
Automated Edge Grid Generation Based on
Arc-Length Optimization

David McLaurin1 and Suzanne M. Shontz2

1 High Performance Computing Collaboratory, Center for Advanced Vehicular
Systems, Graduate Program in Computational Engineering, Mississippi State
University, Mississippi State, MS, U.S.A., d.mclaurin@msstate.edu

2 Department of Mathematics and Statistics, Department of Computer Science
and Engineering, Center for Computational Sciences, Graduate Program in
Computational Engineering, Mississippi State University, Mississippi State, MS,
U.S.A., sshontz@math.msstate.edu

Summary. Computational design and analysis has become a fundamental part of
industry and academia for use in research, development, and manufacturing. In
general, the accuracy of a computational analysis depends heavily on the fidelity
of the computational representation of a real-world object or phenomenon. Most
mesh generation strategies focus on element quality–with the justification being
that downstream applications require high quality geometries in order to achieve a
desired level of accuracy. However, element quality should be secondary to accurately
representing the underlying physical object or phenomenon. This work seeks to
improve the process of creating a computational model of an object of interest by
accelerating the process of mesh generation by reducing the need for (often) manual
intervention. This acceleration will be accomplished by automatically generating
optimal discretizations of curves by minimizing the arc-length deficit. We propose
a method for generating optimal discretizations through local optimization of the
arc length. Our results demonstrate the robustness and accuracy of our optimal
discretization technique. We also discuss how to incorporate our edge grid generator
into existing mesh generation software.
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1 Introduction

Computational design and analysis has become a fundamental part of industry
and academia for use in research, development, and manufacturing. In general,
the accuracy of a computational analysis depends heavily on the fidelity of
the computational representation of a real-world object or phenomenon. How-
ever, the task of creating high fidelity models of an actual geometry can be
time-consuming–sometimes consuming up to seventy-five percent of the time
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required to produce a solution [1]. This work seeks to improve the process of
creating a computational model of an object of interest by accelerating the
process of mesh generation. In general, a valid volume grid (three-dimensional)
is bounded by surface grids (two-dimensional); surface grids are bounded by
edge grids (one-dimensional). At the start of the grid generation hierarchy
are point spacing values at the end points of analytical or parametric curves
which bound the edge grids. Once the bounding surface grid is generated, vol-
ume grid generation is, in most cases, a highly automated process. The same
generalization can be made for surface grids and edge grids. Algorithms that
use automated point creation/insertion for mesh generation of one-, two-, and
three-dimensional geometries are ubiquitous [2, 3, 4]. The work here seeks to
build on [5] by formalizing the problem description, developing error bounds,
and improving the robustness and accuracy of the previously developed algo-
rithms and concepts.

The computation involved with edge grid generation is trivial when com-
pared to volume grid generation – even with high-order NURBS curves. How-
ever, the point spacing values at the end points of curves have to be set
manually in order to satisfy a desired length scale. This manual process is
time consuming. If geometry repair (gluing, trimming, etc) is not considered,
the amount of user input required to generate a volume grid can be concen-
trated on the lowest levels of the grid generation hierarchy – i.e., edge grid
generation. In addition, if the edge grids are not generated appropriately then
the errors present there, such as overly dense or sparse spacing, will be prop-
agated up the grid generation hierarchy and be present in each subsequent
higher-dimensional entity.

The proposed algorithm is a general-use method that can be applied to any
“digital curve” regardless of its representation. This is due to every step be-
ing developed without the use of derivatives. Most other methods operate on a
specific type of curve, such as NURBS or B-splines, and use the specific infor-
mation available for the type of curve in use. NURBS curves are the de-facto
standard in CAD; however, in other fields, such as pattern-recognition, other
types of digital curves, such as parametric, are more common [6]. T-splines
are also becoming more popular in isogeometric analysis, for example [7].

