matrix, and (c) its elimination
tree. The same mesh after applying (d) nested dissection reordering, and (e) its correspond-
ing adjacency matrix and (f) elimination tree. Note that ’x’ indicates a nonzero element in
the matrix.

and computation can be avoided. Also, based on the symmetric structure of
AI , the symbolic factorization (which is used to determine the fill-in in the
L and U factors) is easier to compute than for unsymmetric matrices. More
specifically, our parallel sparse LU factorization is similar to SuperLU DIST
[40] introduced by Li et al. but is simpler in terms of the amount of compu-
tation performed and the complexity. We apply the ND reordering [5] which
reduces fill-in for the sparse matrix AI using MeTiS [36]. The algorithm finds
an elimination ordering of the matrix using a divide and conquer approach.
The new elimination ordering can be used to exploit the matrix columns that
can be updated simultaneously, (i.e., they are independent). The result of the
nested dissection algorithm also yields an elimination graph or task graph of
the matrix to use as an elimination order of all of the columns. Fig. 3 illus-
trates meshes with their natural ordering and after applying a nested dissec-
tion reordering along with their adjacency matrices and elimination trees. A
mesh with natural ordering (Fig. 3(a)), its adjacency matrix and elimination
tree are shown in Figs. 3(b) and 3(c), respectively. The elimination ordering
is sequential and dependent on the previous nodes. Thus, to be able to per-
form elimination of the kth column of the matrix, all columns from one up to
(k− 1) need to be eliminated first. Figure 3(d) shows the same mesh as above
after nested dissection reordering is applied. Similarly, its adjacency matrix
and elimination tree are shown in Figs. 3(e) and 3(f), respectively. Now, since

Parallel LBWARP for Distributed Memory Machines 13

nodes 1-4 are pairwise independent, columns 1-4 of the matrix can be elim-
inated simultaneously. Similarly, columns 5-6 can also be eliminated at the
same time.

124 8 16 32 64
10

0

10
1

10
2

Number of processors

R
un

tim
e

(i
n

se
co

nd
s)

3 Systems
1 System with 3 RHS

(a) DistBlBiCG

124 8 16 32 64
10

0

10
1

10
2

Number of processors

R
un

tim
e

(i
n

se
co

nd
s)

3 Systems
1 System with 3 RHS

(b) DistBlGMRES

124 8 16 32 64
10

0

10
1

10
2

Number of processors

R
un

tim
e

(i
n

se
co

nd
s)

3 Systems
1 System with 3 RHS

(c) DistLU

Fig. 4 A comparison of the runtimes for the three parallel sparse linear solvers when solv-
ing with and without multiple RHS vectors: (a) DistBlBiCG, (b) DistBlGMRES, and (c)
DistLU. (Note: A log scale is used for the vertical axis.)

Benefits of parallel linear solvers with multiple RHS support: A com-
parison of the runtimes for the three parallel sparse linear solvers, i.e., the
DistBlBiCG, DistGMRES, and DistLU algorithms, with and without multi-
ple RHS vector support, is shown in Fig. 4. Recall that solving equation (4)
for the final positions of the interior nodes in the deformed mesh requires three
linear systems to be solved, i.e., one linear system per nodal coordinate. For

14 Thap Panitanarak, Suzanne M. Shontz

systems without multiple RHS vector support, the linear systems are solved
independently. Whereas, the nodal coordinates are solved for simultaneously
when linear solvers with multiple RHS vector support are employed. Simulta-
neous linear solves result in reduced runtime because the overhead during the
initialization and some additional operations can be combined and reused in
order to avoid redundant computation.

Algorithm 1 Parallel LBWARP algorithm

1: // Generate neighbor lists
2: for all p processors in parallel do
3: generate neighbor lists of all local interior nodes
4: request coordinates of non-local neighbors using MPI Alltoallv
5: end for
6: synchronization using MPI Barrier
7: // Step 1: Generate a weight matrix, A = [AI AB]
8: for all p processors in parallel do
9: for each local node v do

10: solve the optimization at v for the weight matrix row v
11: end for
12: end for
13: synchronization using MPI Barrier
14: // Step 2: Compute the right-hand side vectors in equations (4)
15: for all p processors in parallel do
16: compute bx = −ABx̂B , by = −AB ŷB , bz = −AB ẑB
17: end for
18: synchronization using MPI Barrier
19: // Step 3: Solve the linear systems (4) for x̂I , ŷI , and ẑI
20: solve AI x̂I = bx, AI ŷI = by, AI ẑI = bz using
21: either DistBlBiCG, DistBlGMRES or DistLU

4.4 Parallel LBWARP Algorithm

The complete parallel LBWARP algorithm is shown in Algorithm 1. Assume
that interior nodes are distributed in a row-wise distribution among all proces-
sors. Thus, each processor owns non-overlapping dm/pe interior nodes includ-
ing their x, y, and z coordinates, and the completed target boundary coordi-
nates, x̂B , ŷB , and ẑB . The first step of the algorithm (lines 1-6) is to generate
neighbor lists which will be used in the next step. It involves MPI Alltoallv
communication to exchange the coordinates of non-local neighbors. After that,
each processor can compute its local weights independently without any com-
munication as shown in lines 7-14. Since each interior node corresponds to one
row in the weight matrix, a set of local interior nodes at processor p results

Parallel LBWARP for Distributed Memory Machines 15

in the partial weight matrix rows, A. The rest of the algorithm focuses on
construction and solution of the system (2) for x̂I , ŷI , and ẑI using one of the
parallel sparse linear solvers, i.e., DistBlBiCG, DistBlGMRES, or DistLU.

