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1 Background

The ability to visualize action potentials deep within the walls of the heart has
important applications. It enables the identification of regions of electrically and
mechanically compromised tissue that can mark the location(s) of infarcted and
ischemic myocardial tissue, and also permits the visualization of normal and abnor-
mal action potential wave propagation patterns for use in both clinical and cardiac
research settings. Recently, we have been investigating the possibility of using 4-D
mechanical deformation data, obtained either from MRI or ultrasound images, to
reverse-calculate these action potential patterns [4, 5, 2]. This idea has also been
studied by Konofagou et al. [6], who used mixed time and space second deriva-
tives in the displacement fields to identify the location of action potentials. While
this mixed-derivative method should be effective for spatially one-dimensional ac-
tion potentials, it is less effective when propagation of the waves is fundamentally
three-dimensional.

To reconstruct three-dimensional propagation, we have demonstrated that solv-
ing the full, force-balance equation in three spatial dimensions for the active stresses

Niels F. Otani
Rochester Institute of Technology, Rochester, NY 14623, U.S.A., e-mail: nfosma@rit.edu

Dylan Dang
Rochester Institute of Technology, Rochester, NY 14623, U.S.A., e-mail: dnd6444@rit.edu

Shusil Dangi
Rochester Institute of Technology, Rochester, NY 14623, U.S.A., e-mail: sxd7257@rit.edu

Michael Stees
University of Kansas, Lawrence, KS 66045, U.S.A., e-mail: mstees@ku.edu

Suzanne M. Shontz
University of Kansas, Lawrence, KS 66045, U.S.A., e-mail: shontz@ku.edu

Cristian A. Linte
Rochester Institute of Technology, Rochester, NY 14623, U.S.A., e-mail: clinte@mail.rit.edu

1



2 Otani, Dang, Dangi, Stees, Shontz and Linte

induced by the action potentials, using observed deformations as input, is mathemat-
ically a viable method. We can then consider the calculated active stress field to be
a surrogate for the pattern of action potentials, since the action potentials essentially
trigger the generation of active stresses. While the ability to reconstruct imposed
stresses from observed strains is, in general, an underdetermined problem, for the
case of the heart it is overdetermined, because active stresses are known to be ori-
ented exclusively along the myocardial fiber direction, which greatly reduces the
number of unknowns [4, 5].

In previous work, we took advantage of this constraint to show that active
stresses, and therefore the action potential locations, can be reasonably well de-
termined in simple geometries in the presence of both noise in the displacement
fields and uncertainty in the fiber orientations [4]. For the study presented here, we
show that this same method can also identify the locations of compromised tissue
through the latter’s modified or lack of ability to contract in the presence of an ac-
tion potential. Thus, our method could potentially lead to new, non-invasive cardiac
imaging-based diagnostic methods that could help to identify regions affected by
cardiac disease that leads to impaired contractile function.

2 The Basic Method

Our method consists of solving the three-dimensional force-balance equation to-
gether with the assumption of tissue incompressibility. For our preliminary tests of
the properties and effectiveness of this method, we employed the linearized version
of these equations, namely,
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Here TNM(E) is the passive second Piola-Kirchhoff stress tensor, which depends
on the strain tensor EPQ, δxP is the tissue displacement in the xP direction, p is the
local hydrostatic pressure, δNM is 1 when N = M and 0 otherwise, and T active

MN is
the stress tensor due to the action-potential-induced force generated parallel to the
orientation of the myocardial fibers. Sums over repeated indices are implicit. The
stiffness tensor, (∂TNM/∂EPQ)(0) was defined from the model of Nash and Hunter
[3].

We first solved the equations in a synthetic tissue sample of isotropic resolution
along the three spatial directions (i.e., a cubic synthetic tissue sample) using stress-
free boundary conditions. We defined the myocardial fiber system in a realistic way,
with the fiber directions rotating smoothly about the vertical (y) axis from the bottom
to the top of the synthetic tissue sample.
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Fig. 1 Deformations calculated from the forward model at three different times in response to a
plane wave pattern of active stresses propagating in the positive x-direction.

We used these governing equations to solve the forward problem in which we
quantified the tissue deformation (the δxP’s) in response to the prescribed active
stress (T active

MN ’s). The forward model enabled us to generate the tissue deformation
data (i.e., the displacement field) needed as input in the inverse problem, which is
the ultimate objective of this work. To solve the inverse problem, we used the same
governing equations, but solved for the active stress using the displacement field
as input. The equations were solved using a low-order finite element method based
on the rectangular isotropic mesh of the synthetic cubic tissue sample introduced
earlier.

