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Abstract In this paper, we study the effect the choice of
mesh quality metric, preconditioner, and sparse linear solver
have on the numerical solution of elliptic partial differential
equations (PDEs). We smooth meshes on several geometric
domains using various quality metrics and solve the asso-
ciated elliptic PDEs using the finite element method. The
resulting linear systems are solved using various combina-
tions of preconditioners and sparse linear solvers. We use
the inverse mean ratio and radius ratio metrics in addition to
conditioning-based scale-invariant and interpolation-based
size-and-shape metrics. We employ the Jacobi, SSOR, in-
complete LU, and algebraic multigrid preconditioners and
the conjugate gradient, minimum residual, generalized min-
imum residual, and bi-conjugate gradient stabilized solvers.
We focus on determining the most efficient quality metric,
preconditioner, and linear solver combination for the numer-
ical solution of various elliptic PDEs with isotropic coeffi-
cients. We also investigate the effect of vertex perturbation
and the effect of increasing the problem size on the number
of iterations required to converge and on the solver time. In
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this paper, we consider Poisson’s equation, general second-
order elliptic PDEs, and linear elasticity problems.

1 Introduction

Discretization methods, such as the finite element (FE) meth-
od, are commonly used in the numerical solution of partial
differential equations (PDEs). The accuracy of the computed
PDE solution depends on the degree of the approximation
scheme, the number of elements in the mesh [1], and the
quality of the mesh [2,3]. More specifically, it is known that
as the element dihedral angles become too large, the dis-
cretization error in the finite element solution increases [1].
In addition, the stability and convergence of the finite ele-
ment method is affected by poor quality elements [4]. In par-
ticular, it is known that as the angles become too small, the
condition number of the finite element matrix increases [4].

Analytical studies have been performed at the intersec-
tion of meshing and linear solvers. For example, mathemat-
ical connections between mesh geometry, interpolation er-
rors, and stiffness matrix conditioning for triangular and tetra-
hedral finite element meshes have been studied [5]. Quality
metrics which determine the relevant fitness of elements for
the purposes of interpolation or for creating a global stiff-
ness matrix with a low condition number have been devel-
oped [5].

Further mathematical research has been performed at the
intersection of finite element meshes and linear solvers. A
mesh and solver co-adaptation strategy for anisotropic prob-
lems has been developed [6]. In addition, relationships be-
tween the spectral condition number of the stiffness matrix
and mesh geometry for second-order elliptic problems for
general finite element spaces defined on simplicial meshes
have been determined [7].

Several computational studies have been performed whi-
ch examined the connections between finite element meshes
and linear solvers in various contexts. For example, the ef-
fect of unstructured meshes on the preconditioned conjugate
gradient solver performance for the solution of the Laplace
and Poisson equations has been examined [8,9]. In [10], the
relative performance of multigrid methods for unstructured
meshes was studied on fluid flow and radiation diffusion
problems. Trade-offs associated with the cost of mesh im-
provement in terms of solution efficiency has been exam-
ined for problems in computational fluid dynamics [11,12].
Composite linear solvers which provide better average per-
formance and reliability than single linear solvers for large-
scale, nonlinear PDEs have been designed [13].

In this paper, we examine the connections between ge-
ometry, mesh smoothing, and linear solver convergence for
elliptic PDEs via an engineering approach. In particular, we
seek answers to the following questions pertaining to the so-
lution of an elliptic PDE on a given geometric domain. What
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is the most efficient combination of mesh quality metric,
preconditioner, and solver for solving each PDE problem?
Which combinations are most and least sensitive to vertex
perturbation? What is the effect of increasing the problem
size on the number of iterations required to converge and
on the solver time? Our goal is to determine the best com-
bination of quality metric, preconditioner, and linear solver
which results in a small condition number of the precondi-
tioned matrix and fast solver convergence for a given PDE,
geometric domain, and initial mesh.

To answer the above questions, we use Mesquite [14],
a mesh quality improvement toolkit, and PETSc [15], a lin-
ear solver toolkit, to perform a numerical study investigating
the performance of several mesh quality metrics, precon-
ditioners, and sparse linear solvers on the solution of vari-
ous elliptic PDEs (i.e., Poisson’s equation, general second-
order elliptic PDEs, and linear elasticity) of interest. Mesh
quality metrics used in this study are as follows: inverse
mean ratio (IMR) [16], radius ratio (RR) [5], a conditioning-
based scale-invariant metric (SI) [5], and an interpolation-
based size-and-shape metric (SS) [5]. Furthermore, we in-
vestigate the performance of the following preconditioners:
Jacobi [17], symmetric successive over relaxation (SSOR)
[17], incomplete LU (ILU) [17] and algebraic multigrid [18];
and linear solvers: conjugate gradient (CG) [19], minimum
residual solver (MINRES) [20], generalized minimal resid-
ual solver (GMRES) [21], and bi-conjugate gradient stabi-
lized solver (Bi-CGSTAB) [22]. The quality metric/precond-
itioner/linear solver combinations are compared on the basis
of efficiency, robustness, and complexity in solving several
elliptic PDEs on realistic unstructured tetrahedral finite el-
ement meshes. We use Mesquite and PETSc in their native
state with the default parameters. Only these two toolkits
are employed so that differences in solver implementations,
data structures, and other such factors would not influence
the results.

The rest of this paper is organized as follows. In Section
2, we describe the three elliptic PDEs we are solving. We
describe the quality metrics we use for optimizing the mesh
in Section 3. In Section 4, the mesh optimization procedure
is described. In Sections 5 and 6, we discuss the iterative lin-
ear solvers and preconditioners used in our numerical exper-
iments. The results from our numerical experiments are ex-
plained in Section 7. We present our conclusions and plans
for future work in Section 8.

2 Finite Element Solution of Elliptic PDEs

In this paper, we consider the solution of three elliptic PDE
problems: Poisson’s equation, general second-order elliptic
PDE problems, and linear elasticity. On a given geometric
domain, we consider only homogeneous Dirichlet bound-
ary conditions, since we observed in [23] that modifying

the boundary conditions does not alter the efficiency rank-
ing of the solver time for combinations of mesh quality met-
rics, preconditioners, and linear solvers. To solve the ellip-
tic PDE problems, triangular meshes are used to discretize
the domain, Ω . The standard Galerkin finite element (FE)
method [24] is used to solve the given PDE problem result-
ing in the linear system

Aξ = b. (1)

The approximate solution, ξ , of the analytical solution, u,
can be computed by solving (1). In general, (1) is a sparse
linear system, and iterative methods such as CG and GM-
RES are often used to solve the system.

Poisson’s equation. Poisson’s equation is used to model
many mechanical and electromagnetic problems. Poisson’s
equation is given by

−∂ 2u
∂x2 −

∂ 2u
∂y2 = f on Ω , (2)

where f is a given function. For Poisson’s equation, the ma-
trix A is given by A=K+N, where K is the stiffness matrix
and N is a matrix containing boundary information.

General second-order elliptic PDE problem. The general
second-order elliptic PDE problem on Ω is defined as

−α
∂ 2u
∂x2 −β

∂ 2u
∂y2 +au = f on Ω , (3)

where α and β are PDE coefficients and a and f are given
functions. If a = 0, (3) reduces to Poisson’s equation. We
consider the case when a is nonzero. The coefficients α and
β form a coefficient matrix, C, given by

C =
(

α 0
0 β

)
.

For example, C is the identity matrix, I, for (2). The ma-
jor difference between (3) and Poisson’s equation in (2) is
the existence of a mass matrix, M, in the decomposition
for matrix A. For this problem, the matrix A is given by
A=K+M+N, where K is the stiffness matrix, M is the mass
matrix, and N is a matrix containing boundary information.
One application of the general second-order elliptic PDE
problem is the scattering problem.

Linear elasticity. Linear elasticity is a common problem in
structural mechanics and is used to compute the displace-
ment vector, u, given a body force, f , and (or) a traction
load. In this paper, we do not consider a traction load. The



3

linear elasticity problem with the Lamé parameters λ and µ
is defined as
{ −5·τ = f

τ = λ
(

α ∂u
∂x +β ∂u

∂y

)
I +2µε(u),

(4)

where α and β are PDE coefficients, and τ and ε(u) are the
stress and strain tensors, respectively. The strain tensor is
given by

εi j (u) =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
, i, j = 1,2.

For homogeneous materials, the Lamé parameters are given
by λ=Eν/((1+ν)(1−2ν)) and µ=E/(2(1+ν)), where E
and ν are the elastic modulus and Poisson’s ratio, respec-
tively [25].