The justification for the development of these methods lies in the need
for an automated way of setting point spacing values on curves. Therefore, a
general algorithm that does not require derivative information to generate a
suitable edge grid has been developed. A result of not using derivatives is that
each step in the algorithm is robust to large changes in derivatives or curves
that are not “well behaved”, e.g., they were highly oscillatory. This process
can only be automated if some way of judging “how well” an edge grid rep-
resents a curve is present. To this end, a method of generating edge grids
through constrained optimization is detailed below. Further discussion of ele-
ment quality, robustness, and a framework for implementing the information
associated with an optimal edge grid into an existing grid generator is also
presented. Generating edge grids in a more automated fashion accelerates the
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process of surface grid generation—and ultimately volume grid generation.
Using our algorithm, or another automated method for setting point spacings
does not change the number of steps required for grid generation. However, it
does reduce the number of manual steps involved in starting the process.

2 Related Work

In general, grid generation is a name for any process that creates a grid. For
example, the advancing-front algorithm advances boundaries into space to
generate a grid [8]. Other methods generate grids from iterative refinement or
enrichment from initial, coarse configurations [9, 10]. Usually the benchmark
for separating the two methods, generation and refinement, are the prioritiza-
tion of grid quality and grid accuracy (both of these issues will be addressed
later). From a standard text [11]: One dimensional grids, or edge grids,

“...are created using a one-dimensional version of the standard grid
generation procedure. This ensures that point distribution and growth
rates are fully compatible for optimal final grid quality. For each edge
or segment the point spacing is specified at both ends... Edge grid
generation is then used to produce the point distribution...”

Traditionally, edge grid generation processes produce good quality grids from
the combination of geometric growth rates and smoothing. However, the pro-
cess requires input: point spacing values. If the point spacing values are not
appropriate, then the geometry can be under and/or over sampled for the
intended use. That fact is not an indictment of the grid generation process,
but instead implies that the final grid is heavily dependent on the inputs. In
addition, if some way of controlling the point spacing in the middle of a curve
is not present, then more points could be wasted/omitted in an attempt to
accurately represent geometry.

Instead of setting appropriate point spacing values and using common grid
generation techniques, other efforts have gone into creating a locally or glob-
ally “optimal” edge grid. Many names have been assigned to this particular
task, but the underlying goal is very similar – represent a curve as accurately
as possible – whatever that means for each application. For example, [12] first
linearized the interface between curves in order to simplify the process of gen-
erating edge grids and surface grids on topologically adjacent patches. Other
“geometry aware” or “curvature based” approaches have been developed. One
such application is for discretizing curves for use in level set methods [13]. Oth-
ers include energy minimization [14], curvature minimization [15], and angle
minimization [16]. Most need, or are designed to include, the topologically
adjacent geometry [17, 18, 19], or only can be applied to a certain class of
curves [20].
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3 Discretization Error

The accuracy, or discretization error, of a piecewise, linear representation
(discretization) of an analytical curve (curve) in R3 can be defined in many
ways depending on the intended application. The error associated with the
discretization is discussed in terms of the “deviation” from the curve – most
often quantified by calculating or approximating the distance from the curve
for each linear segment in the discretization, or the area of the ruled surface
between a curve-piece and the segment representing that part of the curve.
Another way of quantifying the error associated with a discretization would
be to consider how well it approximates the arc length of the curve it repre-
sents. In general the arc length is not known a priori, but depending on the
underlying representation it can be calculated exactly (parametric or analyt-
ical) or can be estimated (Bezier). One of the goals of this method was to be
“general” in that it should be independent of the underlying geometric repre-
sentation. Therefore, a method that requires the arc length of the underlying
geometry violates the aforementioned concept of “generality” and restricts
the applications for which the proposed method could be applied. Some other
way of determining/generating an edge grid based on arc length is needed.
This process will be detailed later.

Arc-length convergence of a discretization is a sufficient condition for
other schemes of edge grid generation/refinement. That is: if the difference
between the arc length of the curve and the sum of the segments in the
discretization approaches zero then that is sufficient to conclude that the dis-
tance between the discretization and the curve is also approaching zero, also
the angles between segments approaches 180 degrees. However, the converse
of that statement is not true. The pathological case of a highly oscillatory, low
amplitude curve approximated by two straight lines (sine-wave approximated
by straight lines) shows that a discretization of a curve can have a small “de-
viation” or angles between segments but be a poor estimate for arc length.
Another pathological case is a “nonconvex” curve where the parameterization
goes well “outside” of the segment.

