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Summary. In this paper, we study the effect the choice of mesh quality metric, pre-
conditioner, and sparse linear solver have on the numerical solution of elliptic partial
differential equations (PDEs). We smoothe meshes on several geometric domains us-
ing various quality metrics and solve the associated elliptic PDEs using the finite
element method. The resulting linear systems are solved using various combinations
of preconditioners and sparse linear solvers. We use the inverse mean ratio and vertex
condition number metrics in addition to interpolation-based, scale-variant and scale-
invariant metrics. We employ the Jacobi, incomplete LU, and SSOR preconditioners
and the conjugate gradient, minimum residual, generalized minimum residual, and
bi-conjugate gradient stabilized solvers. We focus on determining the most efficient
quality metric/preconditioner/linear solver combination for the numerical solution
of various elliptic PDEs.

1 Introduction

Discretization methods, such as the finite element (FE) method, are com-
monly used in the numerical solution of partial differential equations (PDEs).
The accuracy of the computed PDE solution depends on the degree of the
approximation scheme, the number of elements in the mesh [1], and the qual-
ity of the mesh [2, 3]. In addition, the stability and convergence of the finite
element method is affected by poor quality elements [4].

Analytical studies have been performed at the intersection of meshing and
linear solvers. For example, mathematical connections between mesh geome-
try, interpolation errors, and stiffness matrix conditioning for triangular and
tetrahedral finite element meshes have been studied [5]. A mesh and solver
co-adaptation strategy for anisotropic problems has been developed [6]. Rela-



2 Jibum Kim, Shankar Prasad Sastry, and Suzanne M. Shontz

tionships between the spectral condition number of the stiffness matrix and
mesh geometry for second-order elliptic problems have been determined [7].

Several computational studies have been performed which examined the
connections between finite element meshes and linear solvers in various con-
texts. For example, the effect of unstructured meshes on the preconditioned
conjugate gradient solver performance for the solution of the Laplace and
Poisson equations has been examined [8, 9]. In [10], the relative performance
of multigrid methods for unstructured meshes was studied on fluid flow and
radiation diffusion problems. Trade-offs associated with the cost of mesh im-
provement in terms of solution efficiency has been examined for fluids [11, 12].

In this paper, we examine the connections between geometry, mesh smooth-
ing, and solution convergence for elliptic PDEs via an engineering approach.
In particular, we seek answers to the following questions pertaining to the
solution of an elliptic PDE on a given geometric domain. Which mesh quality
metric should be used to smoothe the initial mesh? What is the most efficient
combination of mesh quality metric, preconditioner, and solver for solving
an elliptic PDE? What is the effect of modifying the PDE coefficients and
boundary conditions on the answers to the above questions? Our goal is to
determine the best quality metric/preconditioner/linear solver combination
which results in a small condition number of the preconditioned matrix and
fast solver convergence for a given PDE, geometric domain, and initial mesh.

To answer the above questions, we use Mesquite [13], a mesh quality im-
provement toolkit, and PETSc [14], a linear solver toolkit, to perform a nu-
merical study investigating the performance of several mesh quality metrics,
preconditioners, and sparse linear solvers on the solution of various elliptic
PDEs of interest. The quality metric/preconditioner/linear solver combina-
tions are compared on the basis of efficiency in solving several elliptic PDEs
on realistic unstructured tetrahedral finite element meshes. We use Mesquite
and PETSc in their native state with the default parameters. Only these
two toolkits are employed so that differences in solver implementations, data
structures, and other such factors would not influence the results.

2 Finite Element Solution of Elliptic PDEs

We consider the solution of second-order elliptic PDEs using the finite element
(FE) method. An elliptic PDE on a geometric domain, Ω, is defined as

−∆u + au = f on Ω, (1)

where a and f are given functions. If a = 0, (1) reduces to Poisson’s equation.
We consider both Dirichlet and generalized Neumann boundary conditions on
the boundary, ∂Ω. The FE method [15] is used to discretize the domain, Ω,
and to discretize the PDE resulting in the linear system

Aξ = b. (2)
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Triangular and tetrahedral meshes are used to discretize the domain, Ω, in 2D
and 3D, respectively. The approximate solution, ξ, of u can be computed by
solving (2). The matrix A is given by A=K+M+N , where K is the stiffness
matrix; M is the mass matrix, and N is a matrix containing boundary infor-
mation. For elliptic PDEs, K is a symmetric positive definite or nonnegative
definite matrix, and M is a symmetric positive definite matrix [7]. The vector
b is the sum of two vectors, F and G. For a two-dimensional geometric domain
with generalized Neumann boundary conditions, −→n · (∇ u)+du=g, on ∂Ω,
where d and g are given functions. Furthermore, the K, M , N matrices and
the F and G vectors can be computed as follows [15]:

Ki,j =
∫

Ω

(5φi · 5φj) dx dy; Mi,j =
∫

Ω

(aφi · φj) dx dy;

Ni,j =
∫

∂Ω

(dφi · φj) ds; Fi =
∫

Ω

(fφi) dx dy; Gi =
∫

∂Ω

(gφi) ds,

where φi and φj are piecewise linear basis functions.