Elliptic PDE coefficients and optimal mesh element shape.
The efficiency of elliptic PDE solvers is highly connected
with the condition number, κ , of the matrix A. A smaller
κ(A) results in a faster convergence time for solving (1).
The optimal element shape that reduces κ(A) depends on
the coefficients of the elliptic PDEs [5,7,26]. It has been
shown that for C = γI over Ω , where γ is a constant, the
optimal shape of a triangular element is an equilateral tri-
angle [5,7,26]. If C is a constant, but is not γI on Ω , the
optimal shape is not an equilateral triangle, and anisotropic
triangular elements can be used to obtain a smaller κ(A) [5,
7]. If C is non-constant over Ω , the optimal shape of a trian-
gular element varies over Ω [26]. In this paper, we consider
elliptic PDEs with continuous, isotropic coefficients which
are constant over Ω (i.e., C = γI). Therefore, for the PDEs
considered in this paper, the ideal triangular element shape
is an equilateral triangle.

3 Mesh Quality Metrics

Table 1 provides the notation used to define the following
mesh quality metrics: inverse mean ratio (IMR) [16], radius
ratio (RR) [5], a conditioning-based scale-invariant metric
(SI) [5], and an interpolation-based size-and-shape metric
(SS) [5]. Table 2 defines IMR, RR, SI, and SS. These four
quality metrics were chosen based on their geometric fea-
tures, which result in varying contour plots as shown in Fig
1. The plots show the contour lines of the quality of a trian-
gle as a function of a free vertex when the two other vertices
held fixed at (0,0) and (0,1). Darker contour lines indicate
better quality triangles.

IMR is one of the most well-known mesh quality met-
rics for mesh quality improvement and is evaluated using
the position vectors in the element. RR is a quality metric
which is computed using the radius of the triangular ele-
ment’s circumscribing and inscribing circles. SI is a quality

Notation in Definition
a, b, and c Position vectors for vertices in a

triangular element
C = [b−a; c−a] Jacobian of a triangular element

W =

(
1 1

2
0
√

3
2

)
Incidence matrix for an equilateral triangle

Area Area of a triangular element
rcirc Radius of a triangular element’s

circumscribing circle
rin Radius of a triangular element’s

inscribing circle
s1, s2, and s3 Edge lengths of a triangular element

Table 1 Notation used in the definition of the 2D mesh quality metrics
in Table 2.

Quality Metric Formula

Inverse mean ratio (IMR) ‖CW−1‖2
F

2|det(CW−1)| [16]

Radius ratio (RR)
√

rcirc/rin [5]

Conditioning-based scale-invariant (SI) Area/(s2
1 + s2

2 + s2
3) [5]

Interpolation-based size-and-shape (SS) Area/(s1s2s3) [5]

Table 2 The mesh quality metric definitions.

(a) IMR (b) RR

(c) SI (d) SS

Fig. 1 Contour plots of the quality metric of a triangle as a function of
a free vertex when the two other vertices held fixed at (0,0) and (0,1).

metric based on stiffness matrix conditioning, whereas SS is
a quality metric based on interpolation error bounds. Note
that a conditioning-based size-and-shape quality metric is
not defined for 2D cases (triangles) [5].

4 Mesh Optimization

We denote the elements of a mesh and the number of mesh
elements by E and |E|, respectively. The overall quality of
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the mesh, Q, is a function of the individual element qualities,
qi, where qi is the quality of the ith element in the mesh. The
mesh quality depends on the choice of qi (Section 3) and the
objective function used to combine the individual element
qualities.

The value of the IMR quality metric lies between 1 and
∞, whereas the RR quality metric’s value lies between 0.5
and ∞. For IMR and RR, a lower value indicates a higher
quality element. For the IMR and RR quality metrics, we
define the overall mesh quality, Q, as the sum of squares of
the individual element qualities:

Q =
|E|
∑
i=1

q2
i . (5)

The SI quality metric’s value lies between 0 and 1/(4
√

3),
whereas the SS quality metric’s value lies between 0 and
∞. For SI and SS, a higher value indicates a higher quality
element. For the SI and SS quality metrics, we define the
overall mesh quality, Q, as the sum of the squares of the re-
ciprocal of the individual element qualities:

Q =
|E|
∑
i=1

1
q2

i
. (6)

We use the reciprocal of the quality metric instead of the
additive inverse to optimize the mesh because the optimiza-
tion process for the latter results in meshes with elements
of both very good and very poor quality, which is not de-
sirable. Using the reciprocal (as was done in [27]) results in
smoothed meshes with a more even distribution of element
qualities.

We use the Fletcher-Reeves nonlinear conjugate gradi-
ent method [28] in Mesquite [14] to minimize Q (as defined
by either (5) or (6)). The local mesh smoothing technique
is used for the mesh optimization procedure. Mesquite em-
ploys a line search version of the nonlinear conjugate gradi-
ent method. The implementation ensures that the triangular
elements do not tangle as a result of vertex movement.

Our preliminary experiments indicate that the total time,
which is the sum of the smoothing time and the solver time,
is minimal when the reduction in the objective function is
95% of the possible reduction (when the mesh is completely
smoothed). The smoothing time significantly dominates the
solver time when the mesh is completely smoothed. Thus,
we perform inaccurate mesh smoothing, i.e., we smoothe
the mesh only to the extent required to yield the optimal
total time for numerically solving the PDE on the mesh (as
in [29]).

5 Iterative Linear Solvers

Four iterative Krylov subspace methods are employed to
solve the preconditioned linear system. The conjugate gra-

dient (CG) solver [19] is a well-known iterative method for
solving systems with symmetric positive definite matrices.
It produces a sequence of orthogonal vectors on successive
iterations. Let P be the preconditioner (to be described in
Section 6). The convergence rate of the preconditioned CG
method depends upon the condition number, κ , of P−1A. In
the 2-norm, κ can be approximated by

κ2(P−1A) =
∥∥P−1A

∥∥
2

∥∥P−1A
∥∥−1

2

≈ λmax(P−1A)/λmin(P−1A),

where λmax and λmin are the maximum and minimum eigen-
values of P−1A, respectively. The fastest convergence occurs
when eigenvalues are clustered around the same non-null
value, and hence, κ is near 1. Some theoretical convergence
results for the CG solver are given in [12,30]. In particular,
if the eigenvalues of A are uniformly distributed, the num-
ber of iterations required to converge, n, to reduce the error
in the energy norm by a factor of ε satisfies the following
inequality [12]:

n≤
⌊√

κ log
2
ε

⌋
+1.

The minimal residual (MINRES) algorithm [20] solves
linear systems with symmetric indefinite matrices. It gener-
ates a sequence of orthogonal vectors and attempts to mini-
mize the residual in each iteration. Similar to CG, a small
condition number for P−1A and clustering of eigenvalues
around the same non-null value results in fast convergence.

For nonsymmetric matrices, the generalized minimal res-
idual (GMRES) method [21] is one of the most widely used
iterative solvers. Similar to CG and MINRES, GMRES com-
putes orthogonal vectors on each iteration; however, the en-
tire sequence needs to be stored. Therefore, the version of
GMRES which restarts GMRES every m steps, i.e., GMRES-
(m), is used in practice. It is known that a large value of m
is effective in decreasing the number of iterations required
to converge; however, the optimal value of m depends upon
the problem [31].

The biconjugate gradient stabilized (Bi-CGSTAB) meth-
od [22] is a biorthogonalization technique, which generates
two sets of biorthogonal vectors instead of producing long
orthogonal vectors. Bi-CGSTAB is known to have compa-
rable or even faster convergence than other biorthogonaliza-
tion methods such as the conjugate gradient squared method.
However, Bi-CGSTAB sometimes shows an irregular con-
vergence rate similar to other biorthogonalization methods
[17]. Bi-CGSTAB and GMRES are the most widely-used it-
erative methods for solving systems based on nonsymmetric
matrices.



5

6 Preconditioners

The objective of introducing a preconditioner, P, into the
solution of a linear system is to make the system easier to
solve, whereby reducing the convergence time of the iter-
ative solver. The reader is referred to [32] (and the refer-
ences therein) for further information on iterative solvers
and preconditioners. In this paper, four preconditioners are
employed. The first is the Jacobi preconditioner, which is
simply the diagonal of A.

The second is the symmetric successive over relaxation
(SSOR) preconditioner. SSOR is similar to Jacobi but de-
composes A into L (the strictly lower triangular part), D
(the diagonal), and U (the strictly upper triangular part), i.e.,
A=L+D+U . The SSOR preconditioner is given by

P = (D−ωL)D−1(D−ωU),

where ω represents the relaxation coefficient. The default ω
value in PETSc is 1.