4 Discrete Curvature Approximation

The concept of “deviation” as defined above is relatively straightforward and
intuitive. However, another related way of describing “how well” a discretiza-
tion represents a curve is the degree to which the discrete representation
approximates curvature – where curvature is defined as the amount of “bend”
in a curve or surface, or “how much” a curve or surface “differs” from a
straight line or plane (words in quotes are subject to gradation). First, how-
ever, curvature must be defined in such a way that a discrete approximation
is meaningful and appropriate. In relevant literature, there are many ways to
estimate curvature [21]. Some of it bears repeating, because it is germane to
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what is being discussed here: Consider the following planar curve, C, at point
P. At a given point P there exists an osculating circle, O, of radius r such that
the circle has the same tangent as the curve C as well as the same radius of
curvature [22].

Fig. 1. Osculating Circle of a Planar Curve

Just as the tangent line is the line best approximating a curve at a point,
the osculating circle is the best circle that approximates the curve a point.
Ignoring degenerate curves such as straight lines, the osculating circle of a
given curve at a given point is unique [22]. The radius, r, of the osculating
circle at a given point on a curve is equal to the radius of curvature, R, which
is the reciprocal of curvature, κ–sometimes called the “first curvature” [23].
For a two-dimensional curve of the form y = f(x), the curvature equation is:

R =
1

κ
, where κ =

d2y
dx2

[1 + dy
dx

2
]
3
2

.

This quantity, κ, necessarily includes the calculation of derivatives which,
depending on the representation of the underlying geometrical description,
could be relatively costly. Therefore, this is avoided by defining this radius of
curvature on a segment or at a point in the discretization without the use of
derivatives. This is discussed in the following paragraphs.

A value of curvature can be calculated for each edge in the discretization
by considering the corresponding osculating circle on a given edge. The oscu-
lating circle here (circle, Figure 1) can be approximated by considering the
circumscribed circle (circumcircle) [24] defined by the two end points of the
edge, P0 and P1, and a point, P, between them in the curve parameterization
(Figure 2) – the radius of the circumcircle will be referred to as the discrete
radius of curvature.

Consider a circular segment, which represents the curve s. The correspond-
ing chord, which represents a segment in the discretization–a, and saggitta–
which represents the “deviation” of the segment away from the curve h is
shown in Figure 3.
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Fig. 2. Osculating Circle of Discrete Edge Grid

Fig. 3. Circular Segment and Related Geometry [25]

Theorem 1. As the length of a approaches the length of s, the length of h
goes to zero, therefore the radius of the circle, R, goes to infinity.

Proof. First,

a = 2 ∗
√
R2 − r2 = 2 ∗

√
(h ∗ (2 ∗R− h). (1)

Upon rearranging, we obtain

R =
( a
2 )

2∗ 1
h+h

2 = a2+4∗h2

8∗h = a2

8∗h + h
2 .

(2)

Finally,

limh→0( a2

(8∗h) + h
2 ) = ∞. (3)

Given the aforementioned proof, if the discrete curvature radius is divided
by the length of the corresponding segment on the curve, then its value ap-
proaches zero. This is a scale-independent measure that converges to a com-
puter representable number as the discretization approaches the length of
the curve. The parameter is known as the curvature ratio. It is an intuitive
measure that relates “how far” the curve deviates from the segment that is
representing it as the ratio of those lengths. Consider a point on a curve be-
tween two endpoints of a segment of a discretization, as seen in Figure 4. The
length of the segment, Li, is the distance from P0 to P1. The perpendicular
distance between the point on the curve between the end points and the seg-
ment is Lc. The three points define a curvature ratio through the ratio of Lc

to Li.