3 Mesh Quality Metrics

Table 1 provides the notation used to define the following mesh quality met-
rics: inverse mean ratio (IMR) [16], vertex condition number (VCN) [17], an
interpolation-based, scale-variant metric (SV) [5], and an interpolation-based,
scale-invariant metric (SI) [5]. Table 2 defines IMR, VCN, SV, and SI. For IMR
and VCN, a lower value indicates a higher quality element. For SV and SI, a
higher value indicates a higher quality element.

Notation Definition

a, b, c, and d Position vectors for vertices in a tetrahedral element
C = [b− a; c− a; d− a] Jacobian of a tetrahedral element

W =
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1CA Incidence matrix for an equilateral tetrahedron

Ar1, Ar2, Ar3, and Ar4 Areas of the triangular faces in a tetrahedral element
lij Length of the edge common to triangular face i and j

in a tetrahedral element
Vol Volume of a tetrahedral element
Area Area of a triangular element
s1, s2, and s3 Edge lengths of a triangular element

Table 1. Notation used in the definition of mesh quality metrics in Table 2. The
above notation is for the 3D case. Similar quantities can be defined in 2D.
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Quality Metric Formula

IMR
‚‚CW−1

‚‚2

F
/ (3

˛̨
det(CW−1)

˛̨ 2
3 ) [16]

VCN ‖C‖F ‖C−1‖F [17]

SV (2D) Area/s1s2s3 [5]

SV (3D) (Vol
P4

i=1 Ari)/(
P

1≤i<j≤4 AriArj l
2
ij) [5]

SI (2D) Area/(s1s2s3)
2
3 [5]

SI (3D) Vol
“
(
P4

i=1 Ari)/(
P

1≤i<j≤4 AriArj l
2
ij)

” 3
4

[5]

Table 2. The mesh quality metric definitions.

4 Mesh Optimization

We denote the elements of a mesh and the number of mesh elements by E
and |E|, respectively. The overall quality of the mesh, Q, is a function of the
individual element qualities, qi, where qi is the quality of the ith element in the
mesh. The mesh quality depends on both the choice of qi, which is described
in Section 3, and the function used to combine them. For the IMR and VCN
quality metrics, we define the overall mesh quality, Q, as the sum of squares
of the individual elements’ qualities:

Q =
|E|∑
i=1

q2
i . (3)

For the SV and SI quality metrics, we define the overall mesh quality, Q, as
the sum of the squares of the reciprocal of the individual elements’ qualities:

Q =
|E|∑
i=1

1
q2
i

. (4)

We use the Fletcher-Reeves nonlinear conjugate gradient method [18] in
Mesquite [13] to minimize Q (defined by either (3) or (4)). Mesquite employs
a line search version of the nonlinear conjugate gradient method.

5 Iterative Linear Solvers

Four iterative Krylov subspace methods are employed to solve the precon-
ditioned linear system. The conjugate gradient (CG) solver is a well-known
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iterative method for solving systems with symmetric positive definite matri-
ces. It produces a sequence of orthogonal vectors on successive iterations. Let
P be the preconditioner (to be described in Section 6). The convergence rate
of the preconditioned CG method depends upon the condition number, κ, of
P−1A. In the 2-norm, κ can be approximated as

κ2(P−1A) =
∥∥P−1A

∥∥
2

∥∥P−1A
∥∥−1

2
≈ λmax(P−1A)/λmin(P−1A),

where λmax and λmin are the maximum and minimum eigenvalues of P−1A,
respectively. The fastest convergence occurs when eigenvalues are clustered
around the same non-null value and, hence, κ is near 1.

The minimal residual (MINRES) algorithm solves linear systems with sym-
metric indefinite matrices. It generates a sequence of orthogonal vectors and
attempts to minimize the residual in each iteration. Similar to CG, a small
condition number for P−1A and clustering of eigenvalues around the same
non-null value results in fast convergence.

For nonsymmetric matrices, the generalized minimal residual (GMRES)
method is one of the most widely used iterative solvers. Similar to CG and
MINRES, GMRES computes orthogonal vectors on each iteration; however,
the entire sequence needs to be stored. Therefore, the version of GMRES
which restarts GMRES every m steps, i.e., GMRES(m), is used in practice.
It is known that a large value of m is effective in decreasing the convergence
time; however, the optimal value of m depends upon the problem [19].

The biconjugate gradient stabilized (Bi-CGSTAB) method is a biorthogo-
nalization technique, which generates two sets of biorthogonal vectors instead
of producing long orthogonal vectors. Bi-CGSTAB is known to have compa-
rable or even faster convergence than other biorthogonalization methods such
as the conjugate gradient squared method. However, Bi-CGSTAB sometimes
shows an irregular convergence rate similar to other biorthogonalization meth-
ods [20]. Bi-CGSTAB and GMRES are the most widely-used iterative methods
for solving systems based on nonsymmetric matrices.