The incomplete LU (ILU) preconditioner with level zero
fill-in (ILU(0)) is the third preconditioner. ILU is commonly
used in the solution of elliptic PDE problems. The basic idea
of the ILU preconditioner is to determine lower (L̃) and up-
per triangular (Ũ) matrices such that the matrix L̃Ũ-A satis-
fies certain constraints [32]. The ILU preconditioner works
well for many problems but fails when it encounters nega-
tive or zero pivots.

The fourth is the algebraic multigrid (AMG) precon-
ditioner. Different from geometric multigrid methods, the
AMG preconditioner does not need any mesh information
to generate the preconditioner and hence is known as black-
box technique. AMG only requires the matrix A to generate
the preconditioner. Therefore, the AMG preconditioner can
be used to solve linear systems which arise from unstruc-
tured meshes. The main idea of the AMG preconditioner is
to eliminate the smooth error using restriction and interpola-
tion which is not removed by relaxation on the fine grid [18].
In this paper, we use the default options for HYPRE Boomer-
AMG in PETSc. The default option in PETSc employs 25
levels of V-cycles. For further infomation on HYPRE Boom-
erAMG, the reader is referred to [15].

7 Numerical Experiments

7.1 Experimental Setup

We consider the following questions which we investigate
on the three elliptic PDE problems shown in Table 3. What
is the most efficient combination of mesh quality metric,
preconditioner, and solver for solving each PDE problem?
Which combinations are most and least sensitive to vertex
perturbation? What is the effect of increasing the problem

size on the number of iterations required to converge? Ta-
ble 3 summarizes the experiments and corresponding PDE
problems to be solved. For all three PDE problems in Ta-
ble 3, we consider only a simple homogeneous Dirichlet
boundary condition with u=0 on the boundary because we
already observed that modifying boundary condition does
not affect the efficiency ranking [23]. For the elasticity prob-
lem in Table 3, E and ν are set to 1 and 0.3, respectively.
The body force, f , is set to [1 0]T . The machine employed
for this study is equipped with an Intel Nehalem processor
(2.66 GHz) and 24GB of RAM [33].

In this paper, we consider elliptic PDEs with isotropic
coefficients, which is constant (i.e., C = αI ) over 2D geo-
metric domains. The optimal element shapes for solving el-
liptic PDEs with anisotropic coefficients are different from
the optimal shapes for elliptic PDEs with isotropic coeffi-
cients [5,7,26]. Therefore, our experimental results cannot
be generalized to the solution of elliptic PDEs with anisotropic
coefficients. The quality metrics used to determine the mesh
element quality are different for 2D and 3D elements. In ad-
dition, the sparsity patterns of the A matrices in the linear
systems obtained from unstructured meshes are different for
2D and 3D meshes. Therefore, our experimental results can-
not be generalized to 3D meshes.

Geometric Domains. The two 2D geometric domains, wren-
ch and hinge, considered in our experiments are shown in
Figure 2. Triangle [34] is used to generate initial meshes on
the two domains. Half the interior vertices in each mesh are
perturbed to create test meshes that are further from optimal.
Properties of the test meshes and the corresponding finite el-
ement matrices are shown in Table 4.

Finite Element Solution. The FE method described in Sec-
tion 2 is used to discretize the domain, Ω , and to generate a
linear system of the form Aξ =b. PETSc [15] is used to gen-
erate the preconditioners, P, and to solve the linear system,
P−1Aξ =P−1b. We employ the solvers and preconditioners
described in Sections 5 and 6, respectively, to solve the lin-
ear system. Table 5 enumerates the 16 preconditioner-solver
combinations used in our experiments. The default parame-
ters for each preconditioner and solver were employed.

The default stopping criteria in PETSc were employed.
For example, the absolute tolerance, abstol, and the rela-
tive tolerance, rtol, are set to 1e-50 and 1e-05, respectively.
The maximum number of iterations for solving the precon-
ditioned linear system is set to 10,000. When the precondi-
tioned linear system is solved, ξ0 is set to the default value
of 0. The preconditioned linear system converges on the ith

iteration if the following inequality is satisfied:

‖ri‖< max(rtol‖r0‖ ,abstol), (7)
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Exp. Exp. Examples of
No. Name. PDE Problems
7.3.1 Determination of restart values of the GMRES solver (A) −∆u = 1 on Ω , u = 0 on ∂Ω
7.3.2 Poisson’s equation (A) −∆u = 1 on Ω , u = 0 on ∂Ω
7.3.3 General second-order elliptic PDE problem (B) −∆u + 100 u = 1 on Ω , u = 0 on ∂Ω
7.3.4 Elasticity problem (C) −5 · τ = f on Ω , u = 0 on ∂Ω , where

τ = λ (5 · u) I + 2µε(u)

Table 3 Listing of numerical experiments and examples of PDE problems. The letters (a) through (c) are representative examples of the three
types of PDE problems under consideration.

(a) Wrench mesh (b) Hinge mesh

Fig. 2 Coarse initial meshes on the wrench and hinge geometric domains indicative of the actual meshes to be smoothed.

mesh # vertices # elements mesh # vertices # elements
Wrench (10K) 10,142 19,796 Hinge (10K) 9,989 18,359
Wrench (50K) 50,161 99,197 Hinge (50K) 49,986 96,483

Wrench (100K) 100,267 199,055 Hinge (100K) 99,949 195,131
Wrench (200K) 199,981 397,764 Hinge (200K) 200,894 394,743
Wrench (500K) 499,340 995,496 Hinge (500K) 498,978 987,162

Table 4 Properties of meshes on geometric domains. Initial angle distributions for the meshes are given in Table 7.

where ri is the residual at the ith iteration and r0 is the initial
residual.

Accuracy of the Solution. The exact solutions of the PDE
problems in Table 3 on the geometric domains in Figure 2
are unknown. Therefore, we conduct a mesh-independence
study using meshes with 10K, 50K, 100K, 200K, and 500K
vertices and verify that the angle distribution and resulting
PDE solution is independent of the mesh size. Our experi-
mental results show that the finite element method converges
to the same PDE solution if the mesh consists of more than
10K vertices. We also observe that the finite element solu-
tion is not affected by choice of quality metric, precondi-
tioner, and linear solver for these mesh sizes. We will inves-
tigate the accuracy of the finite element solution for bound-
ary value PDEs as future work.

Timing. In our experiments, the total time is defined as the
sum of the smoothing time and the solver time. The smooth-
ing time is the time to achieve an accurately smoothed mesh
as described in Section 4. The time required to smoothe the

test meshes using various quality metrics is shown in Ta-
ble 6. The solver time is the time the solver takes to sat-
isfy (7) and includes the time to generate P and to solve
P−1Aξ =P−1b.

For our experiments, we use Mesquite version 1.1.7 and
PETSc version 3.0.0. Mesquite and PETSc are widely used
for solving linear systems [12,13,35] and mesh quality im-
provement [29,36,23], respectively. Both PETSc and Mesqu-
ite are numerical libraries containing data structures and rou-
tines. Algorithms in each software package are coded us-
ing similar data structures and routines. We report both the
timing (in seconds) and the number of iterations required to
converge. Note the latter is not affected by the software ver-
sion or the hardware used to solve the problem. However, the
timing can be affected by these factors. We expect that the
relative difference amongst different combinations of qual-
ity metric, preconditioner, and linear solvers will remain the
same.
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Preconditioner Solver
CG GMRES MINRES BI-CGSTAB

Jacobi 1 2 3 4
SSOR 5 6 7 8
ILU(0) 9 10 11 12
AMG 13 14 15 16

Table 5 The sixteen combinations of preconditioners and solvers. For example, 10 refers to using the ILU(0) preconditioner with the GMRES
solver.

Mesh Mesh quality metrics
IMR RR SI SS

Wrench (500K) 55 515 501 605
Hinge (500K) 55 526 516 633

Table 6 Mesh smoothing time (sec) for various mesh quality metrics

7.2 Description of Experiments

Experiment 1: Best combination of mesh quality met-
ric, preconditioner and solver. In this experiment, we seek
to determine the most efficient combination of mesh qual-
ity metric, preconditioner, and solver for each type of PDE
problem in Table 3. We will examine the most efficient com-
binations for both the solver time and the total time.