Automated Edge Grid Generation Based on Arc-Length Optimization 7

Fig. 4. The definition of curvature ratio : Lc
Li

[26]

As shown in [5], deviation-based methods are intuitive and straightforward to
implement. However, drawbacks include the fundamental lack of consistently
being able to indicate discretization accuracy for curves that are not “well-
behaved” between discrete segments.

5 Refinement via Arc-Length Deficit

Mentioned above, a way of determining “how well” a discretization approxi-
mates a curve is to consider the difference between arc lengths. This is another
way to determine “how well” a discretization captures curvature. Locally, it
is important for each segment in the discretization to represent the local ge-
ometry present in the curve. If a segment is to be subdivided in order to
improve the discretization, then it should be subdivided effectively/efficient
locally. Also, if the purpose of the refinement process is to minimize the actual
arc length minus the discrete arc length, then an optimization problem can
be formed where an objective function is minimized as the combined length
of the segments in the discretization approaches that of the curve.

Let C(u) be a parameterized curve, and D be a discretization of the curve
comprised of nt points, Pi : i ∈ {1, ..., nt}, and segments, Sj : j ∈ {1, ..., (nt −
1)}. Segment Sj is defined by two successive parametrization values, uj and
uj+1. If L(S) is a function that calculates the length of a segment in (x, y)
space then the optimization problem can be stated as:

minimize
ui

O = −
∑ nt−1

j=1 Lj

subject to u1 = a
u1 < u2,
u2 < u3,

...
unt−1 < unt ,
unt = b.

The resulting optimization problem is a mixed integer linear programming
problem if both the parameterization values and number of interior points on
the curve are unknown. Mixed integer linear programming problems can be
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solved by a variety of standard techniques (e.g., [27], [28], or [29]). However,
such problems are, in general, NP-hard. Although the analysis and computa-
tion are straightforward for a fixed number of interior points, one would need
to specify a priori this number, which is impractical.

Instead, in order to derive a practical algorithm that controls the num-
ber of interior points in the discretization, we add user-defined bounds on
the distance between points in the discretization. This turns the optimization
problem into a linear programming problem. To this end, let e and m repre-
sent user-defined lower and upper bounds on the distance between points in
the discretization, respectively. The bounds are easily worked into the set of
constraints, where Pi represents a point in non-parametrized, (x, y)-space as
follows:

P1 = α,
e ≤ L1 ≤ m
e ≤ L2 ≤ m

e ≤
... ≤ m

e ≤ Lnt−1 ≤ m
Pnt

= β.

The definition of lower and upper bounds for the distance between points
implicitly defines an upper and lower bound for the number of interior points.
The implicit definition would be in the form of an over-constrained problem
where solutions did not exist for too many or too few points. For instance,
too many points could not satisfy the minimum-distance set of constraints,
and too few points could not satisfy the maximum-distance set of constraints.
However, explicitly determining these bounds for nt would prove difficult.
For example, it could involve repeatedly sampling the curve to determine
the maximum number of e-length segments and the minimum number of m-
length segments. This would be possible but is inefficient. Another option is to
estimate the number of points needed [20]. However, if nt is to be estimated,
then the discretization is not guaranteed to be globally optimal. Therefore, a
global optimization problem, while possible, is not very practical in this case.
One of the aims of this work is to accelerate the generation of suitable grids
for simulation; moving the bottleneck for grid generation to the lowest level
in the grid generation hierarchy just increases the amount of time required to
generate a grid. The above method does, however, represent a solution to the
problem of generating automated, optimal edge grids.

Others have attempted dynamic programming methods for generating “op-
timal” discretizations for digital curves [30]. However, in general this should
prove no more effective than any of the approaches mentioned above. It is
true that the problem of generating a discretization to accurately represent
a curve exhibits optimal substructure, which is defined where “...an optimal
solution can be constructed efficiently from optimal solutions to its subprob-
lems” [31]. However, the number of distinct subproblems available that repre-
sent an optimal solution at a defined error bound can be infinite. Therefore,
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instead of trying to find an optimal number of nodes required for an optimal
discretization (which seems very inefficient), the proposed algorithm will use
a divide-and-conquer (recursive) approach to generating an ideal discretiza-
tion relative to a given tolerance. The combination of the optimized segments
represents an optimal discretization for the entire curve.