6 Preconditioners

The objective of introducing a preconditioner, P , into the solution of a linear
system is to make the system easier to solve, whereby reducing the convergence
time of the iterative solver. The reader is referred to [21] (and the references
therein) for further information on iterative solvers and preconditioners. In
this paper, four preconditioners are employed. The first is the Jacobi precon-
ditioner, which is simply the diagonal of A.

The second is the symmetric successive over relaxation (SSOR) precondi-
tioner. SSOR is similar to Jacobi but decomposes A into L (the strictly lower
triangular part), D (the diagonal), and U (the strictly upper triangular part),
i.e., A=L+D+U . The SSOR preconditioner is given by
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P = (D − ωL)D−1(D − ωU),

where ω represents the relaxation coefficient.
The incomplete LU (ILU) preconditioner with level zero fill-in (ILU(0))

and level one fill-in (ILU(1)) are used as the third and fourth preconditioners,
respectively. The basic idea of the ILU preconditioner is to determine lower (L̃)
and upper triangular (Ũ) matrices such that the matrix L̃Ũ -A satisfies certain
constraints [21]. The ILU preconditioner works well for many problems, but
it fails when it encounters negative or zero pivots.

7 Numerical Experiments

Three experiments are performed to investigate the following questions. (1)
Which mesh quality metric should be used to smoothe the initial mesh? (2)
What is the most efficient combination of mesh quality metric, preconditioner,
and solver for solving an elliptic PDE? (3) What is the effect of modifying
the PDE coefficients and boundary conditions on the answers to the above
questions? Table 3 summarizes the experiments and corresponding PDE prob-
lems to be solved. In Experiments 7.1 and 7.2, we focus on solving Poisson’s
equation with Dirichlet boundary conditions in order to obtain insight on the
above questions and then extend the results to other PDE problems in Ex-
periment 7.3. The machine employed for this study is equipped with an Intel
Xeon x550 processor (2.67 GHz) and 24GB of RAM [22].

Exp. Exp. PDE
No. Name. Problems

7.1 Choice of metric (a) −∆u=1 on Ω, u=0 on ∂Ω
7.2 Best combination −∆u=1 on Ω, u=0 on ∂Ω
7.3 Modification of (b) −∆u+100u=1 on Ω, u=0 on ∂Ω

PDE coefficients and (c) −∆u+100u=1 on Ω, −→n · (∇ u)+100u=1 on ∂Ω
boundary conditions (d) −∆u=1 on Ω, −→n · (∇ u)+u=1 on ∂Ω

(e) −∆u=1 on Ω, −→n · (∇ u)+100u=1 on ∂Ω

Table 3. Listing of numerical experiments. The letters (a) through (e) represent
the five PDE problems under consideration.

Geometric Domains. The four geometric domains considered in our exper-
iments are shown in Figure 1. Circle and gear are 2D problems, whereas bevel
and drill are 3D problems. Triangle [23] and Tetgen [24] were used to generate
initial meshes. Half the interior vertices in each mesh were perturbed to create
test meshes that were further from optimal. Properties of the test meshes and
the corresponding finite element matrices are shown in Table 4. Here, nnz is
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(a) Circle mesh (b) Gear mesh (c) Bevel mesh (d) Drill mesh

Fig. 1. Coarse initial meshes on the circle, gear, bevel, and drill geometric domains
indicative of the actual initial meshes.

mesh # vertices # elements nnz

Circle (2D) 508,173 1,014,894 3,554,395
Gear (2D) 499,842 995,142 3,489,810
Bevel (3D) 492,003 3,001,591 7,583,137
Drill (3D) 500,437 3,084,942 7,757,509

Table 4. Properties of meshes on geometric domains and matrix A

the number of non-zeros in matrix A.

Mesh Smoothing. In order to improve the quality of each mesh, a local
implementation of the nonlinear conjugate gradient mesh smoothing method
(described in Section 4) was used in conjunction with the mesh quality metrics
(described in Section 3). The minimum, average, and maximum mesh quali-
ties before and after smoothing for the circle, gear, bevel, and drill are shown
in Table 5. For our experiments, accurate mesh smoothing corresponds to
five iterations of smoothing, as the mesh quality did not improve significantly
after five iterations. Similarly, one iteration of smoothing was employed for
inaccurate mesh smoothing, as a significant improvement in the mesh quality
was observed after just one iteration. The results in Table 5 indicate that, in
addition to an improvement in the average mesh quality, the quality of the
worst mesh elements improves as accurate mesh smoothing is applied.