Experiment 2: Effect of perturbation. We discuss the ef-
fect of varying the percentage of vertex perturbation on the
efficiency of the preconditioner-solver combinations. In [12],
it is reported that the CG solver is more robust to perturba-
tion than is the GMRES solver for the Jacobi preconditioner.
We determine the robustness for various combinations of
preconditioners and solvers to such perturbations. We ran-
domly perturb a certain number of vertices in each mesh
while ensuring that no perturbation results in a very poorly-
shaped element (e.g., an inverted element). We perturb the
interior vertices such that they move less than half the dis-
tance at which element inversion would occur. In our exper-
iments, we perturb 5%, 10%, 25%, and 50% of the elements
and investigate the robustness of the preconditioner-solver
combinations to the vertex perturbations.

We define the relative increase, i.e., the percentage in-
crease (PI), in the solver time due to the vertex perturbation
as follows:

PI =
Tmax−Tmin

Tmin
,

where Tmax and Tmin are the maximum and minimum con-
vergence time among 0% (i.e., fully-smoothed unperturbed
mesh), 5%, 10%, 25%, and 50% perturbed elements, respec-
tively. Note that we observe monotonic convergence behav-
ior with all four mesh quality metrics.

Experiment 3: Increasing the problem size. In this experi-
ment, we examine the convergence rates of various precondi-
tioner-solver combinations with an increasing number of ver-
tices in a mesh for a given domain. We execute our numer-

ical experiments for meshes with 10K, 50K, 100K, 200K,
and 500K vertices on each domain. Let N be the number
of vertices in the mesh. We compute the order of conver-
gence, denoted O(Ns), using the linear least-squares method
for both the number of iterations to converge and the solver
time. Thus, the total work required to solve the system is
O(Ns+1) for each combination of preconditioner and solver.

7.3 Numerical Experiments

We now discuss the results for the three numerical exper-
iments discussed in Section 7.1 for each PDE problem in
Table 3.

7.3.1 Preliminary experiment for determination of restart
value of the GMRES solver

The default restart value, m, in PETSc is 30, and we ex-
amine whether that value is optimal to solve each of the
PDE problems. We experimentally determine the optimal m
value, which yields the fastest solver time, for each applica-
tion by varying it as follows: 10, 30, 50, 100, and 200.

Figure 3(a) shows the number of iterations required to
converge for different m values as the problem size increases
for the wrench domain. For this experiment, the meshes are
smoothed with the IMR quality metric, and the SSOR pre-
conditioner with the GMRES solver is employed to solve
Poisson’s equation (problem (A) in Table 3). The results ob-
tained are representative of the results obtained with other
geometric domains, quality metrics, and preconditioners. We
observe that as we increase the values of m, the total number
of iterations to converge reduces. This is consistent with the
theoretical analysis presented in [31].

Figure 3(b) shows the solver time for different m values
as we increase the problem size. We observe that the solver
time is least when the restart value, m, is 30. As we reduce or
increase the restart value, the time taken to converge to a so-
lution increases. Large restart values (e.g., m = 100 and 200)
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result in slower solver times because the cost of orthogonal-
ization increases with an increase in m. Small restart values
(e.g., m = 10) also slow the solver since it needs a greater
number of iterations to converge.

For the other types of PDE problems in Table 3, we ob-
serve similar results. The GMRES solver with m = 30 yields
the least solver time, although m = 200 results in the fewest
number of iterations to converge. Therefore, we choose the
GMRES solver with m = 30 for all elliptic PDE problems in
Table 3.

7.3.2 Numerical Results for Poisson’s Equation

Exp. 1: Determination of the best combinations of mesh
quality metric, preconditioner, and solver for Poisson’s
equation. Table 8 shows the solver time and the number of
iterations required for convergence as a function of mesh
quality metrics for different combinations of precondition-
ers and solvers. The most efficient combinations (e.g., the
IMR mesh quality metric with the AMG preconditioner and
the CG solver) are 97% faster than the least efficient com-
binations (e.g., the IMR quality metric with the Jacobi pre-
conditioner and the GMRES solver).

We observe that the AMG preconditioner with any choi-
ce of quality metric and solver is faster to converge than
other combinations of quality metric, preconditioner and
solver. When we solve linear equations derived from a mesh,
high frequency terms are not eliminated only by relaxation
on the fine grid. Thus, the AMG preconditioner used in this
paper employs 25 level of V-cycles and efficiently eliminates
high frequency terms (which correspond to large eigenval-
ues in the matrix A) using coarse grid correction techniques.
The most time-consuming step during the generation of the
AMG preconditioner is an aggregation step which finds the
vertex-neighborhood information from the matrix A. How-
ever, the aggregation step is fast for Poisson’s equation as
it contains a single degree of freedom. Note that the num-
ber of iterations required to converge for combinations with
the AMG preconditioner represent the number of outer iter-
ations only (not including V-cycles).

We also observe that the Bi-CGSTAB solver (combina-
tions 4, 8, 12, and 16 in Table 5) is most sensitive to the
choice of different mesh quality metric, whereas, the CG
solver is least affected by the choice of the quality metric.
These results are related with the irregular convergence be-
havior discussed in [23]. The number of iterations required
to converge and the solver time taken by the BiCG-STAB
solver with a given preconditioner varies by more than 20%
in many cases. For other combinations, however, the varia-
tion is small and is restricted to less than 10% in most cases.

On the choice of mesh quality metrics, the SS metric is
the least efficient mesh quality metrics in most cases. The
method using the SS metric often fails to converge because

meshes smoothed by the SS metric fail to yield a positive
definite preconditioner. Note that both the CG and the MIN-
RES solvers require the preconditioner to be a positive def-
inite matrix. In most cases, the maximum eigenvalue of the
matrix A is larger and the minimum eigenvalue of the ma-
trix A is smaller than the eigenvalues of the corresponding
matrix A for the other quality metrics. These eigenvalues are
connected to the shape (angle) of the elements in the mesh.

Table 7 shows the angle (θ ) distributions for elements in
the initial mesh (i.e., with 50% of the interior vertices per-
turbed) and different quality metrics on the wrench (500K)
and hinge (500k) domains. We observe that all four qual-
ity metrics try to generate nearly equilateral elements, but
the SS metric yields meshes containing elements with more
small and large angles than do the other quality metrics.
This is because the SS metric penalizes small angles less
than do other quality metrics [5]. For elliptic PDEs with
isotropic coefficients, it is well-known that equilateral trian-
gles are desirable for efficiency, whereas small angles have
a bad effect on the condition number of matrix A and on the
efficiency [5]. This explains why the SS metric is less ef-
ficient for mesh smoothing than other quality metrics. We
also observe that the elements with small angles or large an-
gles (i.e., poorly-shaped) occur most often on the boundary
of the mesh. Interestingly, among the four quality metrics in
Table 7, the RR metric has the fewest poorly-shaped ele-
ments (even fewer than the IMR).

In terms of the total time, the IMR metric outperforms
the other quality metrics, because numerical computation of
the IMR metric for mesh optimization is highly optimized in
Mesquite. Numerical computation of the other mesh quality
metrics, i.e., RR, SI, and SS, are not as optimized and hence
are less efficient to compute. Similar to the solver time, the
SS metric is the least efficient quality metric in terms of the
total time. The total time for the most efficient combination
(i.e., AMG with CG) for the IMR metric is 90% less than it
is for SS. The least efficient combination (i.e., Jacobi with
GMRES) for the IMR metric is 45% faster than that of the
least efficient quality metric, i.e., SI.
Exp. 2: Effect of perturbation for Poisson’s equation. Ta-
ble 9 shows the linear solver time and the number of iter-
ations required to converge as a function of the amount of
vertex perturbation on the wrench and hinge meshes, respec-
tively. Figures 4(a) and 4(b) show the PI for different combi-
nations of preconditioners and solvers when the number of
perturbed vertices is increased. For these experiments, the
meshes are smoothed with the IMR quality metric. The re-
sults obtained are representative of the results obtained with
other quality metrics.

More preconditioner-solver combinations are able to sol-
ve the PDEs on the wrench domain than on the hinge do-
main. The PDE on the hinge domain is harder to solve be-
cause there are many holes in the domain and the holes cre-



9

(a) Number of iterations (b) Solver time

Fig. 3 Effect of the mesh size on the number of iterations (a) and solver time (b) to convergence as a function of GMRES restart value, m, for
Poisson’s equation (problem (A) in Table 3) on the wrench domain.