Lines 15-19 show the boundary deformation step. Each processor has its
own copy of x̂B , ŷB , and ẑB . Thus, the processors simultaneously compute
their respective parts of the right-hand side vectors using equation (4). Finally,
the linear systems shown in equation (4) can be solved for x̂I , ŷI , and ẑI using
one of the three parallel sparse linear solvers, DistBlBiCG, DistBlGMRES, or
DistLU.

5 Parallel Analysis

As described in Section 4, parallel LBWARP consists of three main steps, i.e.,
the weight generation, the boundary deformation, and linear solution the same
as does LBWARP. We now discuss the performance gain in each these steps
of parallel LBWARP.

Assume that the maximum time to solve a single optimization problem in
(1) to determine the weights for interior node i is top. Thus, LBWARP takes at
most mtop total time to compute the sets of weights for the m interior nodes.

In the case of parallel LBWARP, for analysis purposes, assume optimal load
balancing across all available p processors and that each processor is assigned
to work on approximately dm/pe distinct interior nodes. Hence, each processor
takes at most dm/petop time to compute its own set of local weights. Since all
processors can work simultaneously without any communication among them
during this step, the total time to compute all weights is still dm/petop. There
is some additional computation and communication to generate neighbor lists
for the interior nodes which can be viewed as a conversion from the original
mesh representation to a graph representation. It is easy to see that if the
nodes belong to the same element, they are neighbors of one another. Assume
that there are ne elements in the mesh. For LBWARP, to find all possible
neighbor relationships of the interior nodes, all mesh elements have to be
visited. Thus, the total time for the sequential conversion is netcon where tcon
is the maximum time required to inspect a single mesh element. For parallel
LBWARP, if dne/pe elements are distributed among all p processors, each
processor can visit its elements in dne/petc time. However, a local neighbor
list generated by each processor is not yet complete since each interior node
belongs to multiple mesh elements and those elements may be distributed to
different processors. To obtain the complete neighbor list for a given processor,
each processor needs to gather neighbor lists from other processors which
requires at most (dm/pepd)tcom time where d is the maximum degree of a
node and tcom is the time to send a single message. Thus, the total time
required in the weight generation step is bounded above by mtop + netcon for
LBWARP and dm/petop + dne/petcon + (dm/pepd)tcom for parallel LBWARP.
In general, the time used for distribution and gathering is very small compared
to the time for solving the optimization problems used to generate the weights.

16 Thap Panitanarak, Suzanne M. Shontz

Fortunately, since there is no further communication after all local neighbor
lists have been generated in the weight generation step, this step of parallel
LBWARP is very scalable in terms of both strong and weak scaling.

The boundary deformation step involves simple parallel computation of
the right-hand side vectors as shown in equation (4).

Since rows of AB have already been distributed among the processors, the
only work that needs to be done is to distribute the vectors x̂B , ŷB and ẑB
to the processors so that the processors can simultaneously compute portions
of the right-hand side vectors based on the part of AB that each one owns.
Assuming the time to compute the right-hand side vectors sequentially is tc,
the approximate run time in parallel is dm/petc.

In the linear solution step, the time required to solve the system depends
on the algorithm used for this step. For iterative solvers, similar to the sequen-
tial versions, the complexity is based on the number of iterations required for
convergence (and the time per iteration) which is approximately O(m2/p) per
iteration with some communication overhead. For the distributed LU , the com-
plexity is based on nnz(AI) and the structure of AI , which is approximately
M =

∑n
k−1 ckrk, where ck and rk are the numbers of off-diagonal elements in

each column of block column k and each row of block row k, respectively. Thus,
the parallel runtime is approximately O((nnz(AI)+M)/p+H(p)), where H(p)
is communication overhead of p processors from broadcasting messages.

6 Numerical Experiments

In order to test the performance of our parallel LBWARP algorithm, we per-
form several numerical experiments on 3D tetrahedral meshes. The implemen-
tation of parallel LBWARP is in C/C++ using the message-passing interface
(OpenMPI version 1.7.3). We use the dense and sparse vector and matrix
routines in the Eigen library [35] where vector or matrix operations are re-
quired. All of our experiments were run on the CyberStar cluster available for
our use at The Pennsylvania State University [1]. More specifically, 192 Dell
PowerEdge R610 servers were used. Each server provides 2 quad-core Intel
Nehalem processors running at 2.66 GHz and 24 GB of RAM. In all of our
experiments, we use only one core per server node to maximize the memory
capacity. For both DistBlBiCG and DistBlGMRES, the relative convergence
tolerance and the maximum numbers of iterations are set to 10−5 and 103,
respectively. The initial guess vector for both algortihms is set to zero. The
GMRES restart iteration is 30.

The 3D domains that we use in our experiments, i.e., Menger sponge and
Luer connector, are shown in Figs. 5(a) and (d), respectively. Meshes on these
domains were generated using TetGen [67] and have approximately 6M and
9M nodes, respectively. The deformed boundaries of the Menger sponge are
shown in Figs. 5(b) and (c), and the deformed boundary of the Luer connector
domains is shown in Fig. 5(e). These boundaries are used in the boundary
deformation step of the mesh warping process. For the Menger sponge mesh,

Parallel LBWARP for Distributed Memory Machines 17

(a) (b) (c)

(d) (e)

Fig. 5 (a) The Menger sponge domain and its two (b and c) deforming boundaries, and
(d) the Luer connector domain and its (e) deforming boundary.

the first deformation (Fig. 5(b)) was generated by increasing the size of all
square holes by 50%. Mesh elements were compressed in one dimension and
stretched in the other two dimensions. The latter deformation is much more
pronounced near the hole. The second deformation (Fig. 5(c)) was generated
by applying the first deformation, and then counter-clockwise twisting the
model by 90 degrees while increasing the height of the model by 30%. In this
case, mesh elements were extremely compressed and twisted, as we can see in
the figure. For the Luer connector mesh, the deformation was generated by
increasing the size of the small tube on the top, extending the gap between
the two middle plates, and rotating the lowest plate by 90 degrees. With
these deformations, the mesh elements around the top are affected by two-
dimensional expansion. The mesh elements around the middle of the model
are stretched in one dimension. Finally, the mesh elements around the bottom
are both compressed and distorted. Statistics for both meshes, such as the
numbers of nodes and tetrahedral elements in the meshes and the mesh quality
(as measured by the mean ratio (MR) mesh quality metric2) before and after
the mesh deformation process are shown in Tables 1 and 2, respectively. Fig. 6

2 The MR mesh quality metric η is given by

η =
12(3v)2/3∑
0≤i<j≤3 l

2
ij

, (5)

where v and lij denote the volume and various edge lengths of the tetrahedron, respec-
tively [41].