Finite Element Solution. The FE method described in Section 2 is used
to discretize the domain, Ω, and to generate a linear system of the form
Aξ=b. PETSc [14] is used to generate the preconditioners, P , and to solve
the linear system, P−1Aξ=P−1b. We employ the solvers and preconditioners
described in Sections 5 and 6, respectively, to solve the preconditioned linear
system. Table 6 enumerates the 16 preconditioner-solver combinations used in
our experiments. The default parameters for each preconditioner and solver
were employed except for the GMRES restart value. We employed a restart
value of 100 which was the most effective in preliminary experiments. This is
consistent with the fact that larger m values often result in decreased solver
time [19].
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(a) 2D circle and gear meshes

Metric Smoothing
Circle Gear

min avg max min avg max

IMR
Initial 1.000 1.399 1916 1.000 1.570 339025
Inaccurate 1.000 1.123 53.527 1.000 1.066 153.772
Accurate 1.000 1.039 4.727 1.000 1.043 6.343

VCN
Initial 1.000 1.393 479 1.000 1.503 67806
Inaccurate 1.001 1.113 10.726 1.000 1.063 30.196
Accurate 1.000 1.039 2.920 1.000 1.042 3.535

SV
Initial 5.80e-4 3.35e-3 4.595 2.24e-3 5.41e-3 1194
Inaccurate 4.21e-4 2.87e-3 0.220 8.30e-4 3.60e-3 0.736
Accurate 7.18e-4 2.72e-3 0.028 7.66e-4 3.53e-3 0.055

SI
Initial 1.107 1.372 1709 1.115 1.589 299877
Inaccurate 1.113 1.198 40.526 1.108 1.159 87.734
Accurate 1.117 1.149 3.686 1.109 1.145 3.972

(b) 3D bevel and drill meshes

Metric Smoothing
Bevel Drill

min avg max min avg max

IMR
Initial 1.000 1.501 1235 1.000 1.487 2132
Inaccurate 1.000 1.320 63.656 1.000 1.311 15.568
Accurate 1.000 1.233 26.459 1.000 1.226 12.334

VCN
Initial 1.069 1.927 1537 1.067 1.887 3767
Inaccurate 1.056 1.367 39.244 1.039 1.362 5.272
Accurate 1.031 1.262 27.157 1.030 1.258 3.756

SV
Initial 0.262 3.492 65652 0.208 0.710 32477
Inaccurate 0.199 2.505 322 0.204 0.518 29.588
Accurate 0.200 2.210 110.355 0.206 0.457 6.492

SI
Initial 1.000 2.018 38421 1.000 1.967 86880
Inaccurate 1.000 1.471 243.199 1.000 1.458 272.944
Accurate 1.000 1.316 67.963 1.000 1.305 17.744

Table 5. The quality of the initial, inaccurately smoothed, and accurately smoothed
meshes for the circle, gear, bevel, and drill geometric domains.

The default stopping criteria in PETSc were employed. For example, the
absolute tolerance, abstol, and the relative tolerance, rtol, are set to 1e-50
and 1e-05, respectively. The maximum number of iterations for solving the
preconditioned linear system is set to 10,000. When the preconditioned linear
system is solved, ξ0 is set to the default value of 0. The preconditioned linear
system converges on the ith iteration if the following inequality is satisfied:

‖ri‖ < max(rtol ‖r0‖ , abstol), (5)

where ri is the residual at the ith iteration and r0 is the initial residual.
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Preconditioner
Solver

CG GMRES MINRES BI-CGSTAB

Jacobi 1 2 3 4

SSOR 5 6 7 8

ILU(0) 9 10 11 12

ILU(1) 13 14 15 16

Table 6. The sixteen combinations of preconditioners and solvers. For example, 10
refers to using the ILU(0) preconditioner with the GMRES solver.

Timing. In our experiments, the total time is defined as the sum of the
smoothing time and the solver time. The smoothing time is the time to achieve
an accurately smoothed mesh as described in Section 4 except for our pre-
liminary experiments which also included inaccurate mesh smoothing. The
solver time is the time the solver takes to satisfy (5) and includes the time to
generate P and to solve P−1 Aξ=P−1 b. When the linear system diverges or
does not converge, we report failure.

Inaccurate Mesh Smoothing. For our preliminary experiments, we con-
sider solving Poisson’s equation with Dirichlet boundary conditions, i.e., prob-
lem (a) in Table 3, on inaccurately and accurately smoothed meshes for a given
domain. We consider inaccurate mesh smoothing, as engineers often perform
inaccurate mesh smoothing in practice.

Experimental results for inaccurate and accurate mesh smoothing are
shown in Table 7. For this experiment, the SSOR preconditioner with the
GMRES solver is employed. These results are representative of the results ob-
tained when other preconditioner-solver combinations are used. Table 7 shows
the smoothing time and the solver time when employing various amounts of
mesh smoothing for the three mesh quality metrics described in Section 3.
We observe the following rank ordering with respect to smoothing time: IMR
< VCN < SV < SI. The ranking is in order of fastest to slowest. This rank
ordering also holds true when we consider the smoothing and solver time to-
gether. The rank ordering between different quality metrics will be discussed
in more detail in Section 7.1. Table 7 also shows that accurately smoothed
meshes result in matrices with a lower condition number than those of inac-
curately smoothed meshes. This results in a lower solver time for accurately
smoothed meshes. However, in terms of the total time, inaccurately smoothed
meshes result in faster total time than do accurately smoothed meshes for the
SV and SI quality metrics because the smoothing time is very high for these
two metrics.

