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Abstract We propose a framework for performing anisotropic mesh deformations.
Our goal is to produce high quality meshes with no inverted elements on domains
which undergo large deformations. To the greatest extent possible, the meshes
should have similar element shape; however, topological changes are performed
as necessary in order to improve mesh quality. Our framework is based upon the
previous work of two of the authors and their collaborators [1, 2] and consists of
four steps. The first step is to perform anisotropic finite element-based mesh warp-
ing to estimate the interior vertex positions based upon an appropriate choice of the
PDE coefficients. The second step is to perform multiobjective mesh optimization
in order to eliminate inverted elements and improve element shape. Edge swaps are
then performed to further improve the mesh quality. A final mesh smoothing pass
is then performed. Our numerical results show that our framework can be used to
generate high quality meshes with no inverted elements for very large deformations.
In particular, the addition of topological changes to our hybrid mesh deformation al-
gorithm [1] proved to be an extremely efficient way of improving the mesh quality.

1 Introduction

There are numerous scientific applications for which the geometric domains de-
form as a function of time. Such applications include simulations of Arbitrary-
Lagrangian-Eulerian (ALE) fluid flow [3, 4], fluid-structure interaction [5, 6], ALE
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plasticity [7], crack propagation [8], biomedical applications [9, 10], patient and
medical devices [11, 12, 13], and computer graphics [14]. Whenever such deforma-
tions occur, the meshes must be updated with respect to time in order to remain valid
approximations of the geometry. There are two main types of strategies for updat-
ing the mesh in response to a deforming geometric domain. The first strategy is to
remesh the domain whenever necessary in response to the deforming domain. This
typically creates a different mesh, and the associated numerical partial differential
equation (PDE) solution must be interpolated from the initial mesh to the new mesh
since their topology is different. Another issue with this approach is that frequent
remeshing can lead to loss of data resolution and accumulation of round-off errors
leading to inaccuracies [15]. Alternatively, a mesh deformation (i.e., mesh warping
or mesh morphing) strategy can be used to move the mesh from the source domain
onto the target domain; such techniques recompute interior mesh vertex positions
after the boundary has been deformed. Mesh warping is preferred over remeshing
based on accuracy (as described above) as well as efficiency.

There are numerous mesh warping techniques in the literature. We give a sum-
mary of relevant mesh warping techniques here; however, this list is not compre-
hensive. Mesh warping techniques are typically based on the solution of a PDE
which describes the motion of the interior mesh vertices or on the solution of
an optimization problem which guides the mesh motion based on desired proper-
ties. Researchers have proposed various mesh warping techniques [16] based on
Laplace’s equation, e.g., finite element-based mesh warping (FEMWARP) [17, 18],
weighted Laplacian smoothing [19], biharmonic PDEs [3], elasticity [20, 21, 22],
and an inverse distance function [23]. Researchers have also proposed techniques
which combine the solution of PDEs with techniques for altering the mesh topol-
ogy [24, 25, 26, 27] in order to yield high quality deformed meshes in simulations
with large deformations.

Researchers have also proposed several optimization-based mesh deformation
techniques. For example, techniques have been developed based on a log-barrier
techniques [19] and the target matrix paradigm [28]. Many of the mesh deformation
techniques which are guided by optimization also involve PDE solutions. For exam-
ple, the nonlinear elasticity-based Untangling before Newton (UBN) method [22]
mentioned above can also be thought of as an optimization-based mesh warping
technique in that it solves a variational problem (which is equivalent to a minimiza-
tion problem) to achieve static equilibrium. An adjoint-based optimization proce-
dure for mesh warping was developed in [29] in order to improve the robustness and
extend the range of linear elasticity-based mesh warping techniques. FEMWARP
has also been combined with PDE-based level set techniques [11, 12], the purpose
of which is to first predict the mesh deformation using an evolving level set and then
FEMWARP to deform the mesh to the location computed by the level set method.
Another example of a hybrid mesh deformation algorithm which employs both op-
timization and PDEs is found in [1]. This particular hybrid algorithm employs an
anisotropic version of FEMWARP for the mesh deformation followed by multiob-
jective mesh optimization [2] for smoothing and untangling of the deformed mesh.
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All of the methods described thus far, with the exception of the hybrid mesh
deformation algorithm in [1], suffer from one or more of the following problems:
a tendency to produce inverted elements for large boundary deformations, or an
inability to preserve features of the initial mesh in the deformed mesh.