18 Thap Panitanarak, Suzanne M. Shontz

shows the spy plot of AI for a coarse mesh of the initial Menger sponge model
with (a) natural ordering and (b) nested dissection ordering, respectively. Note
that the coarse mesh is used only for the purpose of visualizing the spy plot of
AI . As we can see from the figure, the mesh yields a very sparse matrix, AI .
A spy plot of AI for the initial Luer connector model shows a similar result.

Table 1 The sizes of the Menger sponge and Luer connector meshes.

Mesh # nodes # elements
Menger Sponge 6,025,426 37,723,148
Luer Connector 10,523,992 59,291,516

Table 2 The mean ratio (MR) mesh quality of the Menger sponge and Luer connector
meshes.

Mesh
Initial Mesh Quality (MR) Final Mesh Quality (MR)
Min. Avg. Max. Min Avg. Max.

Menger Sponge 1.0000 0.7842 0.2196 1.0000 0.3894 0.0177
(twisted) - - - 1.0000 0.2059 0.0102

Luer Connector 1.0000 0.7180 0.1926 1.0000 0.2877 0.0159

(a) Menger sponge: Natural ordering (b) Menger sponge: Nested Dissection
ordering

Fig. 6 The spy plots of AI for a coarse mesh on the initial Menger sponge model with (a)
natural ordering and (b) nested dissection reordering, respectively.

Figs. 7(a) and (b) show the total runtime and speedup of the parallel
LBWARP algorithm using DistLU for the linear solution step on the Menger
sponge and Luer connector meshes running on different numbers of processors,

Parallel LBWARP for Distributed Memory Machines 19

124 8 16 32 64
10

1

10
2

10
3

10
4

10
5

Number of processors

R
un

tim
e

(i
n

se
co

nd
s)

Menger Sponge
Luer Connector

(a) Total runtime

124 8 16 32 64
0

10

20

30

40

50

60

Number of processors

Sp
ee

du
p

Menger Sponge
Luer Connector
Ideal Speedup

(b) Speedup

Fig. 7 (a) The total runtime and (b) speedup of parallel LBWARP using DistLU on the
Menger sponge and Luer connector meshes. (Note a log scale is used for the vertical axis.)

Table 3 Breakdown of the runtime (in seconds) for parallel LBWARP: neighbor computa-
tion, weight generation, boundary deformation, and linear solution steps using DistLU on
the Menger sponge mesh.

procs. Neighbor Weight Boundary Linear
Computation Generation Deformation Solution

1 48.74 4311.76 7.43 26.08
2 32.95 2169.22 5.27 16.72
4 21.23 1097.54 3.55 10.98
8 16.12 539.98 2.74 7.68
16 11.59 274.56 1.77 4.95
32 7.56 142.92 1.24 3.69
64 3.78 76.59 0.86 3.12

Table 4 Breakdown of the runtime (in seconds) for parallel LBWARP: neighbor computa-
tion, weight generation, boundary deformation, and linear solution steps using DistLU on
the Luer connector mesh.

procs. Neighbor Weight Boundary Linear
Computation Generation Deformation Solution

1 102.41 10,593.24 13.98 35.93
2 65.20 5,365.32 11.02 23.29
4 44.52 2,679.88 7.51 16.06
8 32.74 1,342.59 5.95 11.32
16 20.21 704.73 4.32 8.63
32 14.82 342.67 3.64 6.64
64 6.18 186.99 2.37 5.75

respectively. (Note a log scale is used for the vertical axis.) For the Menger

20 Thap Panitanarak, Suzanne M. Shontz

1 2 4 8 16 32 64
10

0

10
1

Number of processors

R
un

tim
e

(i
n

se
co

nd
s)

DistBlBiCG
DistBlGMRES
DistLU

101.6

(a) Menger sponge

1 2 4 8 16 32 64
10

0

10
1

Number of processors

R
un

tim
e

(i
n

se
co

nd
s)

DistBlBiCG
DistBlGMRES
DistLU

101.6

(b) Twisted Menger sponge

1 2 4 8 16 32 64
10

0

10
1

Number of processors

R
un

tim
e

(i
n

se
co

nd
s)

DistBlBiCG
DistBlGMRES
DistLU

101.6

(c) Luer connector

Fig. 8 The runtime (in seconds) for the parallel sparse linear solvers for the (a) Menger
sponge, (b) Luer Connector, and (c) twisted Menger sponge meshes. (Note a log scale is
used for the vertical axis.)