Because accurately smoothed meshes were observed to result in lower total
time than inaccurately smoothed meshes, only accurately smoothed meshes
are considered from here onwards.
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Mesh quality metrics

NOS IMR VCN SV SI

Smoothing 0 1 5 1 5 1 5 1 5

λmin (P−1A) 1.8e-05 2.4e-5 2.7e-05 2.5e-05 2.7e-05 2.4e-05 2.7e-05 2.4e-05 2.7e-05
λmax (P−1A) 1 1 1 1 1 1 1 1 1
κ(P−1A) 55252 40822 36853 40347 36845 41979 37013 41411 36914

Smoothing
0 8 41 13 67 98 517 142 755

time
Solver time 1448 905 630 951 771 1037 773 898 612
Total time 1448 913 671 964 838 1135 1290 1040 1367

Table 7. Minimum and maximum eigenvalues, condition number, and timing (sec)
as a function of quality metric and amount of mesh smoothing on a circle do-
main. Smoothing represents the number of smoothing iterations performed. NOS
(no smoothing) describes the initial mesh. For this table, the SSOR preconditioner
with the GMRES solver was employed.

7.1 Choice of Mesh Quality Metric

The goal of this experiment is to determine the best mesh quality metric for
solving Poisson’s equation with Dirichlet boundary conditions based on effi-
ciency and accuracy.

Efficiency of the Solution. The time required to smoothe the test meshes
using various quality metrics is shown in Table 8. If we consider the smoothing
time alone, the following rank ordering is seen: IMR < VCN < SV < SI. This
is because numerical computation of the IMR metric for mesh optimization
is highly optimized in Mesquite. Numerical computation of the other mesh
quality metrics, i.e., VCN, SV, and SI, are not as optimized and are less
efficient to compute. The computation of SV and SI is also more expensive
than the other two quality metrics.

Mesh
Mesh quality metrics

IMR VCN SV SI

Circle 41 67 517 755
Gear 39 65 523 784
Bevel 146 208 270 366
Drill 159 213 277 377

Table 8. Mesh smoothing time (sec) for various mesh quality metrics

Table 9 shows typical timing results for smoothing the bevel mesh ac-
cording to the various quality metrics. In terms of the solver time, there is a
significant difference between solving linear systems on smoothed versus nons-
moothed (NOS) meshes. After smoothing, the condition number of P−1A de-
creases significantly, and the minimum and maximum eigenvalues move closer
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to 1. This results in faster convergence of the linear solution on the smoothed
meshes. However, in terms of solver time, as long as the same preconditioner
and solver are employed, there is little difference when various mesh quality
metrics are used to smoothe the mesh, as the metrics essentially all try to
generate equilateral elements, and there are no poorly shaped elements after
smoothing. The element shapes in the mesh highly affect both the eigenvalues
and the condition number of A. Equilateral elements result in a smaller con-
dition number than do poorly shaped elements. Here, poorly shaped means
elements with very small (near 0◦) or very large (near 180◦) dihedral angles [5].
Thus, when the preconditioner and solver are fixed, the choice of mesh quality
metric does not significantly affect the condition number or the solver time.
Further information on the relationship between eigenvalues and the condition
number can be found in [5]. For the total time, the rank ordering amongst
mesh quality metrics is: IMR < VCN < SV < SI. A similar trend was ob-
served for meshes on the other domains when solving Poisson’s equation with
Dirichlet boundary conditions, i.e., problem (a) in Table 3.

Mesh quality metrics NOS IMR VCN SV SI

λmin (P−1A) 0.005 0.0063 0.0064 0.0063 0.0064
λmax (P−1A) 18.2 1.8 1.8 1.8 1.8
κ(P−1A) 3216 285 285 285 283

Smoothing time 0 159 213 277 377
Solver time 3250 50 48 54 42
Total 3250 209 261 331 419

Table 9. Minimum and maximum eigenvalues, condition number, and timing (sec)
for the matrix P−1A for the bevel meshes before and after smoothing. The ILU(0)
preconditioner with the GMRES solver was used to solve the resulting linear system.

Accuracy of the Solution. The exact solution of Poisson’s equation with
Dirichlet boundary conditions (i.e., problem (a) in Table 3) on the unit circle
is given by: u = (1 − x2 − y2)/4, where x and y denote the x and y vertex
coordinates, respectively. We compare our FE solution, uh, with the exact
solution to verify the accuracy of our solution. The discretization error, e,
between the FE solution and the exact solution is defined as e = ‖u− uh‖∞.
Our results show that for all mesh quality metrics, e ≈ 1e − 4, for the unit
circle domain in Table 4. Furthermore, the choice of metric does not affect the
solution accuracy for meshes of this size (i.e., approximately 1M elements).