In the current work, we consider larger boundary deformations than those in [1].
In particular, the hybrid mesh deformation method in [1] is unable to produce high
quality deformed meshes for these test cases.

In this paper, we propose a topology-adaptive mesh deformation framework for
mesh warping. In particular, we combine the hybrid mesh deformation algorithm
of Kim, Miller, and Shontz in [1] with topological changes in order to generate
high quality meshes for extremely large boundary deformations. We describe our
topology-adaptive mesh deformation framework in Section 2. In Section 3, we de-
scribe several numerical experiments in which we test the ability of our algorithm
to generate high quality deformed meshes on several extremely large boundary de-
formations. The numerical results from the first two experiments can be compared
against those from the same experiments in [1] in order to obtain a comparison
against the method by Kim, Miller, and Shontz. In Section 4, we summarize our
work and describe several possibilities for future work.

2 Algorithmic Framework

In this section, we describe our topology-adaptive mesh deformation framework for
use in mesh warping applications. Our mesh deformation framework is composed
of four steps: 1) anisotropic FEMWARP, 2) multiobjective mesh optimization, 3)
topological changes, and 4) mesh smoothing. Our algorithmic framework builds
upon the hybrid mesh deformation algorithm [1] of Kim, Miller, and Shontz, which
performs only step 1 (anisotropic FEMWARP) and step 2 (multiobjective mesh op-
timization), and the multiobjective mesh optimization framework [2] of Kim, Pani-
tanarak, and Shontz.

Initially, the deformation that the user provides is applied to the boundary ver-
tices. This prescribes the final positions of the boundary vertices in the deformed
mesh. We then perform the four steps in our topology-adaptive mesh deformation
framework in order to compute the positions of the interior vertices.

The first step in our framework is to compute initial, approximate locations for
the interior vertices in the deformed mesh by performing one step of anisotropic fi-
nite element-based mesh warping (i.e., anisotropic FEMWARP) with an appropriate
choice of PDE coefficients as proposed in [1]. In particular, anisotropic FEMWARP
solves the following anisotropic version of Laplace’s equation

−α
∂ 2u
∂x2 −β

∂ 2u
∂y2 = 0 on Ω, (1)

where u = u0 on ∂Ω. We assume that α > 0 and β > 0 and solve the PDE using an
elliptic PDE solver. The mesh topology is held fixed during anisotropic FEMWARP.
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We adaptively choose α and β with respect to the direction of the boundary de-
formation. In [1], we demonstrated that α and β control the strength of the x- and
y-axis couplings between adjacent vertices, respectively. Therefore, α should be
larger than β if more deformation occurs along the x-axis. Similarly, β should be
larger than α if more deformation occurs along the y-axis. We compute the cumu-
lative boundary vertex displacements in the x and y directions to decide in which
direction more deformation occurs. Let xk and yk be the kth vertex coordinates on
the initial mesh and x̂k and ŷk be the kth vertex coordinates on the deformed mesh.
A particular choice of the anisotropic PDE coefficients that worked well for our
experiments in [1] was {

α = ∑NB
k=1 (x̂k − xk) , k ∈ B

β = ∑NB
k=1 (ŷk − yk) , k ∈ B,

(2)

where B is the set of boundary vertices and NB is the number of boundary vertices.
Here, the relative ratio between α and β can be understood as the angle of the
direction of the deformation [1].

Our second step is the multiobjective mesh optimization. The deformed mesh
using anisotropic FEMWARP could include inverted elements with poor element
qualities on the deformed domain when a huge deformation occurs. Similar to the
hybrid deformation algorithm [1], we employ the target matrix paradigm (TMP)
shape metric to improve the element quality on the deformed domain. The TMP
shape metric is useful when our goal is to preserve good element qualities (shapes)
on the deformed domain. Let (Adef)i and (Ainit)i be the Jacobians of the mappings
from the reference element to the actual elements in the deformed and initial do-
mains, respectively. The TMP shape metric in 2D is defined as

qi =
∣∣Ti − (adj(Ti)

T ))
∣∣2
F ,

where Ti = (Adef)i(Ainit)
−1
i . The TMP shape metric (qi) is zero when the quality of

the element on the deformed mesh is same as the one on the initial mesh. In order
to eliminate inverted elements on the deformed domain, we employ the untangling
beta quality metric [2]. The untangling beta quality metric is defined as

q j =
∣∣Vj −β

∣∣− (Vj −β ),

where Vj is the signed area of the jth element and β is a user defined small constant
value. The untangling beta quality metric is zero when the deformed mesh does not
have any inverted elements.