Table 5 Weak scaling results for parallel LBWARP using DistBlBiCG on the Luer connec-
tor mesh.

procs. # nodes # elements Time (s.)
1 203,182 1,032,988 132.64
2 392,588 2,124,529 151.12
4 875,476 3,829,734 168.15
8 1,478,923 6,842,864 171.63
16 2,445,328 14,522,967 175.23
32 5,241,554 30,942,386 180.74
64 10,523,992 59,291,516 182.31

Parallel LBWARP for Distributed Memory Machines 21

sponge mesh, although there are two different deformations, the total runtime
for both deformations is the same when using DistLU in the linear solution
step, as they generate and solve the same weight matrix. The experiments on
the two meshes gave very similar results in terms of runtime and speedup. They
both achieve speedup very close to the ideal speedup for a small number of
processors. This slightly decreases as the number of processors increases. The
runtime for the weight generation step dominates the overall time as shown in
Tables 3 and 4 resulting in good strong scaling of the algorithm since this step
is the most effective one to parallelize. We observe some slight performance
deterioration due to the overhead in the pre-processing step, i.e., computation
of the neighbor lists. However, the overall scalability of the algorithm is still
good up to 64 processors. We have not extended our experiments to more than
64 processors due to limited processor accessibility on the Cyberstar cluster.

We compare the performance of the three linear solvers, i.e., the Dist-
BlBiCG, DistBlGMRES, and DistLU solvers, as shown in Fig. 8. The figure
shows the runtime of the linear solution step of the parallel LBWARP algo-
rithm for the (a) Menger sponge, (b) twisted Menger sponge, and (c) Luer
connector meshes. The DistLU solver gives good performance on a smaller
number of processors and on smaller meshes, (i.e., with 6M nodes for the
Menger sponge mesh), with up to 8 processors, as we can see from Fig. 8(a)
and Fig. 8(b). However, for more than 8 processors, the iterative solvers are
more scalable, and yield a lower runtime. With larger meshes, (i.e., with 9M
nodes for the Luer connector mesh), both iterative solves perform better than
the direct solver in all cases (see Fig. 8(c)). Moreover, the lower complexity of
the DistBlBiCG solver results in the best scalability on the largest number of
processors in the experiments.

The weak scaling efficiency, which is a measure of speedup based on an
assumed fixed problem size per processor, of parallel LBWARP is shown in
Tab. 5. The results are obtained from the parallel LBWARP algorithm with
the DistBlBiCG solver on various sizes of Luer connector meshes. In the table,
the timing results for the parallel LBWARP algorithm on up to 64 processors
are given. The ideal ratio for successive speedups should be constant in this
case. However, in our case, there are some factors that affect the results. For
instance, the ratio of the number of nodes to the number of elements does
not exactly double as the number of processors is doubled, as the mesh is
unstructured. Such weak scaling results are typical for parallel unstructured
mesh computations.

7 Multiple Mesh Deformations in a Heartbeat Simulation

One of the main advantages of parallel LBWARP is the re-usability of the
weight matrix for additional deformations. Although the overall runtime for
parallel LBWARP is dominated by the weight generation step, the weight
matrix is generated only once and can be used for a series of deformations.
This greatly reduces the computational complexity of the algorithm. Moreover,

22 Thap Panitanarak, Suzanne M. Shontz

we can also apply linear solvers that support multiple RHS problems to further
reduce the overall runtime. This can be done by computing the RHS vectors
(from the boundary deformation step) for all deformations and solving the
relevant linear systems simultaneously. Note this can only be done, however,
in cases where all of the boundary deformations are known at once. In this
section, we demonstrate the performance of parallel LBWARP on multiple
mesh deformations with weight matrix re-utilization in a heartbeat simulation.

Heartbeat simulations have been developed in [6,33,34]. Such simulations
(and their corresponding visualizations) may aid clinicians in medical diagon-
sis/treatment and may also be used for education. In addition, simulations may
aid in obtaining a deeper understanding of a particular biological phenomenon
of the heart and its ventricular systems. For example, beating heart meshes
can be used to simulate the bioelectricity, biomechanics, and calcium dynam-
ics of the human heart. For this application, we focus on applying multiple
deformations to the initial heart mesh which are representative of actual heart
motion. Note our heart motion simulation is symbolic and does not correspond
to motion obtained from experimental data.

(a) (b) (c)

Fig. 9 Simulation of the heartbeat cycle. The initial motion of the heart is shown in (a),
whereas (b) and (c) show sample deformations of the heart at two different timesteps within
the cycle.

The initial heart domain was obtained from a model in GrabCAD [2],
a community database of CAD models. The initial volume heart mesh has
approximately 5M nodes and 30M tetrahedral elements and was generated us-
ing TetGen. The deformed boundaries are deformations of the surface meshes
based on the initial volume heart mesh. After warping the initial mesh to the
first deformed boundary, we consequently perform a series of deformations of
the original mesh to other target boundaries. We demonstrate the use of mul-
tiple deformations with parallel LBWARP. We experiment by computing the
deformations from the initial mesh (Fig. 9(a)) to five different deformations.
Figs. 9(b) and (c) shows the sample motions of these five deformations. Spy

Parallel LBWARP for Distributed Memory Machines 23

(a) Natural ordering (b) ND reordering

Fig. 10 Spy plots of AI for the initial heart mesh with (a) natural ordering and (b) ND
reordering.

plots of AI for the initial heart mesh with (a) natural ordering and (b) nested
dissection reordering are shown in Fig. 10. The mesh quality is shown in Ta-
ble 6 as measured by the MR mesh quality metric. The average MR remains
fairly constant throughout the mesh deformation process; only the maximum
MR increases throughout the deformation process. This was also observed for
the cardiology application in [64]. Note the noticeable decrease in mesh quality
is from large deformations of the initial mesh to the target geometric domains.
Smaller deformation steps could be taken (similar to those by the methods
in [52,65]) if less change in the mesh quality is needed per deformation step.
In our case, we are interested in how well the algorithm performs with large
deformations.

Table 6 The mean ratio (MR) mesh quality of the heart meshes.