This would generate an optimal solution using two segments to repre-
sent the entire curve – which can be stated another way as maximizing the
perimeter of the triangle formed by the existing segment and the two new
segments. The above optimization problem could then be applied recursively
to each new segment with nt = 3. This process breaks the task of optimizing
a discretization for an entire curve into optimizing a simple discretization for
smaller section of the curve with the following algorithm. The optimization
algorithm described above with nt = 3 for a given segment is:

Algorithm 1 Optimization Algorithm with nt = 3
1: nt = 3
2: ui : i ∈ {1, 2, 3}
3: u1 and u3 define the segment S1,3

4: procedure Local Optimization(S1,3)
5: L(S1,3) = length of segment
6: Place interior point u2 to maximize L(S1,2) + L(S2,3) within tolerance
7: end procedure

Algorithm 2 Optimization Algorithm for Discretization

D(Sj) : j ∈ 1
push S1 into list . list is queue if breadth-first, stack if depth-first
while list is not empty do

pop Sj from list
if Si is optimal then

do nothing
else

optimize Sj with Algorithm 1
push Si,i+ 1

2
into list

push Si+ 1
2
,i+1 into list

end if
end while

Algorithm 2, often referred to as adaptive refinement or enrichment (see
above), would be applied for each segment in the discretization. Also, since the
discretization of the curve exhibits optimal substructure, the starting point
to the optimization algorithm and the method of refinement or enrichment
are irrelevant to the extent to which they prevent an optimal solution from
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being generated. However, they obviously contribute to the efficiency of the
algorithm.

Now to define the optimization part of the above algorithm: Divide and
conquer can be considered to be based on multi-branched recursion. The ob-
jects to be constructed at the end of the recursion are the smallest set of
segments that approximates the arc length of the curve to a defined precision.
This is not quantifiable without a priori knowledge of the arc length of the
curve. As discussed above, calculating the length of a curve for this application
is impractical. So how can the “goodness” of a discretization be measured?
At each step, the discretization will be refined on each segment by locally op-
timizing an objective function analogous to the one developed above. In order
to minimize each segment’s objective function, arc-length deficit (ALD), then
a point P has to be placed on the curve on the segment such that the new
sum of the arc lengths is changed maximally. Since this entire project is to
be done without calculating derivatives (see reasons above), the optimization
scheme chosen here is not given access to derivative information either. Since
the objective function is a non-negative planar curve, (O : C → ALD), any
line search method of optimization could be used. However, the method can-
not have any requirements on differentiability due to the possibility that the
derivative of O could be discontinuous.

The golden section search method is implemented here, since, unlike the bi-
section method, it meets all of the above criteria and has the possibility to con-
verge superlinearly [32]. Alternatively, a pattern search [33], simplex [34, 35],
or interior point [36] method could be used. If the length of each segment
locally approaches the portion of the curve it represents (i.e., the local ob-
jective function is minimized), then the global length of the discretization
approaches the global length of the curve (a restatement of the property of
optimal substructure). Also, since the optimization algorithm for each seg-
ment is only concerned about the portion of the curve it represents, then this
method exhibits scale-independence, which was one of our requirements.

Recursive algorithms require stopping criteria. In this case the stopping
criteria should not permit the method to infinitely subdivide the curve. For
instance, the aforementioned minimum and maximum segment lengths can
be used (and were implemented here). Even though using a minimum edge
length would prevent the infinite subdivision of the curve, another criteria is
needed such that the minimum segment length is not needed to satisfy the
criteria. This stopping criterion could be in the form of a delta-segment length.
That is, if the new segments’ combined length is below a defined fraction
larger than the existing segment then it should not be subdivided. This is a
“pure-greedy” method of subdivision, in that it does not consider the rest of
the “solution” when deciding to stop. One problem with this set of stopping
criterion is immediately apparent: the “large” segments could potentially not
be subdivided because locally it is not justified–even if the subdivision of the
large segment would cause a global change in the length of the curve that is
significant. This value, global delta-segment, would have to be smaller than
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the one used locally for each segment; otherwise, it would have no effect.
Therefore, an additional criterion is needed to determine if a segment should
be subdivided: if the total change in length of the discretization would be
changed by a defined fraction then it should be subdivided. The addition
of this last subdivision criterion makes the method “less-greedy”. This set,
minimum segment length, maximum segment length, local delta-segment, and
global delta-segment define a robust, minimum set of criterion needed for
generating an optimum solution to the problem of representing a curve via
arc-length deficit.