3 Numerical Evaluation and Noise Sensitivity Analysis

Our test case was to launch a plane wave “action potential” from the left side of
the system in Fig. 1, which was represented as a region of nonzero active stress.
Specifically, at each point within the moving plane wave region, we defined the
active stress to be T active = T0x̂α x̂α , where T0 is a nonzero constant, and x̂α is a unit
vector aligned along the local fiber direction. The active stress tensor was defined to
be zero everywhere outside the plane wave region.

The primary scope of this study was to faithfully reconstruct the active stresses
from displacement data as a means to detect and assess the extent of possible is-
chemic or infarcted regions. Accordingly, we defined a few cubic regions of varying
sizes within the synthetic tissue sample and prescribed to them zero active stress
as the action potential plane wave passed through them, thereby mimicking non-
contractile (i.e., no active stress generating) regions. We then ran the forward model
and computed the tissue displacement field shown in Fig. 1 in response to the pre-
scribed active-stress plane wave. Next, we added noise (0 mean, 1% standard devia-
tion) to this displacement field, to represent the effects of errors and uncertainty that
would typically be present in the measured data. Finally, this “noisy displacement
data” was used as input into our inverse model.
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The accuracy of the inverse algorithm, and its robustness in the presence of noise,
was assessed by comparing the active stress distribution reconstructed from the
noisy displacement data to the originally prescribed active stress distribution, and
by identifying the effectiveness of the generated active stress maps in revealing the
synthetic regions that mimicked compromised contractile function.

Cross-sections of the calculated active stresses at different times are shown in
Fig. 2. We observed that any regions exhibiting poor contractile function (bounded
by dotted lines) that were 2x2x2 pixels or larger in size were clearly visible as
lighter-colored (lower active stress) regions as the action potential (inside the dashed
lines) passed through them. The presence of the poorly contractile regions was even
more apparent when the plots were viewed in sequence, as a movie.

Fig. 2 Grayscale plot of the active stress along the local fiber direction in a cross-section of the
system showing at three different times. The actives stresses were calculated by the inverse model
using as input the deformations shown in Fig. 1 to which was added 1% noise. The dashed line
shows the boundaries of the plane wave of active stresses; the dotted line shows the boundary of
any cubic “dead” region through which the cross-section passed.

4 Integration of Realistic Cardiac Geometries and Tetrahedral
Computational Meshes

In preparation for applying this method to actual cardiac data, we have been de-
veloping methods for individualized segmentation of the cardiac anatomy from di-
agnostic, clinical-quality cardiac MRI images, which we can then use to generate
static and dynamic patient-specific myocardial models to be subsequently employed
for computing the active stresses.

Specifically, we developed a framework for left ventricle (LV) segmentation from
cardiac cine-MRI. First, we segment the LV blood pool using iterative graph cuts,
and subsequently use this information to segment the myocardium. We formulate
the segmentation procedure as an energy minimization problem in a graph sub-
ject to the shape prior obtained by label propagation from an average atlas using
affine registration. The proposed framework has been validated on 30 patient car-
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diac cine-MRI datasets available through the Statistical Atlases and Computational
Models of the Heart (STACOM) Left Ventricle (LV) segmentation challenge us-
ing traditional segmentation assessment metrics, such as Dice index, Jaccard index,
sensitivity, specificity, positive predictive value (PPV), and negative predictive value
(NPV), and yielded fast, robust, and accurate segmentation results. Lastly, the pro-
posed algorithm was implemented in Python and required 45 seconds on average to
segment the blood pool and myocardium from cine MRI volumes on an Intel Xenon
3.60 GHz 32GB RAM PC [1].

A similar approach has been implemented for the segmentation of the right ven-
tricle from cardiac cine MR images [10]. While the right ventricle is not as exten-
sively studies as the left ventricle, there are nevertheless many unanswered questions
with respect to assessing and understanding its shape and geometry. Fig. 3 shows
the typical three orthogonal views through a cine cardiac MRI dataset, along with
the segmentation of the right ventricle on a slice-by-slice basis, as well as a 3D
reconstruction of a surface mesh.

Fig. 3 Axial, Sagittal, Coronal, and the 3D model (counter-clockwise from top left) of the seg-
mented RV blood pool overlayed onto the MRI image.

Moreover, Fig. 4 shows the assessment of the segmented and reconstructed right
ventricle surface against the geometry of the same chamber reconstructed based
on the manual user’s ground truth segmentation [10]. In essence, we computed the
signed distance between the surface generated using automated segmentation and
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the surface generated from the manually segmented data, and assigned the signed
distance value as a scalar to each mesh node of the surface model, then interpolated
across all all nodes and elements to obtain the signed distance error map shown in
Fig. 4.