Deformation
Mesh Quality (MR)

Min. Avg. Max.
0 1 0.6484 0.1745
1 1 0.2746 0.0248
2 1 0.2643 0.0220
3 1 0.3051 0.0207
4 1 0.2786 0.0202

Fig. 11 shows the total runtime of the parallel LBWARP algorithm for
four deformations of the heart mesh using the DistLU algorithm as the linear
solver. Reusing AI can significantly reduce the total runtime of the algorithm.
For k deformations, when AI is reused, the algorithm is close is close to k-
times faster than without reuse for sufficiently large k. The algorithm with
and without multiple RHS support for the linear solution step does not show

24 Thap Panitanarak, Suzanne M. Shontz

124 8 16 32 64

10
2

10
3

10
4

Number of processors

R
un

tim
e

(i
n

se
co

nd
s)

no reuse A
I

reuse A
I
 without multiple RHS

reuse A
I
 with multiple RHS

104.2

101.8

Fig. 11 The total runtime for four deformations of the heart mesh using DistLU as a solver.

much difference in runtime. (It is around 5% faster for four deformations on
64 processors. This is because the linear solution step takes less than three
percent of the total time.) Although the advantage of employing multiple RHS
support is much less than the advantage of reusing AI , the combination of both
approaches is rather advantageous when DistLU is used on large problems.

124 8 16 32 64
10

0

10
1

Number of processors

R
un

tim
e

(i
n

se
co

nd
s)

DistBlBiCG
DistBlGMRES
DistLU

101.8

(a)

124 8 16 32 64
10

0

10
1

Number of processors

R
un

tim
e

(i
n

se
co

nd
s)

DistBlBiCG
DistBlGMRES
DistLU

101.8

(b)

Fig. 12 The runtime for the linear solver step for (a) one deformation and (b) four defor-
mations.

We also compare the performance of the three parallel sparse linear solvers,
i.e., DistBlBiCG, DistBlGMRES and DistLU, on the linear solution step of
parallel LBWARP on the heart meshes as shown in Fig. 12. Fig 12(a) gives
a runtime comparison between the three algorithms for one deformation (i.e.,

Parallel LBWARP for Distributed Memory Machines 25

by solving the linear systems with three RHS). The DistLU algorithm gives
the best performance over both the DistBlBiCG and DistBlGMRES algo-
rithms for lower numbers of processors, (i.e., up to 32 processors). However,
the complexity of the algorithm does not scale well, and, thus, the DistBlBiCG
and DistBlGMRES algorithms give better performance for larger numbers of
processors, (i.e., more than 32 processors). Since DistBlBiCG has the lowest
complexity and also scales well when increasing the numbers of processors, it
shows the best performance on 64 processors. With 64 processors, the per-
formance of DistBlBiBG is approximately 17% and 13% faster than that of
DistBlGMRES and DistLU, respectively.

Despite the higher complexity, the direct solver has the advantage of reusing
the L and U factors and reduces further the overall runtime compared with
the parallel block iterative solvers when solving multiple RHS problems on
small numbers of processors. Fig 12(b) shows the runtimes of the three paral-
lel sparse linear solvers for four deformations (or by solving the linear system
with 12 RHS vectors). The advantage of reusing the L and U factors for mul-
tiple linear solves on up to 32 processors can be seen in this figure. Once the L
and U factors of the matrix have been computed, they can be used to (triangu-
lar) solve with additional RHS vectors in much less time. However, due to the
high complexity of the sparse LU algortihm, it has the worst scalability. For
large numbers of processors, we can see that the DistLU algorithm shows worse
performance than the DistBlBiCG algorithm which has lower complexity and
better strong scalability. With 64 processors, the performance of DistBlBiBG
is approximately 13% and 2% faster than those of DistBlGMRES and DistLU,
respectively.

8 Conclusions and Future Research

We have proposed a parallel formulation of the LBWARP algorithm in [64] for
warping tetrahedral meshes on distributed memory machines. The algorithm
generates the p distributed neighbor lists from the input mesh in which all
interior nodes are numbered first and the boundary nodes are numbered last
and sends each distributed neighbor list to a processor (assuming there are
at least p processors available). Once the processors receive their neighbor
lists, they perform the local weight generation for nodes in their neighbor list
in parallel and without any communication. After that, the mesh boundary is
deformed in parallel. Parallel LBWARP distributes the entries of the deformed
boundary to the corresponding processors based on the rows of the weight
matrix that the processors have generated. Finally, the linear system, which
is based on the weight matrix and the boundary deformation, is solved for the
final coordinates of the interior nodes in the deformed mesh using one of three
parallel sparse linear solvers, i.e., the distributed block BiCG, distributed block
GMRES, and distributed LU algorithms. These solvers support multiple right-
hand side vectors which reduces the overall runtime of the parallel LBWARP

26 Thap Panitanarak, Suzanne M. Shontz

algorithm since it otherwise requires solution of a sparse linear system with
three right-hand side vectors for each deformation of a tetrahedral mesh.

Our experimental results show good strong scalability and speedup on sev-
eral 3D tetrahedral meshes as a result of efficiently parallelizing the most
time consuming step in the algorithm, i.e., the weight generation step. This
step takes approximately 80-90% of the algorithm’s overall runtime. However,
we implement it in an embarrassingly parallel manner in order to avoid all
communication during this step. Weak scaling results typical of those for un-
structured meshes are also demonstrated. In regards to the performance of
the linear solvers, the DistBlBiCG and DistBlGMRES algorithms generally
perform well on a large number of processors, (i.e., p > 32). On the other
hand, the DistLU algorithm performs better on a small number of processors,
(i.e., p ≤ 32) and large numbers of deformations due to the reuse of the L and
U factors. Our experiments only use up to 64 processors due to the limited
computing system. We expect the two iterative algorithms to outperform the
DistLU algorithm when using more than 64 processors or when warping larger
meshes (e.g., meshes with more than ten million nodes), as they have lower
algorithm complexity and memory requirements.