Let the overall mesh quality computed by the TMP shape metric and the overall
mesh quality computed by the untangling beta quality metric be F1 and F2, respec-
tively. Then, F1 = ∑|E|

i=1 q2
i and F2 = ∑|E|

j=1 q2
j , where |E| is the number of elements

on the mesh.
In order to simultaneously untangle inverted elements and smooth the deformed

mesh, we employ the exponential sum multiobjective mesh optimization method
in [2]. The exponential sum multiobjective mesh optimization method utilizes the
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min-max property, which minimizes the worst (maximum) objective function using
the exponential penalty function. The exponential sum multiobjective mesh opti-
mization function is denoted as

F = c ln
[
eF1/c + eF2/c

]
.

Our goal is to minimize F to find the optimal vertex positions on the deformed
domain. Similar to [2], we employ the Fletcher-Reeves nonlinear conjugate gradi-
ent method to find a locally optimal point. The combination of the first two steps
described above is the hybrid mesh deformation algorithm in [1]. Similar to other
mesh untangling algorithms [2, 28], there is no guarantee that our hybrid mesh de-
formation algorithm in [1] is able to always untangle the deformed mesh.

Once the mesh is untangled, we perform edge swaps (step 3) as indicated in [30]
in order to further improve the quality of the mesh. Even if we eliminate all inverted
elements after step 2, the output after step 2 still suffer from poor element qualities
when a huge deformation occurs. From [30],

“For an edge uv with opposite vertices p and q, we flip uv if the Delaunay flipping criterion
(i.e., ̸ upv+ ̸ uqv > π) is satisfied... We used a greedy strategy to flip edges in decreasing
order of maximum opposite angle...”.

This work differs from [30] in the manner in which infinite loops cause by repeated
edge flipping are avoided. There, a constraint was added to the algorithm to only
allow a given edge to be flipped once. Here, a suitably small tolerance, tol (a scalar
multiple of the run-time-calculated round-off error), is used as a “buffer” for an-
gle comparison. This changes the edge-flip criteria to: (̸ upv+ ̸ uqv > (π + tol))
This buffer lessens the likelihood of numerical errors causing infinite loops. Since
an infinite is loop is still possible (but improbable), a limit of 100 flips per edge
was enforced—but never encountered in practice. This developed strategy of lim-
iting edge-flips produced results that were more favorable for this application than
those in [30]. Additionally, any edge flips that would create invalid topology (can-
not flip boundary edges) or geometry (inverted/tangled triangles) were not allowed.
GRX5 [31], a topology repair and feature removal toolkit and library, was used to
make the topological changes. The data structures and algorithms are optimized for
performing topological operations on triangular surface grids. Currently it is avail-
able as a stand-alone tool and is also incorporated into SolidMesh [32].

The final step in our mesh deformation framework is to perform a final pass
of mesh smoothing according to the inverse mean ratio (IMR) metric in order to
obtain further improvement in the mesh quality. Let the coordinates of the three
vertices of a triangle denoted by a, b and c. Then, an incidence matrix, C is given by
[b−a,c−a]. For an equilateral triangle, the incidence matrix for an ideal element,
W , is denoted by

W =

[
1 1

2
0

√
3

2

]
,
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The IMR quality metric measures how similar the current element to the ideal ele-
ment (equilateral element). The IMR quality metric is defined as

qIMR =

∥∥CW−1
∥∥2

F
2 |det(CW−1)|

.

The IMR quality metric has the value of 1 for the ideal element (equilateral trian-
gle) and a smaller value indicates a better element quality. Similar to the TMP shape
metric, we compute the overall mesh quality by computing, FIMR = ∑|E|

i=1 q2
IMR. We

minimize FIMR using the the Fletcher-Reeves nonlinear conjugate gradient method
to find a locally optimal point. For our test meshes, roughly 10 to 30 nonlinear con-
jugate gradient iterations are needed to reach the locally optimal points. Numerical
results show that our final mesh smoothing step is able to improve the average and
worst mesh quality up to 52.2% and 96.2%, respectively for the test meshes.