(a) Wrench (500K)

Quality Angle (θ ) distribution
Metric θ < 20◦ 20◦ < θ < 40◦ 40◦ < θ < 60◦ 60◦ < θ < 80◦ 80◦ < θ < 100◦ θ > 100◦

Initial mesh 0.768 15.64 38.30 28.83 12.03 4.43
IMR 0.008 1.60 52.27 42.40 3.47 0.25
RR 0.006 0.96 52.62 43.85 2.49 0.07
SI 0.005 0.70 53.68 42.39 3.08 0.09
SS 0.027 2.08 52.67 39.47 5.70 0.25

(b) Hinge (500K)

Quality Angle (θ ) distribution
Metric θ < 20◦ 20◦ < θ < 40◦ 40◦ < θ < 60◦ 60◦ < θ < 80◦ 80◦ < θ < 100◦ θ > 100◦

Initial mesh 0.950 15.48 38.79 28.39 11.85 4.54
IMR 0.021 2.05 52.23 41.55 3.76 0.39
RR 0.019 1.44 51.67 43.02 2.82 0.19
SI 0.016 1.17 52.85 41.52 3.38 0.23
SS 0.084 2.44 51.73 38.67 5.81 0.43

Table 7 Angle (θ ) distribution for various mesh quality metrics. The reported values indicate a percentage of angles in the mesh. The initial mesh
is the mesh with 50% of the interior vertices perturbed.

ate thin areas near the boundary. The vertices are highly
constrained in these areas and perturbation produces poorly-
shaped elements in many cases.

Table 9 shows that the CG and MINRES solvers fail
to converge in many cases, whereas the GMRES and Bi-
CGSTAB solvers do not. The CG and the MINRES solver
often fail to converge because they fail to generate a pos-
itive definite preconditioner for two reasons. First, genera-
tion of the preconditioners fails when there are poorly-shaped
elements in the mesh and when the minimum eigenvalue of
the matrix A is too small relative to its maximum eigenvalue.
Poorly-shaped elements represent the elements which have
large (e.g., angle > 100◦) or small angles (e.g., angle < 20◦).
This was also observed in the above experiment for the SS
metric. Secondly, preconditioners for the CG and MINRES
solvers fail when the element lengths are very small. In these
cases, the minimum eigenvalue of the matrix A is very small
and corresponds to a large condition number. The minimum
eigenvalue of the matrix A depends on the edge lengths in

the mesh. For these reasons, when the element lengths are
very small or when the meshes include lots of poorly-shaped
elements, we see that GMRES and Bi-CGSTAB are more
robust than CG and MINRES are to vertex perturbation.

We also observe the following rank-ordering of precon-
ditioners for robustness to vertex perturbation: ILU(0) >

SSOR ≈ AMG > Jacobi. The ranking is in order of most
robust to least robust. Note that the solver time for the AMG
preconditioner is less than 10 seconds, whereas it is greater
than 40 seconds for the other preconditioners. Hence, the PI
values are sensitive to small changes of the solver time.

Exp. 3: Increasing the problem size for Poisson’s equa-
tion. We observe that the maximum eigenvalues of P−1A
stay constant, but the minimum eigenvalue of P−1A rapidly
decreases as N increases. This is consistent with the results
observed in [5]. In [5], it was discussed that the minimum
eigenvalue in matrix A is a function of the edge lengths in
the mesh. It was also discussed in Section 5 that clustering
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(a) Wrench (500K)

Quality Combinations of preconditioners and solvers
Metric 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IMR 132.7 547.3 85.8 90.2 56.3 104.3 56.4 58.2 49.9 83.6 46.7 43.4 3.6 3.9 4.0 3.9
983 3704 851 680 427 550 390 296 379 487 349 228 5 5 6 3

RR 133.3 466.6 85.3 78.9 57.9 102.4 60.6 52.5 48.8 83.1 46.8 43.3 4.3 3.7 4.4 3.9
976 3455 845 640 426 547 389 262 378 481 348 230 5 5 6 3

SI 136.3 471.9 87.2 80.1 58.2 100 60.5 60 50 85.2 48.2 52.6 4.1 3.6 3.9 3.6
976 3301 844 622 426 547 389 278 378 482 348 268 5 5 5 3

SS * 499.4 * 76.7 * 92.4 54.2 57.6 * 87.4 51.3 44.0 3.8 4.1 4.4 4.2
* 3657 * 616 * 530 394 288 * 483 356 220 5 5 6 3

(b) Hinge (500K)

Quality Combinations of preconditioners and solvers
Metric 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IMR * 324.5 * 49.2 40.6 93.2 40.8 42.2 34.8 74.8 34.1 39.9 3.5 3.4 3.9 4.1
* 2404 * 402 317 528 299 213 282 445 268 208 5 5 5 3

RR * 322.2 * 68.3 41.3 92.8 41.0 37.7 34.7 73.1 34.8 35.0 3.4 3.3 3.7 4.0
* 2360 * 521 316 527 299 192 281 435 267 179 5 5 5 3

SI * 318.4 * 57.4 40.2 90.3 41.3 43.6 34.6 73.0 33.9 37.3 3.3 3.4 3.7 3.7
* 2380 * 465 316 527 299 217 281 436 266 197 5 5 5 3

SS * 380.4 * 63.5 * 87.8 * 43.9 35.6 71.7 36.9 38.1 4.4 4.0 3.6 3.8
* 2531 * 501 * 517 * 226 287 453 273 195 5 5 5 3

Table 8 Linear solver time (secs) and number of iterations required to converge for Poisson’s equation (problem (A) in Table 3) as a function of
mesh quality metric for the 16 preconditioner-solver combinations (see Table 5) on the wrench and hinge domains. A ’*’ denotes failure. For each
quality metric, the numbers in the top and bottom rows represent the linear solver time and number of iterations to convergence, respectively.

(a) Wrench (500K)

Percent Combinations of preconditioners and solversVertices
Pert. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0% 132.7 547.3 85.8 90.2 56.3 104.3 56.4 58.2 50.0 83.6 46.7 43.4 3.6 3.9 4.0 3.9
983 3704 851 680 427 550 390 296 379 487 349 228 5 5 6 3

5% * 420.4 * 101.1 * 113.2 * 53.4 51.6 93.7 55.6 53.3 4.6 4.2 4.6 5.2
* 2981 * 738 * 647 * 255 403 492 371 264 5 5 6 3

10% * 443.O * 91.9 * 115.5 58.7 55.3 55.2 86.9 53.2 51.7 4.7 4.1 4.7 4.4
* 3152 * 701 * 649 418 255 404 492 371 262 5 5 6 3

25% * 435.1 * 93.3 * 116.6 * 62.4 54.0 92.6 52.4 45.2 4.4 4.5 5.2 4.7
* 2930 * 724 * 670 * 307 411 528 378 237 5 5 6 3

50% * 551.2 * 95.6 * 133.3 * 58.9 58.9 103.2 59.3 49.8 4.4 4.4 4.7 5.0
* 3869 * 809 * 713 * 294 423 570 389 261 5 5 6 3

(b) Hinge (500K)

Percent Combinations of preconditioners and solversVertices
Pert. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0% * 324.5 * 49.2 40.6 93.2 40.8 42.2 34.8 74.8 34.1 39.9 3.5 3.4 3.9 4.1
2404 * 402 317 528 299 213 282 445 268 208 5 5 5 3

5% * * * 661.8 * 259.4 * 184.6 * 84.2 * 42.6 * 7.3 * 20.0
* * * 5432 * 1500 * 952 * 505 * 234 * 15 * 27

10% * * * 657.5 * 268.4 * 160.4 * 90.6 * 39.4 * 7.8 14.0 20.2
* * * 4988 * 1577 * 844 * 543 * 208 * 14 29 31

25% * * * 54.0 * 394.0 * 195.1 * 90.0 * 44.4 * 7.6 11.6 21.7
* * * 4122 * 2412 * 970 * 493 * 230 * 13 27 32

50% * * * * * 297.5 * 154.0 * 94.4 * 45.2 * 7.5 * 22.1
* * * * * 1676 * 740 * 535 * 237 * 15 * 34

Table 9 Linear solver time (secs) and number of iterations required to converge for Poisson’s equation (problem (A) in Table 3) as a function
of vertex perturbation for the 16 preconditioner-solver combinations (see Table 5) on the two geometric domains. A ’*’ denotes failure. For each
percentage of vertices perturbed, the numbers in the top and bottom rows represent the linear solver time and number of iterations to convergence,
respectively.
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(a) Wrench (500K) (b) Hinge (500K)

Fig. 4 Percentage increase (PI) as a function of the solver time for different combinations of preconditioners and solvers for Poisson’s equation
(problem (A) in Table 3). Preconditioner-solver combinations which fail to generate a preconditioner or do not converge correspond to the missing
bars in these figures. Note that PI values for the hinge domain are significantly greater than those for the wrench domain.

of eigenvalues around the same non-null value results in a
faster convergence rate. Thus, as the minimum eigenvalues
of P−1A decrease, the eigenvalue spectrum becomes larger,
and the number of iterations required to converge increases.