We applied parallel LBWARP to a heartbeat simulation and demonstrated
its performance on a sequence of mesh deformations. For multiple mesh defor-
mations, once the weight matrix has been computed, the parallel LBWARP
algorithm can reuse this matrix to determine the interior nodes for the other
mesh deformations. That is, only the boundary deformation and linear so-
lution steps are needed which further reduces the algorithm complexity and
runtime. With the use of parallel sparse linear solvers that support multiple
right-hand side vectors, the overall runtime can be reduced even further.

Possibilities for future research include extension of parallel LBWARP to
other mesh element types such as hexahedral elements on 3D domains. An-
other possible avenue for research is the implementation of a parallel hybrid
OpenMP/MPI LBWARP algorithm which can utilize both intra- and inter-
node parallelism, as shared memory architectures are becoming increasingly
more common. In regards to the parallel sparse linear solvers, our current im-
plementations of the DistBlBiCG and DistBlGMRES algorithms apply row-
wise partitioning and distribution of the weight matrix. It is possible to further
improve their performance by applying a block matrix partition and distribu-
tion. Determination of ways to reuse a portion of the computations performed
by these parallel iterative methods when multiple deformations are applied is
also of interest.

Acknowledgements The work of the first author was funded by the Royal Thai Gov-
ernment scholarship. The work of the second author was supported in part by NSF grants
CNS-0720749 and NSF CAREER Award ACI-1500487 (formerly ACI-1330054 and ACI-
1054459). This work was also supported in part through instrumentation funded by the
National Science Foundation through grant ACI0821527.

Parallel LBWARP for Distributed Memory Machines 27

References

1. CyberSTAR: A scalable terascale advanced resource for discovery through computing.
http://www.ics.psu.edu/infrast/index.html

2. GrabCAD. https://grabcad.com

3. Interoperable technologies for advanced petascale simulations (ITAPS) center. http:

//www.itaps.org/

4. Trilinos Project. http://trilinos.org/

5. Alan, G.: Nested dissection of a regular finite element mesh. SIAM Journal on Numerical
Analysis 10, 345–363 (1973)

6. Amano, A., Kanda, K., Shibayama, T., Kamei, Y., Matsuda, T.: Model generation
interface for simulation of left ventricular motion. Electronics and Communications in
Japan (Part II: Electronics) 90(12), 87–98 (2007)

7. Antonopoulos, C., Ding, X., Chernikov, A., Blagojevic, F., Nikolopoulos, D., Chriso-
choides, N.: Multigrain parallel Delaunay mesh generation. In: Proceedings of the 19th

Annual International Conference on Supercomputing, pp. 367–376. ACM Press (2005)
8. Aycock, K., Campbell, R., Manning, K., Sastry, S., Shontz, S., Lynch, F., Craven, B.: A

computational method for predicting inferior vena cava filter performance on a patient-
specific basis. Journal of Biomechanical Engineering 136, 081,003 (2014)

9. Bah, M., Nair, P., Browne, M.: Mesh morphing for finite element analysis of implant
positioning in cementless total hip replacements. Medical Engineering and Physics 31,
1235–1243 (2009)

10. Baker, T.: Mesh movement and metamorphosis. Engineering with Computers 18(3),
188–198 (2002)

11. Baldwin, M., Langenderfer, J., Rullkoetter, P., Laz, P.: Development of subject-specific
and statistical shape models of the knee using an efficient segmentation and mesh-
morphing approach. Computer Methods and Programs in Biomedicine 97, 232–240
(2010)

12. Barrett, R., Berry, M.W., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout,
V., Pozo, R., Romine, C., Van der Vorst, H.: Templates for the solution of linear systems:
building blocks for iterative methods, vol. 43. SIAM (1994)

13. Bavier, E., Hoemmen, M., Rajamanickam, S., Thornquist, H.: Amesos2 and Belos: Di-
rect and iterative solvers for large sparse linear systems. Scientific Programming 20(3),
241–255 (2012)

14. Beńıtez, D., Rodŕıguez, E., Escobar, J.M., Montenegro, R.: Performance evaluation of
a parallel algorithm for simultaneous untangling and smoothing of tetrahedral meshes.
In: Proceedings of the 22nd International Meshing Roundtable, pp. 579–598. Springer
(2014)

15. Bertsekas, D.P.: Projected Newton methods for optimization problems with simple con-
straints. SIAM Journal on Control and Optimization 20(2), 221–246 (1982)

16. Botsch, M., Bommes, D., Kobbelt, L.: Efficient linear system solvers for mesh process-
ing. In: Proceedings of the 11th IMA International Conference on the Mathematics of
Surfaces, pp. 62–83 (2005)

17. Branets, L., Carey, G.: A local cell quality metric and variational grid smoothing algo-
rithm. Engineering with Computers 21, 19–28 (2005)

18. Cardoze, D., Cunha, A., Miller, G., Phillips, T., Walkington, N.: A Bézier-based ap-
proach to unstructured moving meshes. In: Proceedings of the 20th ACM Symposium
on Computational Geometry, pp. 71–80 (2004)

19. Cardoze, D., Miller, G., Olah, M., Phillips, T.: A Bézier-based moving mesh frame-
work for simulation with elastic membranes. In: Proceedings of the 13th International
Meshing Roundtable, pp. 71–80. Sandia National Laboratories (2004)

20. Castanos, J., Savage, J.: Pared: A framework for the adaptive solution of PDEs. In:
Proceedings of the 8th IEEE Symposium on High Performance Distributed Computing,
pp. 133–140 (1999)

21. Center for Simulation of Advanced Rockets. http://www.csar.illinois.edu/about/

index.html

22. Chernikov, A., Chrisochoides, N.: Parallel guaranteed quality Delaunay uniform mesh
refinement. SIAM Journal on Scientific Computing 28, 1907–1926 (2006)