3 Numerical Experiments

Table 1 summarizes a description of each step and language/software we used to
perform each step. We use Mesquite [33] to perform step 2 and 4. We stop to per-
form step 2 and move to step 3 when we eliminates all inverted elements on the
deformed mesh. We use GRX5 [31] to perform step 3. For step 3, GRX5 was used
to swap interior edges that did not meet Delaunay criteria. The resultant mesh is a
constrained Delaunay triangulation.

In our framework, we first perform multiobjective mesh optimization (step 2)
and perform topological changes (step 3) as a next step. This is because preliminary
numerical experiments show that the reverse order (first perform step 3 and second
perform step 2) results in much slower multiobjective mesh optimization time com-
pared with the proposed order. When we perform multiobjective mesh optimization,
we use the TMP shape metric such that the initial element and the deformed element
have the similar element shape. However, we noticed that initially performing edge
swaps often result in output meshes which are less similar to the initial mesh and
therefore time to perform multiobjective mesh optimization could be very slow.

We compare our mesh deformation framework with Knupp’s mesh deformation
algorithm [28]. Knupp’s mesh deformation algorithm sets the initial mesh to be a
reference mesh and deforms the given mesh to be similar to the reference mesh
based on a target matrix paradigm framework. We use Mesquite [33] to implement
Knupp’s mesh deformation algorithm.

The machine employed for this study is equipped with an AMD Opteron proces-
sor 6174 (2.2 GHz) and 6.5GB of RAM.
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Table 1 Description of each step.

Description of each step Language/Software

Step 1 Perform anisotropic FEMWARP C/C++
Step 2 Perform multiobjective mesh optimization Mesquite [33]
Step 3 Perform topological changes C/C++
Step 4 Perform mesh smoothing Mesquite [33] (C++)

3.1 Moving bar domain for anisotropic boundary deformation
along the y-axis

We consider a moving bar domain where the deformation occurs along the y-axis.
Since the deformation only occurs along the y-axis, we chose the PDE coefficients,
α=0 and β=1. Figure 1 shows the initial mesh and output meshes after each step.
The initial mesh (Figure 1(a) and (b)) has no inverted elements and the output mesh
after performing anisotropic FEMWARP (Figure 1(c) and (d)) has 84 inverted el-
ements. Most of the inverted elements occur around the bar due to the large de-
formation. The output mesh after performing multiobjective mesh optimization is
shown in Figure 1(e) and (f). After this step, all inverted elements are eliminated
but many elements are still distorted due to the large deformation. The output mesh
after performing topological changes is shown in Figure 2(a) and (b). Here we ob-
serve that mesh quality is improved—especially the poorest quality elements. The
output mesh after performing final mesh smoothing is shown in Figure 2(c) and (d).
Here we observe that the final output mesh has a good element quality and similar
isotropy relative to the initial mesh.

Table 2 shows mesh quality statistics and the number of inverted elements of
the initial and output meshes after each step. The IMR quality metric was used to
measure the element quality. Here, a smaller value indicates a better element qual-
ity. The final output mesh is exhibits similar element quality to the initial mesh
(near isotropy). Knupp’s mesh deformation algorithm [28] results in an output mesh
with 27 inverted elements and poor element qualities. Knupp’s mesh deformation
algorithm does not include the mesh untangling step and only tries to keep similar
element qualities. Therefore, we observe that Knupp’s mesh deformation algorithm
fails to produce an output mesh with no inverted elements and good element quali-
ties.

3.2 Moving cylinder domain for anisotropic boundary deformation
along the x-axis

We consider a moving cylinder domain where the deformation occurs along the x-
axis. We choose the PDE coefficients α=1 and β=0, since the deformation only
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(a) Mesh on initial domain (b) Zoomed-in mesh on the initial domain

(c) Output mesh after step 1 (d) Zoomed-in output mesh after step 1

(e) Output mesh after step 2 (f) Zoomed-in output mesh after step 2

Fig. 1 Moving bar domain for anisotropic boundary deformation:(a) Initial mesh and (b) zoomed-
in mesh on the bar domain. (c) Deformed mesh with anisotropic FEMWARP and (d) zoomed-in
mesh with anisotropic FEMWARP. (e) Output mesh after performing multiobjective mesh opti-
mization (f) zoomed-in mesh after performing multiobjective mesh optimization.
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(a) Output mesh after step 3 (b) Zoomed-in output mesh after step 3

(c) Output mesh after step 4 (d) Zoomed-in output mesh after step 4

Fig. 2 Moving bar domain for anisotropic boundary deformation: (a) Output mesh after perform-
ing topological changes. (b) zoomed-in mesh after performing topological changes. (c) Output
mesh after mesh smoothing. (d) zoomed-in mesh after mesh smoothing.