6 Error Bounds

Since the optimization function for each curve is not given access to deriva-
tive information, it is conceivable that it would not find the optimal value and
instead converge to a local minimum. However, the problem of escaping local
minima is common to all optimization problems. The addition of the condi-
tional that states: “refine a segment if the refinement changes the length of
the entire discretization by more than an epsilon” was deliberately included to
lessen the chance that a segment would not be refined when it was prudent to
do so. If the method succeeds in finding the global minimum for each segment,
then the error bound will be on the order of the segment length. However,
when the method fails to do so, or chooses a local minimum instead, there
is no formal way to express the error as a function of arc-length-deficit–since
there is no information about what the global minimum might be (without ex-
plicitly calculating the length of the curve/segment). Therefore, the error can
only be quantified for when the method has succeeded in finding the minimum
for each segment.

Arc-length deficit is a single-valued function on the curve. The obvious
problem with this single-valued function is that the actual arc length of the
curve is never known and can therefore not be compared to the arc length of
the segments. How then can error be quantified? The error bounds could be
detailed for unimodal pieces of the curve–those where the ALD function has
one peak. However, for segments that do not have a unimodal distribution
of the ALD function on the local curve segment, the error estimation is not
straightforward. In fact, it is no longer possible to determine what the bound
for the arc-length deficit error is. However, we can state some observations
about the geometry related to these configurations:

Assume that the optimization function on a general segment found the
global minimum, i.e., maximized the change in edge length for the new com-
bined segments, for the segment and corresponding curve piece. With the
given geometry, an ellipsoid can be formed with the endpoints of the segment,
F1 and F2, as the foci and the semi-major and semi-minor axes are defined
implicitly by the new segments connecting the new point with the endpoints
of the current segment, r1 and r2. “An ellipse is a curve that is the locus of
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all points in the plane the sum of whose distances r1 and r2 from two fixed
points F1 and F2 (the foci) separated by a distance of 2c is a given positive
constant 2a” [37].

Theorem 2. With the above assumption and definition, the entirety of the
curve represented by the segment must lie within the prolate spheroid formed
by the geometry below in Figure 5.

Fig. 5. Ellipse Geometry [25]

Proof. If the perimeter is maximized keeping 2c a constant, (r1 + r2) is max-
imized because 2c is a constant. Maximizing (r1 + r2) maximizes a from the
following relation with 2c being constant: r1 + r2 = 2a. Combining the fol-
lowing relation, b2 = a2 + c2, with the area of the ellipse, A = π ∗ a ∗ b, yields
A = π2 ∗ a2(a2 − c2). If c is a constant and a is maximized, then the max-
imal area is obtained from maximal (r1 + r2). Which means the curve must
be inside of the spheroid defined by the ellipse. If the curve is not inside the
spheroid then there is a point on the curve such that (r1 + r2) is larger and
therefore the area is larger and therefore the volume is larger which means
that (r1 + r2) was not maximized.

Observe that there was no mention of the length of the curve inside of
the spheroid, or the ruled area that the segment and curve could define. This
is because there is no way this information can be known (without explicitly
calculating the length of the curve/segment). It is unfortunate that there is no
way to quantify the discretization error of a curve except in terms of volume
of the spheroids defined by each segment. This is nonintuitive, but no more
specificity is possible. The volumes would also be scale-dependent and offer
no insight into how well the discretization approximates the curve – without
some context.