Figure 5(a) shows the value of s in O(Ns) for the num-
ber of iterations required to converge for different combina-
tions of preconditioners and solvers on the wrench domain.
In this experiment, we use meshes smoothed by employ-
ing the IMR quality metric. The results are similar for other
quality metrics. The AMG preconditioner (i.e., combina-
tions 13− 16 in Table 5) with any solver yields values of
s less than 0.1. The other combinations of preconditioners
and solvers yield s values around 0.5. The Jacobi-GMRES
combination has the largest value with s approximately 0.8.
Figure 5(b) shows the same results on the hinge domain.
Figures 6(a) and 6(b) show the order of convergence of the
solver time for the wrench and the hinge domain, respec-
tively.

The best combination of quality metric, preconditioner,
and solver is not affected by increasing the problem size.
The AMG preconditioner with any solver beats the other
combinations. In terms of the quality metric, the RR met-
ric is the most efficient, whereas the SS metric is the least
efficient in most cases.

7.3.3 Numerical Results for General Second-order Elliptic
PDEs

Exp. 1: Determination of the best combinations of mesh
quality metric, preconditioner, and solver for general sec-
ond-oder elliptic PDEs. Table 10 shows the solver time as
a function of quality metric for various combinations of pre-
conditioners and solvers for problem (B) in Table 3. We ob-
serve that the overall solver time for problem (B) is lower
than it is for the other problems. The results show the most
efficient combination for the solution of problem (B) is sim-
ilar to the best combinations to solve problem (A).

The most efficient combination is the AMG precondi-
tioner with any choice of quality metric and solver. Simi-
lar to Poisson’s equation, general second-order elliptic PDEs
have one degree of freedom during the aggregation step for
generation of the AMG preconditioner. Therefore, it results
in fast solver time. The solver time for the most efficient
combination is 95% less than the least efficient combina-
tion (e.g., the SI quality metric with the Jacobi precondi-
tioner and the GMRES solver). For the choice of mesh qual-
ity metric, RR is more efficient than other quality metrics in
most cases, and the SS quality metric is the least efficient
quality metric. This result is also related to the angle dis-
tribution of mesh elements as discussed before. Similar to
Poisson’s equation (Problem (A)), the Bi-CGSTAB solver
is most sensitive to the choice of different mesh quality met-
ric, whereas, the CG solver is least affected by the choice of
quality metric.

We also observe that the use of any preconditioner in
this paper significantly mitigates poorly-shaped elements for
the SS metric when solving problem (B). This implies that,
for this problem, some poorly-shaped mesh elements can be
overcome, and the solver time does not increase when the
best preconditioner is not chosen.

In terms of the total time, the overall trend is similar
to that seen for Poisson’s equation (problem (A)). In most
cases, we observe the following rank ordering of quality
metrics with respect to the total time: IMR > RR > SI > SS.
The ranking is in order of fastest to slowest. The most effi-
cient combination is the IMR quality metric and the AMG
preconditioner with any choice of the solver. Note that for
problem (B), the smoothing time dominates the solver time
more when compared with problem (A) because the overall
solver time for solving problem (B) takes less time com-
pared with that for problem (A).

We also conducted experiments in which we modified
the PDE coefficients in (3) such that the coefficient matrix
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(a) Wrench (b) Hinge

Fig. 5 The order of convergence for the solver time based on the number of iterations for various combinations of preconditioners and solvers for
Poisson’s equation (problem (A) in Table 3). Meshes with 10K, 50K, 100K, 200K, and 500K vertices on each domain are employed in computing
s using the linear least-squares method.

(a) Wrench (b) Hinge

Fig. 6 Similar to Figure 5, this figure displays the order of convergence based on the solver time for Poisson’s equation (problem (A) in Table 3).
Meshes with 10K, 50K, 100K, 200K, and 500K vertices on each domain are employed in computing s using the linear least-squares method.

C = γI, where γ is a constant. We verified that the efficiency
rankings are not affected by these modifications. Because
they do not affect the optimal triangular shape, and hence
κ(A) is not affected. Also, the sparsity pattern of A is not
changed by these modifications. We also modified the func-
tions, f in (3) and observed consistent efficiency ranking re-
sults because modifying f only affects b of the linear system
in (1). This is consistent with the theoretical analysis which
is explained in Section 2.

In terms of PDE parameter a in (3), we consider a to be a
constant and modify its values. We investigate the existence
of a value on the efficiency rankings. If a is too large (i.e., a
> 100) or too small (i.e., a < -100) compared with f (e.g.,
f = 1), the problem is dominated by the linear term and af-
fects the efficiency rankings. Therefore, we assume -100 <

a < 100 and study the presence of the mass matrix on the
efficiency. Further discussion on the effect of the presence
of a nonzero value of a on efficiency rankings is presented
in our previous paper [23].

Exp. 2: Effect of perturbation for general second-oder el-
liptic PDEs. Figures 7(a) and 7(b) show the changes in the

solver time to compute the solution for the perturbed wrench
(500K) and hinge meshes (500K), respectively. For this ex-
periment, the meshes are smoothed with the IMR quality
metric. The results obtained are representative of the results
obtained with other quality metrics. The Jacobi precondi-
tioner is most sensitive to the vertex perturbation. Note that
the solver time for the AMG preconditioner is less than 10
seconds, whereas it is greater than 40 seconds for the other
preconditioners. Hence the values are more sensitive to small
changes.

Similar to Poisson’s equation, the SSOR preconditioner
with the CG or MINRES solver (combinations 5 and 7
in Table 5) shows the most robust performance with re-
spect to perturbation for both the wrench and hinge do-
mains. A few poor quality elements can increase the val-
ues of the maximum eigenvalues and the condition number
of the linear system. We observe that both CG and MIN-
RES are able to circumvent the numerical difficulties asso-
ciated with large eigenvalues [5]. The GMRES solver (GM-
RES(30)) is most sensitive to the poor elements because it
restarts in every 30 iterations without executing the addi-
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(a) Wrench (500K)

Quality Combinations of preconditioners and solvers
Metric 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IMR 25.7 60.4 27.2 23.1 16.0 24.1 17.1 20.1 13.2 21.8 15.3 17.4 3.4 3.3 3.4 3.4
284 442 259 181 125 138 119 96 111 123 107 73 4 4 4 2

RR 26.8 59.4 27.1 22.8 16.3 25.4 17.1 17.9 14.0 22.0 15.2 13.8 3.4 3.8 3.4 3.4
282 434 257 175 124 138 119 86 111 122 106 70 4 4 4 2

SI 26.8 61.1 26.2 25.9 15.9 24.7 17.1 14.4 14.1 21.3 15.2 14.8 3.5 3.5 3.5 3.3
282 436 257 204 124 138 119 69 111 122 106 73 4 4 4 2

SS 25.7 60.6 28.2 27.1 16.0 24.2 16.5 15.4 14.0 21.8 15.2 15.0 3.5 3.6 3.7 3.4
294 461 266 205 126 139 120 78 113 127 109 79 4 4 4 2

(b) Hinge (500K)

Quality Combinations of preconditioners and solvers
Metric 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IMR 23.5 52.8 23.9 19.6 14.1 22.2 14.8 16.1 13.4 18.6 13.3 13.7 3.4 3.2 3.2 3.0
261 383 237 159 113 127 108 81 100 110 97 68 4 4 4 2

RR 23.3 51.7 24.2 20.4 13.9 21.6 15.0 13.7 12.5 18.7 13.5 12.6 3.1 3.2 3.2 3.1
258 376 234 163 112 127 108 68 100 109 96 64 4 4 4 2

SI 24.2 54.5 23.5 21.5 13.9 23.3 15.3 15.1 12.7 19.5 13.5 12.9 3.0 3.1 3.1 3.1
259 378 235 174 112 127 108 74 100 109 96 67 4 4 4 2

SS 23.8 57.2 25.3 22.9 14.8 23.2 15.9 17.0 12.5 19.9 14.0 13.0 3.1 3.5 3.4 3.2
267 396 242 180 114 129 109 82 102 112 98 66 4 4 4 2

Table 10 Linear solver time (secs) and number of iterations required to converge for general second-order elliptic PDEs (problem (B) in Table 3)
as a function of mesh quality metric for the 16 preconditioner-solver combinations (see Table 5) on the two geometric domains. A ’*’ denotes
failure. For each quality metric, the numbers in the top and bottom rows represent the linear solver time and number of iterations to convergence,
respectively.

tional iterations needed to converge faster. The least robust
combinations are the Jacobi preconditioner with any choice
of the solver.