28 Thap Panitanarak, Suzanne M. Shontz

23. Chrisochoides, N.: A survey of parallel mesh generation methods. Tech. Rep. SC-2005-
09, Brown University (2005)

24. Chrisochoides, N., Chernikov, A., Fedorov, A., Kot, A., Linardakis, L., Foteinos, P.:
Towards exascale parallel Delaunay mesh generation. In: Proceedings of the 18th Inter-
national Meshing Roundtable, pp. 319–336 (2009)

25. De Cougny, H., Shephard, M.: Parallel refinement and coarsening of tetrahedral meshes.
International Journal for Numerical Methods in Engineering 46(7), 1101–1125 (1999)

26. Estruch, O., Lehmkuhl, O., Borrell, R., Segarra, C.P., Oliva, A.: A parallel radial basis
function interpolation method for unstructured dynamic meshes. Computers and Fluids
80, 44–54 (2013). Selected contributions of the 23rd International Conference on Parallel
Fluid Dynamics ParCFD2011

27. Fletcher, R.: Conjugate gradient methods for indefinite systems. In: Numerical analysis,
pp. 73–89. Springer (1976)

28. Galtier, J., George, P.: Prepartioning as a way to mesh subdomains in parallel. In:
Proceedings of the ASME/ASCE/SES Summer Meeting, Special Symposium on Trends
in Unstructured Mesh Generation, pp. 107–122 (1997)

29. Gerhold, T., Neumann, J.: The parallel mesh deformation of the DLR TAU-code. In:
New results in numerical and experimental fluid mechanics VI, notes on numerical fluid
mechanics and multidisciplinary design, vol. 96, pp. 162–169. Springer (2008)

30. Gorman, G.J., Rokos, G., Southern, J., Kelly, P.H.: Thread-parallel anisotropic mesh
adaptation. In: New Challenges in Grid Generation and Adaptivity for Scientific Com-
puting, pp. 113–137. Springer (2015)

31. Helenbrook, B.T.: Mesh deformation using the biharmonic operator. International Jour-
nal for Numerical Methods in Engineering 56, 1007–1021 (2003)

32. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems.
Journal of Research of the National Bureau of Standards Vol 49(6) (1952)

33. Hunter, P.J., Pullan, A.J., Smaill, B.H.: Modeling total heart function. Annual review
of biomedical engineering 5(1), 147–177 (2003)

34. Ijiri, T., Ashihara, T., Umetani, N., Igarashi, T., Haraguchi, R., Yokota, H., Nakazawa,
K.: A kinematic approach for efficient and robust simulation of the cardiac beating
motion. PLOS ONE 7(5), e36,706 (2012)

35. Jacob, B., Guennebaud, G.: Eigen. http://eigen.tuxfamily.org
36. Karypis, G., Kumar, V.: A fast and highly quality multilevel scheme for partitioning

irregular graphs. SIAM Journal on Scientific Computing 20, 359–392 (1999)
37. Knupp, P.: Updating meshes on deforming domains: An application of the target-matrix

paradigm. Communications in Numerical Methods for Engineering 24, 467–476 (2007)
38. Lachat, C., Dobrzynski, C., Pellegrini, F.: Parallel mesh adaptation using parallel graph

partitioning. In: 5th European Conference on Computational Mechanics, vol. 3, pp.
2612–2623. CIMNE-International Center for Numerical Methods in Engineering (2014)

39. Li, R., Tang, T., Zhang, P.: Moving mesh methods in multiple dimensions based on
harmonic maps. Journal of Computational Physics 170, 562–688 (2001)

40. Li, X.S., Demmel, J.W.: SuperLU DIST: A scalable distributed-memory sparse direct
solver for unsymmetric linear systems. ACM Transactions on Mathematical Software
29(2), 110–140 (2003)

41. Liu, A., Joe, B.: Relationship between tetrahedron shape measures. BIT Numerical
Mathematics 34(2), 268–287 (1994)

42. Liu, Y., D’Arceuil, H., He, J., Duggan, M., Gonzalez, G., Pryor, J., de Crespigny,
A.: A nonlinear mesh-warping technique for correcting brain deformation after stroke.
Magnetic Resonance Imaging 24, 1069–1075 (2006)

43. Löhner, R.: A 2nd generation parallel advancing front grid generator. In: Proceedings
of the 21st International Meshing Roundtable, pp. 457–474 (2013)

44. Löhner, R., Camberos, J., Marsha, M.: Unstructured scientific computation on scalable
multiprocessors. In: P. Hehrotra, J. Saltz (eds.) Parallel Unstructured Grid Generation,
pp. 31–64. MIT Press (1990)

45. Löhner, R., Cebral, J.: Parallel advancing front grid generation. In: Proceedings of the
8th International Meshing Roundtable, pp. 67–74 (1999)

46. Lu, Q., Shephard, M.S., Tendulkar, S., Beall, M.W.: Parallel mesh adaptation for high-
order finite element methods with curved element geometry. Engineering with Comput-
ers 30(2), 271–286 (2014)

Parallel LBWARP for Distributed Memory Machines 29

47. Luke, E., Collins, E., Blades, E.: A fast mesh deformation method using explicit inter-
polation. Journal of Computational Physics 231, 586–601 (2012)

48. Nave, D., Chrisochoides, N., Chew, L.: Guaranteed-quality parallel Delaunay refinement
for restricted polyhedral domains. In: Computational Geometry: Theory and applica-
tions, vol. 28, pp. 191–215 (2004)

49. O’Leary, D.P.: The block conjugate gradient algorithm and related methods. Linear
algebra and its applications 29, 293–322 (1980)