Table 2 Mesh quality statistics of moving bar domain measured by the inverse mean ratio quality
metric and the number of inverted elements after each step. Here, ’each step’ indicates the output
mesh after each step.

Mesh quality minimum avg rms maximum std.dev. # of inverted
elements

Initial 1 1.076 1.081 1.649 0.110 0
Step 1 1 11628.3 107803 1e+06 107174 84
Step 2 1 2.135 3.669 71.127 2.970 0
Step 3 1 1.268 1.348 10.682 0.456 0
Step 4 1 1.081 1.086 2.019 0.0969 0

Knupp [28] -0.000471 2.478 33.826 2822.830 33.736 27
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occurs along the x-axis. Figure 3 shows the initial mesh (Figure 3(a) and (b))and
output meshes after performing each step. Overall results are similar to the pre-
vious moving bar example. Many poor quality and inverted elements (19 inverted
elements) occur after the large deformation (Figure 3(c) and (d)). After performing
multiobjective mesh optimization, we are able to eliminate inverted elements; but
poor quality elements persist around the cylinder (Figure 3(e) and (f)). We observe
that topological changes are effective in that they adjust the edges so that an in-
creased amount of vertex movement can be performed as compared to before. For
this example, topological changes reconnected the edges in the crowded area around
the cylinder (Figure 4(a) and (b)). The final output mesh has a good element quality
after performing mesh smoothing (Figure 4(c) and (d)).

Table 3 shows mesh quality statistics and the number of inverted elements of the
initial mesh and output meshes after performing each step. The output mesh, after
performing multiobjective mesh optimization, still suffers from poor element qual-
ity. However, performing topological changes significantly improves the element
quality. The worst element quality improves approximately 99% after performing
topological changes. Note that the step 3 is significantly faster than the step 2 as we
will discuss later. Similar to the previous moving bar example, the final output mesh
has a similar element quality to the initial mesh. Similar to the previous example,
Knupp’s mesh deformation algorithm [28] fails to eliminate inverted elements and
results in an output mesh with poor element qualities.

Table 3 Mesh quality statistics of moving cylinder domain measured by the inverse mean ratio
quality metric and the number of inverted elements after each step. Here, ’each step’ indicates the
output mesh after each step.

Mesh quality minimum avg rms maximum std.dev. # of inverted
elements

Initial 1 1.040 1.040 1.940 0.0594 0
Step 1 1 8490.440 92098.6 1e+06 91706.4 19
Step 2 1 9.437 148.19 6979.570 147.889 0
Step 3 1 1.761 2.358 17.131 1.568 0
Step 4 1 1.159 1.171 1.948 0.170 0

Knupp [28] -0.000441 15.843 7296.871 345349 7295.152 248

3.3 Moving particles domain for anisotropic boundary deformation
along the x-axis

We consider a geometry that simulates moving particles—where several particles
(cylinders) are moving in anisotropic ways. This example is more challenging than
the previous moving cylinder example, since particles with different size are mov-
ing in different directions along the x-axis. The PDE coefficients are chosen as
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(a) Mesh on initial domain (b) Zoomed-in mesh on the initial domain

(c) Output mesh after step 1 (d) Zoomed-in output mesh on after step 1

(e) Output mesh after step 2 (f) Zoomed-in output mesh after step 2

Fig. 3 Moving cylinder domain for anisotropic boundary deformation:(a) Initial mesh and (b)
zoomed-in mesh on the cylinder domain. (c) Deformed mesh with anisotropic FEMWARP and (d)
zoomed-in mesh with anisotropic FEMWARP. (e) Output mesh after performing multiobjective
mesh optimization (f) zoomed-in mesh after performing multiobjective mesh optimization.
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(a) Output mesh after step 3 (b) Zoomed-in output mesh after step 3

(c) Output mesh after step 4 (d) Zoomed-in output mesh after step 4

Fig. 4 Moving cylinder domain for anisotropic boundary deformation: (a) Output mesh after per-
forming topological changes. (b) zoomed-in mesh after performing topological changes. (c) Output
mesh after mesh smoothing. (d) zoomed-in mesh after mesh smoothing.