7.2 Best combination of metric, preconditioner and solver

In Section 7.1, we observed that IMR was the most efficient quality metric for
smoothing when solving Poisson’s equation with Dirichlet boundary condi-
tions (i.e., problem (a) in Table 3). In this experiment, we seek to determine



12 Jibum Kim, Shankar Prasad Sastry, and Suzanne M. Shontz

the most efficient combination of mesh quality metric, preconditioner, and
solver for this problem.

The solver time as a function of the different mesh quality metrics for
various preconditioner-solver combinations is presented in Table 10 for the
circle, gear, bevel, and drill domains. The ’*’ entries in these tables correspond
to preconditioner-solver combinations which either diverge or do not converge.
In most cases, the best combinations, which have the fastest solver time, are
the SSOR, ILU(0), and ILU(1) preconditioners with the CG solver (5, 9,
and 13 in Table 6). The ILU(0) or ILU(1) preconditioners with the MINRES
solver (7 and 11 in Table 6) show comparable performance. We observe that
the best preconditioner varies with respect to the geometric domain and the
mesh quality metric. However, the best solvers do not change in most cases.
The CG and MINRES solvers consistently show better performance than do
GMRES and Bi-CGSTAB. The main reason is that both CG and MINRES
take advantage of the symmetry properties of P−1A, because the solvers are
designed for symmetric matrices.

Table 10 also shows the number of iterations required to converge, which is
an implementation-independent metric. In terms of the number of iterations
required to converge, the ILU(1) preconditioner with the MINRES solver (15
in Table 6) outperforms other combinations. In many cases, the MINRES
solver requires fewer iterations to converge than does the CG solver although
the CG solver has a faster solver time than the CG solver. Note also that the
ILU(0) preconditioner has a faster solver time than the ILU(1) preconditioner
although the ILU(0) requires more iterations to converge.

The least effective combination observed is the Jacobi preconditioner with
the Bi-CGSTAB solver (4 in Table 6). In most cases, this combination diverges
because the residual norm does not decrease. The Bi-CGSTAB solver shows
irregular convergence behavior as was discussed in Section 5. The least efficient
preconditioner-solver combination is the slowest combination which satisfies
(5). In most cases, the least efficient combination is the Jacobi preconditioner
with the GMRES solver (2 in Table 6). This combination sometimes does not
converge due to the iteration limit.

In terms of the solver time and the number of iterations required to con-
verge, the choice of quality metric matters most when a poor combination of
preconditioner and solver are used. For example, if we compare the solver time
on the circle mesh for the ILU(0) preconditioner with the GMRES solver (2 in
Table 6) amongst quality metrics (i.e., IMR and SV) in Table 10(a), the solver
time for SV is 40% higher than it is for IMR. However, if a better combination
is chosen (e.g., 5, 9, or 13 in Table 6), the difference between mesh quality
metrics is not that significant. This demonstrates that the choice of precon-
ditioner and solver is more significant than the choice of mesh quality metric
in the solution of Poisson’s equation with Dirichlet boundary conditions.

Table 11 shows the solver time and total time for the most and least
efficient preconditioner-solver combinations as a function of geometric domain
and mesh quality metric. Combinations which did not converge according
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(a) Circle. (1-16 denote the preconditioner-solver combinations.)

Metric 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IMR
381 * 212 * 166 631 137 134 127 631 174 * 79 252 98 83

1305 * 921 * 593 2052 357 361 530 1684 398 * 284 759 206 197

VCN
377 * 195 * 179 772 154 144 128 708 155 * 75 263 114 98

1303 * 843 * 594 2349 402 361 530 2120 381 * 284 747 210 211

SV
446 * 262 * 165 773 165 156 146 911 157 * 87 350 198 99

1441 * 1101 * 609 2322 392 407 541 2885 387 * 284 757 212 204

SI
350 * 187 * 155 613 139 160 139 795 216 * 87 252 86 107

1307 * 860 * 594 1934 384 361 531 2010 376 * 284 756 208 212

(b) Gear. (1-16 denote the preconditioner-solver combinations.)

Metric 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IMR
111 913 142 106 62 236 67 82 71 191 73 64 59 102 73 91
606 2411 430 428 257 475 171 153 233 426 146 174 134 156 87 113

VCN
129 963 93 * 66 164 62 82 54 220 53 56 43 86 69 47
606 2360 381 * 257 475 169 152 233 427 163 165 134 156 85 90

SV
118 542 101 * 61 143 67 33 53 161 61 * 40 64 42 45
623 2198 426 * 257 477 176 166 239 440 162 * 134 156 93 87

SI
121 757 102 * 65 171 81 70 49 172 70 68 43 54 44 54
604 2352 426 * 257 475 181 153 233 427 154 176 134 156 94 104

(c) Bevel. (1-16 denote the preconditioner-solver combinations.)