50. Oliker, L., Biswas, R., Gabow, H.: Parallel tetrahedral mesh adaptation with dynamic
load balancing. Parallel Computing Journal pp. 1583–1608 (2000)

51. Park, J., Shontz, S., Drapaca, C.: Automatic boundary evolution tracking via a com-
bined level set method and mesh warping technique: Application to hydrocephalus. In:
Proc. of the Mesh Processing in Medical Image Analysis 2012 - MICCAI 2012 Interna-
tional Workshop, MeshMed 2012, pp. 122–133 (2012)

52. Park, J., Shontz, S., Drapaca, C.: A combined level set/mesh warping algorithm for
tracking brain and cerebrospinal fluid evolution in hydrocephalic patients. Image-Based
Geometric Modeling and Mesh Generation, Lecture Notes in Computational Vision and
Biomechanics 3, 107–141 (2013)

53. Peskin, C., McQueen, D.: Heart throb. http://www.psc.edu/science/Peskin/Peskin.

html
54. Rivara, M., Carlderon, C., Pizaro, D., Fedorov, A., Chrisochoides, N.: Parallel decoupled

terminal-edge bisection algorithm for 3D meshes. Engineering with Computers (2005)
55. Rivara, M., Pizarro, D., Chrisochoides, N.: Parallel refinement of tetrahedral edges using

terminal-edge bisection algorithm. In: Proceedings of the 13th International Meshing
Roundtable (2004)

56. Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing
7(3), 856–869 (1986)

57. Sastry, S., Kim, J., Shontz, S., Craven, B., Lynch, F., Manning, K., Panitanarak, T.:
Patient-specific model generation and simulation for pre-operative surgical guidance for
pulmonary embolism treatment. Image-Based Geometric Modeling and Mesh Genera-
tion, Lecture Notes in Computational Vision and Biomechanics 3, 223–249 (2013)

58. Sastry, S.P., Shontz, S.M.: A parallel log-barrier method for mesh quality improvement
and untangling. Engineering with Computers 30(4), 503–515 (2014)

59. Selwood, P., Berzins, M., Dew, P.: 3D parallel mesh adaptivity: Data-structures and
algorithms. In: Proceedings of the 8th SIAM Conference on Parallel Processing for
Scientific Computing. SIAM (1997)

60. Selwood, P., Verhoeven, N., Nash, J., Berzins, M., Weatherill, N., Dew, P., Morgan, K.:
Parallel mesh generation and adaptivity: Partitioning and analysis. In: Proceedings of
1996 Parallel CFD Conference (1996)

61. Seol, E., Shephard, M.: Efficient distributed mesh data structure for parallel automated
adaptive analysis. Engineering with Computers 22, 197–213 (2006)

62. Shephard, M., Flaherty, J., Bottasso, C., de Cougny, H., Özturan, C., Simone, M.:
Parallel automated adaptive analysis. Parallel Computing 23, 1327–1347 (1997)

63. Shontz, S.: Numerical methods for problems with moving meshes. Ph.D. thesis, Cornell
University (January 2005)

64. Shontz, S., Vavasis, S.: A mesh warping algorithm based on weighted Laplacian smooth-
ing. In: Proceedings of the 12th International Meshing Roundtable, pp. 147–158 (2003)

65. Shontz, S., Vavasis, S.: Analysis of and workarounds for element reversal for a finite
element-based algorithm for warping triangular and tetrahedral meshes. BIT, Numerical
Mathematics 50, 863–884 (2010)

66. Shontz, S., Vavasis, S.: A robust solution procedure for hyperelastic solids with large
boundary deformation. Engineering with Computers 28, 135–147 (2012)

67. Si, H.: Tetgen: A quality tetrahedral mesh generator and three-dimensional Delaunay
triangulator. http://tetgen.berlios.de/

68. Sigal, I., Hardisty, M., Whyne, C.: Mesh-morphing algorithms for specimen-specific
finite element modeling. Journal of Biomechanics 41, 1381–1389 (2008)

69. Sigal, I., Whyne, C.: Mesh morphing and response surface analysis: Quantifying sensi-
tivity of vertebral mechanical behavior. Annals of Biomedical Engineering 38, 41–56
(2010)

30 Thap Panitanarak, Suzanne M. Shontz

70. Sigal, I., Yang, H., Roberts, M., Downs, J.: Morphing methods to parameterize
specimen-specific finite element model geometries. Journal of Biomechanics 43, 254–262
(2010)

71. Simoncini, V.: A stabilized QMR version of block BICG. SIAM Journal on Matrix
Analysis and Applications 18(2), 419–434 (1997)

72. Simoncini, V., Gallopoulos, E.: Convergence properties of block GMRES and matrix
polynomials. Linear Algebra and its Applications 247, 97–119 (1996)

73. Stein, K., Tezduyar, T., Benney, R.: Mesh moving techniques for fluid-structure inter-
actions with large displacements. Transactions of the ASME 2003 70, 58–63 (2003)

74. Stein, K., Tezduyar, T., Benney, R.: Automatic mesh update with the solid-extension
mesh moving technique. Computational Methods in Applied Mechanical Engineering
193, 2019–2032 (2004)

75. Tsai, H., Wong, A., Cai, J., Zhu, Y., Liu, F.: Unsteady flow calculations with a parallel
multiblock moving mesh algorithm. AIAA Journal 39, 1021–1029 (2001)

76. T.Tezduyar, Behr, M., Mittal, S., Johnson, A.: Computation of unsteady incompressible
flows with the finite element methods – Space-time formulations, iterative strategies and
massively parallel implementations. In: New Methods in Transient Analysis, vol. PVP-
vol.246/AMD-vol.143, pp. 7–24. ASME (1992)

77. Williams, R.: Adaptive parallel meshes with complex geometry. In: Numerical Grid
Generation in Computational Fluid Dynamics and Related Fields (1991)