α=1 and β=0 because the deformation occurs along the x-axis. Figure 5 shows
the initial mesh (Figure 5(a) and (b))and the output meshes after performing each
step. The bottom two particles are initially close each other and move toward the
boundary. Therefore, movement of the vertices in elements around each particle is
highly constrained after the deformation occurs (Figure 5(c) and (d)). After defor-
mation, 218 inverted and (or) anisotropic elements are generated—mostly around
each particle. After performing multiobjective mesh optimization, all inverted ele-
ments are removed, but many of the elements are still anisotropic, and the movement
of the corresponding vertices is highly constrained. (Figure 5(e) and (f)). However,
we are able to more uniformly distribute the positions of these elements after per-
forming topological changes. After performing topological changes, the worst ele-
ment quality is improved approximately 93% (Figure 6(a) and (b)). After the final
mesh smoothing pass, we are able to restore element quality similar to the input
mesh(Figure 6(i) and (j)).

Table 4 shows mesh quality statistics and the number of inverted elements for
the initial mesh and the output meshes after each step. We observe that the over-
all mesh quality of the final output mesh is similar to the initial mesh. Similar to
previous examples, Knupp’s mesh deformation algorithm is not able to remove in-
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verted elements in the deformed mesh and instead increases the number of inverted
elements.

Table 4 Mesh quality statistics of moving particles domain measured by the inverse mean ratio
quality metric and the number of inverted elements after each step. Here, ’each step’ indicates the
output mesh after each step.

Mesh quality minimum avg rms maximum std.dev. # of inverted
elements

Initial 1 1.017 1.018 2.548 0.0430 0
Step 1 1 4893.13 69907.3 1e+06 69735.9 218
Step 2 1 2.889 17.421 1346.45 17.180 0
Step 3 1 1.348 1.774 93.742 1.154 0
Step 4 1 1.087 1.095 3.609 0.132 0

Knupp [28] -0.00520 2.850 28.434 4631.670 28.290 647

3.4 Summary of numerical results

Choice of PDE coefficients. We compare FEMWARP [17, 18] with anisotropic
FEMWARP in terms of both the number of inverted elements and efficiency.
FEMWARP always fixes the PDE coefficient as α=1 and β=1; however, anisotropic
FEMWARP adaptively chooses the appropriate PDE coefficients with respect to the
direction of deformation. Figure 7 shows the number of inverted elements after per-
forming FEMWARP and anisotropic FEMWARP. The output mesh with anisotropic
FEMWARP has up to 95.9% fewer number of inverted elements than the output
mesh with isotropic FEMWARP. Since mesh untangling step is a relatively time-
consuming step, these results indicate the importance of choosing appropriate PDE
coefficients. Figure 8 shows the timing results for using FEMWARP and anisotropic
FEMWARP to eliminate inverted elements using multiobjective mesh optimiza-
tion (step 2). The FEMWARP algorithm by itself does not include the mesh un-
tangling step. Therefore, for the purposes of comparison, we apply our step 2 to
untangle the output meshes after applying FEMWARP. We observe that the use of
anisotropic FEMWARP results in a decrease in the untangling time of up to 67.3%
compared with using FEMWARP. Note that that the multiobjective optimization
step, which performs untangling, is the slowest individual step of the developed al-
gorithm. Therefore, it is desirable to have as fewer inverted elements as possible by
choosing appropriate PDE coefficients.

Mesh quality. Figure 9 and 10 shows the average and the worst element quality of
the initial mesh and the final output mesh (after step 4), respectively, for each ge-
ometric domain. We observe that our framework is able to maintain good element
quality even when large deformations were performed. For a moving bar and cylin-
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(a) Mesh on initial domain (b) Zoomed-in mesh on the initial domain

(c) Output mesh after step 1 (d) Zoomed-in output mesh after step 1

(e) Output mesh after step 2 (f) Zoomed-in output mesh after step 2

Fig. 5 Moving particles domain for anisotropic boundary deformation:(a) Initial mesh and (b)
zoomed-in mesh on the particles domain. (c) Deformed mesh with anisotropic FEMWARP and (d)
zoomed-in mesh with anisotropic FEMWARP. (e) Output mesh after performing multiobjective
mesh optimization (f) zoomed-in mesh after performing multiobjective mesh optimization.
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(a) Output mesh after step 3 (b) Zoomed-in output mesh after step 3

(c) Output mesh after step 4 (d) Zoomed-in output mesh after step 4

Fig. 6 Moving particles domain for anisotropic boundary deformation: (a) Output mesh after per-
forming topological changes. (b) zoomed-in mesh after performing topological changes. (c) Output
mesh after mesh smoothing. (d) zoomed-in mesh after mesh smoothing.