Exp. 3: Increasing the problem size for general second-
oder elliptic PDEs. Figure 8(a) and 8(b) show the order of
convergence for the number of iterations required to con-
verge as we increase N. The overall trend is similar to that
seen for problem (A). The Jacobi preconditioner with the
GMRES solver has the largest s value which is 0.63. The s
value of the CG solver with any preconditioner is approxi-
mately 0.5. We observe that the AMG preconditioner is not
sensitive to an increase in N. Four solvers when combined
with the AMG preconditioner have s values less than 0.1.
Figures 9(a) and 9(a) show the same results for the solver
times. The results are similar to the results for problem (A).
The best combinations (the RR quality metric and the AMG
preconditioner with any choice of the solver) is not affected
by increasing the problem size.

7.3.4 Numerical Results for the Linear Elasticity Problem

Exp. 1: Determination of the best combinations of mesh
quality metric, preconditioner, and solver for linear elas-
ticity. Table 11 shows the solver time and number of itera-
tions required for convergence as a function of various com-
binations of preconditioners and solvers for problem (C) in
Table 3. We observe that the efficiency rankings are different

from those obtained from Poisson’s equation (problem (A))
and general elliptic PDEs (problem (B)).

The ILU(0)-preconditioned solvers are more efficient
than the AMG-preconditioned solvers. The reason for the
difference is the difference in sparsity pattern of the A ma-
trix for each application. For Poisson’s equation, the matrix
A has a sparsity pattern that corresponds to the mesh connec-
tivity. Thus, the AMG preconditioner works very well when
an aggregation step is performed. For the linear elasticity
equations, A has twice the number of rows and columns as
the number of vertices in the mesh. Thus, the AMG coarsen-
ing algorithm generates aggregates of physically-incompati-
ble degrees of freedom [37]. This results in an increased
solver time for the AMG preconditioner to solve the linear
elasticity problem.

Also, the BiCG-STAB solver shows an approximately
20% variation in the number of iterations required for preco-
nditioner-solver combinations as a function of quality met-
ric. The variation of other solvers is in the range of 10%.
We observe the power of preconditioners in some cases. Al-
though the meshes smoothed by the SS metric have more
poorly-shaped elements than those obtained by smoothing
using other quality metrics, the solver time for the SS metric
is 50% less than that for the IMR metric.

Among the 16 combinations of preconditioners and solv-
ers, the most efficient combinations are the IMR or the SI
quality metric with the ILU(0) preconditioner and the CG
solver with respect to the solver time. On the wrench do-
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(a) Wrench (500K) (b) Hinge (500K)

Fig. 7 PI as a function of the solver time for various combinations of preconditioners and solvers after vertex perturbation for general second-order
elliptic PDEs (problem (B) in Table 3).

(a) Wrench (b) Hinge

Fig. 8 The order of convergence for the solver time based on the number of iterations for the combinations of preconditioners and solvers
for general second-order elliptic PDEs (problem (B) in Table 3). Meshes with 10K, 50K, 100K, 200K, and 500K vertices on each domain are
employed in computing s using the linear least-squares method.

(a) Wrench (b) Hinge

Fig. 9 Similar to Figure 8, this figure displays the order of convergence based on the solver time for general second-order elliptic PDEs (problem
(B) in Table 3). Meshes with 10K, 50K, 100K, 200K, and 500K vertices on each domain are employed in computing s using the linear least-squares
method.



15

main, the most efficient combination is 92% faster than the
least efficient combination (i.e., the RR quality metric with
the Jacobi preconditioner and the GMRES solver) with re-
spect to the solver time.

In terms of the total time, the IMR quality metric with
the ILU(0) preconditioner and the MINRES solver outper-
forms other combinations. The least efficient combination is
the SS quality metric with the Jacobi preconditioner and the
GMRES solver. The total time for the most efficient combi-
nation (i.e., ILU(0) with MINRES) with the IMR metric is
71% less than it is for this combination with SS. The least ef-
ficient combination (i.e., Jacobi with GMRES) for the IMR
metric is 16% faster than that of the least efficient quality
metric, i.e., SI. In this case, the total time is more signifi-
cantly affected by the solver time.

We conducted experiments in which we modified the
PDE coefficients in (4) such that the coefficient matrix C =
γI, where γ is a constant. Similar to the second-order gen-
eral elliptic PDE problems, experimental results show that
the sparsity pattern of A, the optimal triangular shape, and
hence κ(A) are not affected by these modifications as ex-
pected based on the discussion in Section 2.

Exp. 2: Effect of perturbation for linear elasticity. Ta-
ble 12 shows the effect of the vertex perturbation on the solu-
tion of the linear elasticity problem. For these experiments,
the meshes are smoothed with the IMR quality metric. The
results shown here are typical. We observe that the effect of
perturbation is different from problem (A) and (B). As was
explained before, this is because the sparsity pattern of the
linear system in this application is different from that of the
previous applications. Figures 10(a) and 10(b) show the PI
for different preconditioner-solver combinations when the
number of perturbed vertices is increased. The AMG pre-
conditioner with the GMRES solver (combination 14 in Ta-
ble 5) is least sensitive to vertex perturbation. Similar to
problem (B), the SSOR preconditioner with the CG and
MINRES solvers (combinations 5 and 7 in Table 5) are
also not very sensitive to perturbation.

We observe that the SSOR preconditioner with the GM-
RES solver or Bi-CGSTAB solver and the ILU(0) precondi-
tioner with the GMRES solver (combinations 6, 8 and 10
in Table 5) are most sensitive to perturbation. These two
solvers are not efficient to circumvent the numerical diffi-
culties associated with poor eigenvalues. The SSOR precon-
ditioner with the Bi-CGSTAB solver takes 52% more time
to converge than does the most robust combination (com-
bination 14 in Table 5). On both domains, the AMG pre-
conditioner is less affected by vertex perturbation than the
other preconditioners because the coarse grid correction dur-
ing the V-cycles removes large eigenvalues effectively.

Exp. 3: Increasing the problem size for linear elasticity.
Figures 11(a) and 11(b) show the s values for the number
of iterations required to converge for the wrench and hinge
domains, respectively. For this application, the experiments
are performed on meshes smoothed using the IMR quality
metric. For the simple wrench domain, the s values for the
AMG preconditioner are less than for the other precondi-
tioners. For the more complex hinge domain, however, the
order of convergence of the number of iterations for all the
combinations are all close to 0.5. Note that for the Jacobi
preconditioner with the GMRES solver, s is approximately
0.8. Figures 12(a) and 12(b) show the order of convergence
of the solver time for the wrench and the hinge domain, re-
spectively.

In most cases, the best combinations are the RR qual-
ity metric with the ILU(0) preconditioner and the MINRES
(or CG) solver. The least efficient combinations are the SS
quality metric with the Jacobi preconditioner and the GM-
RES solver.

8 Conclusions and Future Work

We studied the most efficient combinations of quality met-
ric, preconditioner, and sparse linear solver for the numer-
ical solution of various elliptic PDEs on 2D geometric do-
mains. Our paper is the first to simultaneously study these
three important factors, which affect the efficiency of the
solution for various elliptic PDEs. According to our experi-
mental results, by choosing the most efficient combination,
solver time and total time can be reduced by 90% and 97%,
respectively, when compared to those with the most ineffi-
cient combination.

For all elliptic PDEs considered here, we observe that
the radius ratio (RR) metric is the most efficient metric for
minimizing the solver time, as the mesh smoothed by the RR
metric contains the fewest poorly-shaped elements. Poorly-
shaped elements increase both the maximum eigenvalue and
the condition number of the linear system. The interpolation-
based size-and-shape (SS) metric is the least efficient mesh
quality metric in terms of its effect on the solver time be-
cause meshes smoothed with the SS metric have more poorly-
shaped elements than the meshes smoothed by other quality
metrics. We also observe that the choice of the precondi-
tioner is the most important factor that affects the solver
time for all elliptic PDEs. The choice of a good precondi-
tioner is more important than the choice of a good quality
metric or good linear solver even if the initial mesh quality
is extremely poor.