This approach constitutes a means to evaluate the fidelity of the automatically
generated surface model both quantitatively, according to the mesh-to-mesh signed
distance, as well as qualitatively, by ensuring that the overall fidelity of the seg-
mented cardiac chamber has not been compromised by the automated segmentation.
The underlying assumption is that the surface model generated from the manually
segmented data serves as the accepted ground truth model.

Fig. 4 Signed distance error
between the segmented right
ventricle blood pool and the
corresponding gold standard
manual segmentation over-
layed onto the 3D model of
the latter.

The 3D anatomical models shown in Figs. 3 and 4 were obtained by generating
an iso-surface along the segmentation mask using the well-known marching cubes
algorithm [7]. After generating the surface mesh using marching cubes, we used
MeshLab [8] to apply several post-processing transformations. Essentially, the re-
sulting surface was then decimated to significantly reduce the number of surface
triangles, however without compromising the fidelity of the surface.

The transformations were executed in two phases. The purpose of the first phase
was to eliminate duplicate nodes in the input surface mesh. Following this, the sec-
ond phase emphasized the elimination of low quality triangles from the surface. This
elimination was performed using the following three techniques: (1) edge collapses,
(2) Laplacian smoothing, and (3) edge flips. These operations attempt to improve
the mesh quality by changing the mesh topology and moving mesh nodes.

In Fig. 5, we show the initial surface mesh generated by marching cubes, the
improved mesh using the process we described above, and a rotated view of the
original and improved mesh, respectively. In addition, the triangle color in Fig. 5
corresponds to the quality of the element as measured by the ratio of the inradius to
the circumradius. The color blue indicates element quality in the range (0.65− 1]
(with dark blue being the highest quality and light blue being the lowest quality);
green indicates element quality in the range (0.35− 0.65] (with dark green being
the highest quality and light green being the lowest quality); yellow and red indicate
element quality in the range (0− 0.35] (with yellow being the highest quality and
red being the lowest quality).

By comparing the two meshes in Figs. 5(a) and 5(c), we can see significantly
more blue elements in the improved mesh. This indicates that our elimination pro-
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(a)

(b)

(c)

(d)

Fig. 5 The surface meshes: (a) generated by marching cubes, (b) rotated view of (a), (c) after
applying the improvement transformations, and (d) rotated view of (c).

cess did in fact improve the quality of the surface mesh.

The improved surface mesh was then used as input to the Delaunay-based tetra-
hedral mesh generator, TetGen [9]. To enforce the creation of a quality volume mesh,
we used the quality flag in TetGen with a value of 1.2. This value sets the maximum
allowable radius to edge ratio to 1.2. To assess the quality of the tetrahedral mesh,
we used the aspect ratio metric. The ideal value of the aspect ratio is 1.0. In Fig.
7, we show the number of elements in each range of aspect ratio values. In Fig. 6



8 Otani, Dang, Dangi, Stees, Shontz and Linte

we show a cut-away view of the tetrahedral volume mesh constructed with TetGen.
The cyan elements correspond to triangles on the surface mesh, while the magenta
elements correspond to tetrahedra in the volume mesh. An important detail to note
is that the volume mesh conforms to the surface mesh.

(a)
(b)

Fig. 6 A cut-away view of the tetrahedral volume mesh: (a) in the upright orientation, and (b) in
the rotated orientation.

5 Summary, Conclusion and Future Work

Previously, we demonstrated that it is possible to reconstruct the active stresses
created by propagating action potentials in the myocardium by reverse-calculating
them from the mechanical deformations they produce. These active stresses can of-
ten play the role of surrogates for the action potentials. Therefore, a method that
helps quantify the active stresses may serve as the basis for a new visualization
technique that allows us to see patterns of action potential propagation deep within
the heart, using MRI or ultrasound images as input.

In this study, we demonstrate that the reconstructed active stresses can also be
used to identify functionally compromised regions within the heart, such as those
dominated by ischemic or infarcted tissue. We also show again, by means of a nu-
merical simulation involving a synthetic tissue sample of simplified geometry, that
our inverse method is able to reconstruct active stresses from tissue deformation
data.

Lastly, in preparation for the next step in our study, we have developed new seg-
mentation techniques and generated tetrahedral volume meshes of the myocardium
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Fig. 7 A histogram of element quality as measured by aspect ratio. The y-axis is displayed on a
logarithmic scale. See the legend below which pairs each x-axis label with the corresponding range
of aspect ratio values.

label range
a [1,1.5)
b [1.5,2)
c [2,2.5)
d [2.5,3)
e [3,4)
f [4,6)
g [6,10)
h [10,15)
i [15,25)
j [25,50)
k [50,100)

which will allow us to test these ideas in realistic, individualized heart geometries
using meshes which faithfully model the geometry. In the future, we will develop
dynamic meshing algorithms in order to simulate cardiac deformations on deform-
ing meshes.
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