Fig. 7 Number of inverted elements after performing FEMWARP and anisotropic FEMWARP.
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Fig. 8 Time (sec) to untangle inverted elements using multiobjective mesh optimization.

der domain, the initial and the final output meshes exhibit nearly identical mesh
quality, which is highly desirable for PDE-based applications. For a challenging
moving particles domain, our algorithm is able to maintain similar average mesh
quality; although a slight increase in the worst element quality was noticed.

Fig. 9 Average element quality of the initial mesh and the final output mesh for each geometric
domain measured by the IMR quality metric.

Timing results. Table 5 shows timing results of each step for three geometric do-
mains. We compare our timing results with Knupp’s deformation algorithm [28].
We observe that step 2 and step 3 are the slowest and fastest steps of the entire
procedure, respectively. Step 3 significantly improves the overall element quality
and distributes the elements whose vertex movement is highly constrained, and it
takes less than 1 second to perform. This timing result justifies the motivation of
using step 3 to rather than keep performing step 2 to improve the element quality.
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Fig. 10 Worst element quality of the initial mesh and the final output mesh for each geometric
domain measured by the IMR quality metric.

Note that our algorithm performs topological changes (step 3) right after all inverted
elements are eliminated. Knupp’s mesh deformation algorithm is slightly faster to
converge than our framework, but it results in an output mesh with inverted elements
and poor element qualities.

Table 5 Timing results (sec) of each geometric domain.

Timing (sec) Step 1 Step 2 Step3 Step 4 Knupp [28]

Bar (7K elements) 1.512 141.714 0.003 16.854 131.902
Cylinder (2K elements) 0.625 20.586 0.003 6.151 20.443
Particles (44K elements) 4.183 540.674 0.062 53.742 534.124

4 Conclusions

We propose a mesh deformation framework for anisotropic mesh deformations. Our
framework is composed of four steps: 1) anisotropic FEMWARP, 2) multiobjective
mesh optimization, 3) topological changes, 4) mesh smoothing. Numerical results
show that our framework successfully eliminates inverted elements and keeps good
element qualities on the deformed domain—even when applied to a large deforma-
tion. By choosing appropriate PDE coefficients, anisotropic FEMWARP is able to
decrease the number of inverted elements up to 95.9%. Our second step, multiob-
jective mesh optimization successfully eliminates inverted elements while keeping
good element quality. We observe that performing topological changes is an ex-
tremely efficient and effective way of increasing the amount of vertex movement
possible on the final smoothing pass and hence improving the element quality on
the deformed domain. Our final mesh smoothing step is able to further improve
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the element quality. Numerical results show that our mesh deformation framework
significantly outperforms Knupp’s mesh deformation algorithm based on a target
matrix paradigm framework [28].

Our topology-adaptive mesh deformation framework expands on our earlier hy-
brid mesh deformation framework by incorporating topological changes for ad-
ditional mesh quality improvement as is required by large, anisotropic deforma-
tions. Because edge swaps yield a large improvement in the mesh quality very
efficiently, we developed our initial framework in two dimensions. However, the
hybrid mesh deformation algorithm upon which our work builds also works for
three-dimensional mesh warping. Thus, our framework can be extended to three di-
mensions by the consideration of edge swaps and/or face swaps in three dimensions.

It is likely the case that the addition of other operations to alter the topology
(e.g., edge splits, edge contractions, and multi-face removal) will lead to even further
improvements in the mesh quality. In fact, such a strategy was used to evolve surface
meshes in [34]. We plan to investigate the addition of such topological operations
for our future research. Discrete optimization algorithms [35] can then be developed
which improve the quality of the mesh by altering the mesh topology.

We also plan to compare the performance of our topology-adaptive mesh de-
formation framework with meshless techniques for mesh deformation (e.g., [36]).
Meshless techniques do not use the mesh topology and hence are much faster than
either PDE or optimization-based techniques for mesh deformation. However, more
insight is needed as to how to appropriately choose a kernel function for use with
meshless techniques for various types of mesh deformation.
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