Metric 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IMR
79 263 117 * 59 76 54 51 44 50 42 69 63 51 76 169

190 343 126 * 72 88 54 48 62 67 47 49 43 39 27 35

VCN
113 239 106 * 64 65 91 71 37 48 39 77 59 55 61 85
190 342 126 * 72 88 53 48 62 67 46 49 43 39 27 35

SV
64 169 63 * 39 60 47 47 32 54 41 44 49 46 52 62

190 342 130 * 72 88 52 48 62 67 47 49 43 39 27 36

SI
66 140 79 * 37 54 57 42 32 42 42 49 46 45 55 135

191 343 131 * 72 88 52 48 62 68 47 49 43 39 28 35

(d) Drill. (1-16 denote the preconditioner-solver combinations.)

Metric 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IMR
169 260 101 * 51 84 65 66 49 72 74 128 75 90 53 97
282 496 170 * 103 118 75 62 93 100 64 70 49 47 31 41

VCN
110 260 95 * 70 81 67 94 52 106 66 66 72 64 102 81
281 495 167 * 103 118 77 62 93 100 58 69 49 47 32 41

SV
132 222 91 * 61 71 98 64 63 76 60 150 118 88 58 73
281 495 179 * 103 118 75 62 93 99 68 69 49 47 30 41

SI
120 386 140 * 57 85 90 49 58 80 58 53 59 56 67 84
282 496 181 * 103 118 76 62 93 100 57 69 49 47 32 41

Table 10. Linear solver time (sec) and number of iterations required to converge
for problem (a) as a function of mesh quality metric for the 16 preconditioner-solver
combinations (see Table 6) on the four geometric domains. A ’*’ denotes failure. For
each quality metric, the numbers in the top and bottom rows represent the linear
solver time and number of iterations to convergence, respectively.
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to (5) are not considered here. In terms of the solver time, the best mesh
quality metric varies with respect to the geometric domain, and there is no
clear winner. The results also show the importance of choosing an appropriate
combination of preconditioner and solver. For example on the gear domain,
the least efficient combination (2 in Table 6) is 94% slower than it is for the
most efficient combination (13 in Table 6).

We also observe that the rank ordering for mesh quality metrics described
in Section 7.1 is consistent with the total time rank ordering. The table shows
that IMR with the most efficient (best) combination of preconditioner and
solver outperforms the other mesh quality metrics. The total time for IMR
is 88% less than it is for SI, for the most efficient (i.e., ILU(1) with CG)
combination. For the least efficient combination (i.e., Jacobi with GMRES),
IMR is 51% faster than that of the least efficient quality metric, i.e., SI.

(a) Solver time

Mesh
Mesh quality metrics

IMR VCN SV SI

Circle
Best 79 75 87 87
worst 631 772 911 795

Gear
Best 59 43 40 43
worst 913 963 542 757

Bevel
Best 42 37 32 32
worst 263 239 169 140

Drill
Best 49 52 61 49
worst 260 260 222 386

(b) Total time

Mesh
Mesh quality metrics

IMR VCN SV SI

Circle
Best 120 142 604 842
worst 672 839 1428 1550

Gear
Best 98 108 563 827
worst 952 1028 1065 1541

Bevel
Best 188 245 302 398
worst 409 447 439 506

Drill
Best 208 265 338 426
worst 419 473 499 763

Table 11. Solver time (sec) and total time (sec) for problem (a) as a function of
the best (most efficient) and worst (least efficient) combination of preconditioner
and solver for various mesh quality metrics. Only combinations satisfying (5) are
considered.
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7.3 Modifying the PDE coefficients and boundary conditions

In this experiment, we modify both the PDE coefficients and boundary con-
ditions and investigate whether or not the previous conclusions hold true for
other elliptic PDE problems (i.e., problems (b)-(e) in Table 3).

We first investigate the effect that including the mass matrix, M , has on
the best combination of mesh quality metric, preconditioner, and solver for
problems (b) and (c) in Table 3. Problem (b) and (c) represent an elliptic
PDE with a mass matrix and Dirichlet and generalized Neumann boundary
conditions, respectively. Table 12 shows the solver time and the number of
iterations required to converge for these two problems. For this experiment,
the IMR metric on the bevel domain is employed. Tables 12(a) and 12(b)
represent the linear solver time and the number of iterations required to con-
verge for problems (b) and (c), respectively. Similar trends are observed when
other mesh quality metrics are employed. Interestingly, in terms of the solver
time, the worst combination of preconditioner and solver is different from the
previous results obtained for Poisson’s equation with Dirichlet boundary con-
ditions. For Poisson’s equation with Dirichlet boundary conditions, the worst
combination was the Jacobi preconditioner with the Bi-CGSTAB or GMRES
solver (4 and 2 in Table 6). However, after we add the mass matrix with a=100
in (1), the worst combinations are the ILU(1) preconditioner with the CG or
GMRES solver (13 and 14 in Table 6). In most cases, the best combination is
the ILU(0) preconditioner with the MINRES solver (11 in Table 6). Different
from Poisson’s equation, the solver time of the ILU(1) preconditioner with
the CG or MINRES solver on problem (b) is up to 82% larger than it is for
the most efficient combination of preconditioner and solver. This trend also
occurs for other values of the PDE coefficients, such as a = 10, 50 in (1). This
example shows that the best and worst combinations of the preconditioner
and solver vary due to the addition of the mass matrix. However, in terms of
the number of iterations required to converge, the worst combination (13 and
14 in Table 6) requires only two iterations to converge, mainly due to the slow
generation time of the ILU(1) preconditioner for these cases. The observed
trends are similar for problems (b) and (c).