For solving Poisson’s equation and general second-order
elliptic PDEs, the most efficient combination for minimiz-
ing the solver time is the RR quality metric with the alge-
braic multigrid (AMG) preconditioner and any choice of lin-
ear solver. For these problems, which have a single degree
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(a) Wrench (500K) (b) Hinge (500K)

Fig. 10 PI as a function of the solver time after vertex perturbation for the combinations of preconditioners and solvers for the linear elasticity
problem (problem (C) in Table 3). The missing bar (combination 10) for the hinge domain corresponds to a preconditioner-solver combination
which does not converge.

(a) Wrench (b) Hinge

Fig. 11 The order of convergence for the solver time based on the number of iterations for the different combinations of preconditioners and
solvers for the linear elasticity problem (problem (C) in Table 3). Meshes with 10K, 50K, 100K, 200K, and 500K vertices on each domain are
employed in computing s using the linear least-squares method.

(a) Wrench (b) Hinge

Fig. 12 Similar to Figure 11, this figure displays the order of convergence based on the solver time for the linear elasticity problem (problem (C)
in Table 3). Meshes with 10K, 50K, 100K, 200K, and 500K vertices on each domain are employed in computing s using the linear least-squares
method.
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(a) Wrench (500K)

Quality Combinations of preconditioners and solvers
Metric 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IMR 475 2006 295 291 181 375 175 167 165 306 163 182 294 303 311 306
1528 6330 1353 1046 595 974 554 367 545 792 510 402 127 136 149 75

RR 464 2101 294 361 180 376 172 189 163 301 158 173 304 299 312 326
1508 7120 1336 1280 594 973 553 416 545 792 510 382 130 135 148 78

SI 454 1801 300 355 177 395 170 189 167 342 165 181 350 327 341 309
1512 6410 1338 1199 594 1010 553 394 545 798 510 377 126 135 147 81

SS 495 1846 300 322 196 459 188 164 155 401 171 186 259 291 336 349
1555 6192 1377 1083 601 1202 559 358 554 1066 519 404 128 138 150 82

(b) Hinge (500K)

Quality Combinations of preconditioners and solvers
Metric 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IMR 271 1282 194 178 121 226 127 124 105 259 192 102 212 195 243 300
1054 4274 915 620 414 615 370 244 372 651 339 219 88 80 103 67

RR 346 1181 198 196 202 323 112 126 188 246 105 108 169 214 201 222
1043 4119 906 715 395 613 366 283 361 655 337 239 88 80 103 60

SI 261 1086 200 183 111 239 126 139 103 239 108 105 158 238 275 391
1048 4074 910 677 395 612 366 277 361 653 337 227 87 80 103 70

SS 253 1045 195 175 119 256 105 111 111 245 103 118 236 176 198 244
1047 3681 909 639 400 606 371 250 368 614 344 266 86 81 102 64

Table 11 Linear solver time (secs) and number of iterations required to converge for the linear elasticity problem (problem (C) in Table 3) as
a function of mesh quality metric for the 16 preconditioner-solver combinations (see Table 5) on the two geometric domains. A ’*’ denotes
failure. For each quality metric, the numbers in the top and bottom rows represent the linear solver time and number of iterations to convergence,
respectively.

(a) Wrench (500K)

Percent Combinations of preconditioners and solversVertices
Pert. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0% 475 2006 295 291 181 375 175 167 165 306 163 182 294 303 311 306
1528 6330 1353 1046 595 974 554 367 545 792 510 402 127 136 149 75

5% 581 2294 372 320 195 462 191 211 185 465 178 173 323 308 345 401
1669 8066 1475 1133 630 1167 586 455 576 1144 539 358 125 139 150 81

10% 567 2272 365 394 183 481 202 195 176 380 167 173 284 348 339 273
1693 7904 1496 1421 633 1259 588 414 582 1028 543 387 126 139 151 71

25% 642 2775 389 312 216 475 196 197 176 506 178 198 263 331 286 309
1799 9751 1597 1103 639 1180 595 443 621 1385 582 431 125 139 151 80

50% 705 2428 358 348 216 576 207 280 222 448 213 229 279 311 347 318
1900 8841 1680 1247 653 1301 606 538 666 1198 622 463 128 140 151 78

(b) Hinge (500K)

Percent Combinations of preconditioners and solversVertices
Pert. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0% 271 1282 194 178 121 226 127 124 105 259 192 102 212 195 243 300
1054 4274 915 620 414 615 370 244 372 651 339 219 88 80 103 67

5% 288 975 267 213 121 291 141 127 117 252 147 124 207 173 244 245
1120 3194 972 732 420 645 389 259 386 617 360 271 89 82 106 65

10% 301 846 213 211 119 267 132 134 113 277 126 117 169 169 201 247
1136 2928 985 684 422 649 391 280 388 606 361 267 89 81 105 62

25% 313 1084 233 234 134 251 118 133 112 227 116 126 210 198 278 259
1192 3806 1034 781 427 659 395 301 404 612 375 272 88 82 106 64

50% 380 1149 252 244 141 329 128 136 144 * 156 159 160 199 240 302
1282 4131 1114 801 439 671 403 276 499 * 476 303 88 82 107 64

Table 12 Linear solver time (secs) and number of iterations required to converge for the linear elasticity problem (problem (C) in Table 3) as a
function of vertex perturbation for the 16 preconditioner-solver combinations (see Table 5) on the two geometric domains. A ’*’ denotes failure.
For each percentage of vertices perturbed, the numbers in the top and bottom rows represent the linear solver time and number of iterations to
convergence, respectively.
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of freedom, the AMG preconditioner efficiently eliminates
large eigenvalues, and its aggregation step is fast. This re-
sults in a solver time which is 97% faster than the least ef-
ficient combination, i.e., the Jacobi preconditioner and the
GMRES solver with any choice of quality metric.

For linear elasticity problems, the RR metric with the
ILU(0) preconditioner and the MINRES (or CG) solver is
the most efficient combination, which are up to 92% faster
than the least efficient combination, which is the Jacobi pre-
conditioner and the GMRES solver with any choice of the
quality metric. Due to its higher degree of freedom and dif-
ferent sparsity pattern, where displacements for x and y are
computed in a coupled manner, the AMG preconditioner is
not as efficient as it is with the other two problems.

The most efficient combinations are also studied with
respect to the total time, which includes both the smoothing
and the solver time. For all elliptic PDEs, choosing an effi-
cient quality metric is more important than the other factors
in order to minimize the total time (as opposed to just the
solver time). The inverse mean ratio (IMR) metric computa-
tion is highly optimized in Mesquite, and thus combinations
with the IMR metric appear in the best combination. For
Poisson’s equation and general second-order elliptic PDEs,
the IMR metric with the AMG preconditioner and the CG
solver is 90% faster than the same combination with the SS
metric. For linear elasticity problems, the IMR metric with
the ILU(0) preconditioner and MINRES (or CG) solver out-
performs other combinations.

We also investigated the robustness of the combinations
with respect to vertex perturbation. These results are use-
ful for choosing the most robust preconditioner-solver com-
bination when the initial mesh quality is poor and mesh
smoothing is not performed. In most cases, the SSOR pre-
conditioner with the CG or MINRES solver is more robust
than other combinations because they are able to circum-
vent numerical difficulties associated with large eigenval-
ues as discussed above. The AMG preconditioner is less af-
fected by vertex perturbation than the other preconditioners
because the coarse grid correction during the V-cycles re-
moves large eigenvalues effectively.

Finally, we examined the effect of increasing the prob-
lem size on the number of iterations required to converge
and on the solver time. For all three PDEs, the AMG pre-
conditioner with any quality metric or solver exhibits up to
94% faster convergence than the other combinations of pre-
conditioners and solvers as the problem size is increased.
The order of convergence for Poisson’s equation and general
second-order elliptic PDEs, combinations with the AMG pre-
conditioner are asymptotically much faster than the other
combinations.

Our experimental results can be generalized to the solu-
tion of other elliptic PDE problems with constant isotropic
coefficients on various 2D geometric domains and homoge-

neous boundary conditions. However, they cannot be gener-
alized to elliptic PDE problems with anisotropic coefficients
or to 3D geometric domains for the following two reasons.
First, elliptic PDEs with anisotropic coefficients require dif-
ferent ideal element shapes. Second, the quality metrics for
3D geometric domains are different from those for 2D ele-
ments.

For future research, we will experimentally and theoret-
ically analyze finite element solutions of elliptic PDEs with
anisotropic and discontinuous PDE coefficients. We will also
investigate the relationship between the choice of mesh qual-
ity metric and the efficient solution of parabolic and hyper-
bolic PDEs on anisotropic unstructured meshes and compu-
tational fluid dynamics problems will be also considered.
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