7 Growth Ratio

Our goal was to develop an automated edge grid generator that accurately
represents the underlying geometry. For this expressed purpose of representing
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the curve to a desired tolerance, the grid quality is not a concern. However,
for most applications, the grid quality directly affects downstream analyses.

Therefore, we explain how to modify our optimization problem in order to
yield an edge grid that both accurately represents the underlying geometry
and is of sufficient quality. Edge grid quality is typically defined in terms of
the growth ratio, i.e., the length of a segment divided by the length of a topo-
logically adjacent segment. If the growth ratio strongly deviates from unity,
the sizes of neighboring elements are not similar which leads to a large dispar-
ity in the sizes of the surface and volume elements which are generated. Such
disparate length scales can cause problems for numerical partial differential
equation methods.

Traditionally edge grids are generated with an a priori defined growth
ratio along with other parameters that ensure that the grid has good quality.
Upper and lower bounds can be included for the grid quality (growth ratio) as
nonlinear constraints in the optimization problem. However, in this case, the
number of constraints grows very quickly, albeit linear in the number of grid
points. Alternatively, minimum and maximum growth rates could be enforced
by the optimization procedure by splitting an edge if the growth rate is too
large or small. A posteriori methods for quality control could include some
type of smoothing or optimization [38, 39, 40, 41].

One final method is to use the output from the edge grid generator, the
“optimal” grid, as input for a grid generator, which presumably has strict
quality control measures in place. This would be accomplished by using the
point spacing values present at the end points of the discretization at the end
points of the curve. The resulting edge grid from the grid generator could
then be analyzed for the purpose of determining how far it deviates from
“optimality” in the interior of the curve. If the deviation is too large, a point
spacing source could be inserted to adjust and control the point spacing as
desired during grid generation.

8 Experimental Results

Three curves were chosen to demonstrate the aspects of the developed meth-
ods. The first is a family of curves, Lissajous curves (Figure 6), which are a
combination of two perpendicular harmonic oscillations. This curve was cho-
sen due to the sharp changes in curvature and self-intersecting nature, which
are present in real-world applications. The second curve, a tricuspoid (Fig-
ure 7) was chosen for the sharp, discontinuous features, which are also present
in real-world applications. In Figures 6 to 8 the curve is shown in red, and
the discretization is shown in black with vertices highlighted by circles indi-
cating their position. Each curve was scaled so that the parametrization, t,
was normalized between zero and unity. In each case the curve was originally
discretized using one segment corresponding to a vertex located at t = 0 and
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t = 1. Once the original discretization is created, the discretizations are re-
fined using Algorithm 2. Further results can be found in Table 1. In this table,
the true lengths of the curves can be found. The combined length of the seg-
ments in each discretization are also given with the actual arc-length deficit.
As stated earlier the chief goal of the developed algorithms was to accelerate
the grid generation process. The presented results were generated in no longer
then 0.004 seconds for any curve or convergence criteria.

Fig. 6. Lissajous Curves: 10% deficit (left), 1% deficit (middle), 0.1% deficit (right);
x(t) = a ∗ sin(n ∗ t+ c), y(t) = b ∗ sin(t), a = b = c = 1, n = 3, 0 < t < 2π

For the Lissajous curve, the optimization can be seen to be effective and
efficient with regards to only generating vertices where the curvature is high
and not wasting vertices on the relatively “straight” portions of the curve.
In addition, the self-intersection present on this curve did not impede the
generation of an optimal edge grid.

Fig. 7. Tricuspoid Curve: 10% deficit (left), 1% deficit (middle), 0.1% deficit (right);
x(t) = a ∗ (2 ∗ cos(t) + cos(2 ∗ t)), y(t) = a ∗ (2 ∗ sin(t)− sin(2t)), a = 1, 0 < t < 2 ∗π

For the Tricuspoid curve, the algorithm for optimal point placement can
be seen to be accurate with regards to placing a vertex at the discontinuities.
Placing a vertex at the discontinuity is efficient since no further nodes are
required to capture that feature of the curve. It can be seen that further
refinements are placed elsewhere in order to capture curvature.