In terms of the smoothing time, the rank ordering amongst different quality
metrics remains the same, i.e., IMR < VCN < SV < SI. In terms of the solver
time, the choice of quality metric does not affect the results significantly. The
most efficient combination of the mesh quality metric, preconditioner, and
solver for solution of these elliptic PDEs is the IMR quality metric with the
ILU(0) preconditioner and the MINRES solver. This is consistent with those
obtained when solving Poisson’s equation with Dirichlet boundary conditions.
However, the least efficient combination is now the ILU(1) preconditioner with
the GMRES solver (14 in Table 6).

Second, problems (d) and (e) in Table 3, are solved to see the effect of
modifying the boundary conditions. Table 12 shows the solver time and the
number of iterations required to converge for the IMR quality metric on the
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bevel domain. The other mesh quality metrics show similar trends. Tables
12(a) and 12(b) represent the solver time and the number of iterations required
to solve problems (d) and (e) in Table 3, respectively. Experimental results
show that the most efficient mesh quality metric is still IMR if smoothing and
solver time are considered together. The rank ordering amongst the various
quality metrics is as follows: IMR < VCN < SV < SI. The least efficient
combination of preconditioner and solver is the Jacobi preconditioner with
the GMRES solver (2 in Table 6), which is consistent with previous results.
There are multiple best combinations, e.g., the SSOR preconditioner with the
CG solver (5 in Table 6). The solver time of the best combination is up to
77% faster than it is for the least efficient combination. However, the best
combinations are similar to those seen for the previous PDE problems.

PDE problem
Preconditioner-Solver Combinations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(b)
3 5 3 3 11 3 4 4 6 4 5 4 14 32 17 17

10 9 6 6 5 5 3 4 3 3 2 2 2 2 2 2

(c)
6 10 9 8 8 5 5 5 7 8 8 8 19 17 18 21

16 15 10 9 9 9 5 5 8 8 4 6 5 5 3 3

PDE problem
Preconditioner-Solver Combinations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(d)
155 193 74 * 44 162 93 41 57 64 52 85 96 98 50 58
185 335 134 * 77 96 58 48 71 90 50 57 37 36 27 30

(e)
83 179 105 112 47 55 61 52 42 42 62 61 62 45 59 71

188 349 131 133 72 88 54 48 60 72 46 51 34 34 23 32

Table 12. Linear solver time (sec) and number of iterations required to converge as
a function of PDE coefficients and boundary conditions on the bevel domain. A ’*’
denotes failure. For this experiment, the IMR quality metric is used. The keys for
the PDE problems and the preconditioner-solver combinations are given in Tables
3 and 6, respectively.

8 Conclusions and Future Work

For all elliptic PDEs considered, the IMR metric is the most efficient. The least
efficient mesh quality metric is SI. The best preconditioner-solver combina-
tion varies with respect to the PDE. For Poisson’s equation, the most efficient
preconditioner-solver combinations, which have the fastest solver time, are the
SSOR, ILU(0), and ILU(1) preconditioners with the CG solver. The ILU(0)
or ILU(1) preconditioner with the MINRES solver shows comparable perfor-
mance. The least effective combination observed is the Jacobi preconditioner
with the Bi-CGSTAB solver, which always diverged. In many cases, the least



Efficient Elliptic PDE Solution via Mesh Smoothing and Linear Solvers 17

efficient combination is the Jacobi preconditioner with the GMRES solver.
In terms of the total time, IMR is 88% faster than it is for SI if the most
efficient preconditioner-solver combination is employed. For the least efficient
combination, IMR is still 51% faster than it is for SI.

Modifying the coefficients and boundary conditions of the elliptic PDEs
effects the efficiency ranking of the preconditioner-solver combinations. The
efficiency rankings are more sensitive to modifications in the PDE coefficients
than to modifications in the boundary conditions. Unlike the solution of Pois-
son’s equation with Dirichlet boundary conditions, the ILU(1) preconditioner
with the CG or MINRES solver shows inefficient performance, in terms of the
solver time, on elliptic PDEs involving a mass matrix. In addition, the solver
time of the ILU(1) preconditioner with the CG or MINRES solver is up to
82% greater than it is for the most efficient combination of preconditioner and
solver. However, the rank ordering amongst quality metrics is the same as it
is for Poisson’s equation.

For future research, we will investigate the relationship between the choice
of mesh quality metric and the efficient solution of parabolic and hyperbolic
PDEs on anisotropic unstructured meshes.
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