For the Cochleoid curve, an interesting feature stands out: when using 10%
as the ALD, a self-intersecting discretization was generated where the curve
does not exhibit self-intersection. This is due to the rapid change in curvature
near the center of the spirals. In general, this cannot be avoided since a priori
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Fig. 8. Cocheloid Curve: 10% deficit (left), 1% deficit (middle), 0.1% deficit (right);
x(t) = 2 ∗ t+ 3 ∗ sin(7 ∗ t), y(t) = t+ 8 ∗ cos(3 ∗ t), 0 < t < 1

knowledge of where the curve is self-intersecting would be needed to refine
the discretization where appropriate. When refined the result is valid. The
results from using 1% and 0.1% ALD can be seen to accurate and increase
in resolution where the curve exhibits changes in curvature. On the outer
portions of the spiral, the discretization is less refined than near the center of
the spirals.

Table 1 and Table 2 summarize the results from discretizing the three
curves. Each row in Table 1 shows the results from a particular percentage
change in edge length that was used as the refinement constraint. In each
row the discretization length of each curve is shown along with the arc-length
deficit relative to the true length of the curve and number of segments in
parenthesis. Each result is less than the desired arc-length deficit for the entire
curve – except for 1% result for the Lissajous curve which is slightly higher.
Each row in Table 2 shows the number of segments corresponding to each
discretization and the number of function evaluations. Other test results run
by the authors showed similar results in accuracy and robustness. It should be
noted that no effort was made to prematurely optimize the number of function
evaluations, e.g., caching. Algorithmic optimization proved to not be needed
due to the extremely low computational cost of the existing implementation.

Table 1. Discretization length with respect to true curve length, arc-length deficit

Lissajous Tricuspoid Cochleoid

True Length 13.0653 16.0 2.94
10% deficit 12.7123 (2.7%) 15.5885 (2.5%) 2.7916 (5.07%)
1% deficit 12.884 (1.4%) 15.87 (0.78%) 2.916 (0.0842%)

0.1% deficit 13.04 (0.166%) 15.99 (0.058%) 2.939 (0.076%)

9 Conclusions and Future Work

An algorithm for edge grid discretization through local optimization was de-
veloped. In an effort to accelerate the process of grid generation, minimal



16 David McLaurin and Suzanne M. Shontz

Table 2. Number of segments in final discretization, function evaluations

Lissajous Tricuspoid Cochleoid

10% deficit 8, 1599 4, 615 11, 2337
1% deficit 21, 4797 7, 1353 27, 6273

0.1% deficit 121, 29397 25, 5781 86, 20787

user input is required for the developed method: a single parameter which
is used as a limit for local refinement. The results show that the generated
edge grid is optimal with respect to arc-length deficit. In addition, the process
was shown to be robust to discontinuities, abrupt changes in curvature, and
self-intersections. Results were shown here in two dimensions for ease of pre-
sentation. The developed algorithm is easily abstracted to three dimensional
curves through a change in the kernel for edge length calculation.

Future work will include a comparison to a global optimization problem
formulated with the presented constraints and an additional constraint of a
given number of edge grid points. Grid quality measures will also be included
in the optimization problem via a priori quality constraints.

More work will also be done to abstract the problem from strictly one-
dimensional simplices (edge grids) to two-dimensional simplices (triangles).
While it was straightforward to determine which part of a curve an edge grid
represents, it is non-trivial to determine which part of a surface a triangle rep-
resents. The development of a map between the planar elements representing
a surface and the underlying geometry would be one of the chief tasks moving
forward. Additionally, the edges, as well as the triangles, in the discretization
must considered when optimizing the surface grid.

Finally, we will apply our edge and surface grid generation routines on
problems stemming from real-world applications, including those from me-
chanical engineering and medicine. One challenge that will need to be faced
is the development of a surface grid generator which can develop an optimal
representation of a surface from noisy data, e.g., medical imaging. An engi-
neering application would be to accelerate the mesh generation process for
fluids simulations by automatically generating surface meshes that capture
local geometry.
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