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Abstract. We propose an improved shape matching algorithm that ex-
tends the work of Felzenszwalb [3]. In this approach, we use triangular
meshes to represent deformable objects and use dynamic programming
to find the optimal mapping from the source image to the target image
which minimizes a new energy function. Our energy function includes a
new cost term that takes into account the center of mass of an image.
This term is invariant to translation, rotation, and uniform scaling. We
also improve the dynamic programming method proposed in [3] using the
center of mass of an image. Experimental results on the Brown dataset
show a 7.8% higher recognition rate when compared with Felzenszwalb’s
algorithm.

1 Introduction

Shape matching is an important problem in many computer vision applications
such as object tracking and image-based searches [1, 2]. The goal of shape match-
ing is to match the source image to the target image, i.e., the deformed image.
Felzenszwalb proposed a shape matching algorithm for deformable objects using
triangular meshes and dynamic programming in [3]. Felzenszwalb’s algorithm
was novel in that it does not require any initialization to detect the target image
unlike previous algorithms (e.g., [4]). A modification of Felzenszwalb’s algorithm
using flexible shape priors was proposed in [5]. In [5], large deformations on flex-
ible regions were allowed through the use of the shape priors. However, it is hard
to know which parts should be made flexible in advance, and thus significant
user knowledge is required. Moreover, [3, 5] do not use global image features to
detect deformable objects.

Recently, several papers have used global image features for shape matching.
For example, hierarchy-based shape matching algorithms for deformable objects
were proposed in [6, 7]. In [6], the authors identified shape parts, composed of
multiple salient points, and used many-to-many matching for shape matching.
The authors in [7] used a shape tree to capture both local and global shape
information and employed dynamic programming to perform shape matching.
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In this paper, we use local and global shape information to perform shape
matching in a complementary method compared with that of [7]. In particular,
we use triangular meshes and dynamic programming for shape matching, as in [3,
5], and extend the algorithm in [3] through the use of an added global image
feature. The rest of this paper is organized as follows. In Section 2, we describe
the three-step shape matching process. In Section 3, we present experimental
results, and compare our experimental results with those of algorithm in [3]
(i.e., the algorithm to which ours is the most similar). Finally, we give some
conclusions and plans for future work in Section 4.

2 Shape matching process

Our shape matching process is composed of three steps. The first step is to
determine boundary vertices which approximate the source image boundary.
The second step is to generate a triangular mesh using the constrained Delaunay
triangulation method to represent the deformable object. The third step is to find
the optimal mapping from the source image to the target image which minimizes
our energy function. We now describe each of the three steps in more detail.

2.1 Determination of the boundary vertices approximating the
source image boundary

This step determines the number of boundary vertices to use in the source image.
In order to find a polygonal approximation to a boundary curve in the source
image, S, we create nearly equally-spaced vertices on the boundary of S. We
select vertices such that the distance between them is as close to an ideal distance
parameter as possible, and the boundary curve is close to the original curve. This
step is illustrated in Figure 1(a).

2.2 Generation of the triangular mesh on the source image using
the constrained Delaunay triangulation method

This step combines the boundary vertices into triangles to represent the non-
rigid objects. The constrained Delaunay triangulation method [8] implemented in
Triangle [9] is used to generate a triangular mesh, M , that respects the boundary
of S, without adding any interior vertices, to represent the deformable parts
of the image. This step is shown in Figure 1(b). Note that a triangular mesh
without interior vertices can be represented using a dual graph. The vertices in
the dual graph of M can be ordered and eliminated using a perfect elimination
scheme [10].

2.3 Solution of the shape matching problem

In order to determine the optimal placement of the boundary vertices on a target
image, T , we formulate and solve an optimization problem with the goal of



Shape Matching Algorithm for Deformable Objects 3

Fig. 1. Overview of the shape matching process. The function f maps triangles in the
triangular mesh on the source image to a triangular mesh on the target image. (a)
Equally-spaced boundary vertices are generated. (b) The triangular mesh is created.
(c) The detected image is illustrated on the target image.

determining the mapping, f , from the triangles in S to the triangles in T , which
has the lowest energy. Unlike the energy (cost) functions in [3, 5], our energy
function is composed of three terms: an edge cost, a triangular deformation cost,
and a triangular edge length distortion cost. The edge cost of the ith triangle,
Eedge,i, corresponds to a simple edge detector by assigning high costs to a low
image gradient magnitude in T . Thus, Eedge,i increases if edges detected on T
are not placed on the boundary. The edge cost of the ith triangle is given by

Eedge,i =
1

λ+ |OI|
,

where λ is a constant.
The triangular deformation cost, Edef,i, represents how far the original tri-

angle is transformed from a similarity transform [11] when the mapping from
the source image to the target image occurs. The affine transformation of each
triangle from S to T takes a unit circle to an ellipse with major and minor axes
of lengths, α and β, respectively. Here, α and β are the singular values of the
matrix associated with the affine transformation. The squared log-anisotropy of
α and β is used to measure the triangular deformation as in [3]. The triangular
deformation cost of the ith triangle is given by

Edef,i = log2
(
α

β

)
.

Unlike [3, 5], we introduce a new cost, the triangular edge length distortion
cost, Edis,i, which penalizes the sum of the edge length distortions of each trian-
gle. Let lj,s and lj,t be the jth edge lengths of a triangle in S and T , respectively.
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Then, the sum of the three edge lengths of the triangle in S and T , respectively,
are given by

lsum,s =

3∑
j=1

lj,s, lsum,t =

3∑
j=1

lj,t.

Then, γ is defined as

γ =

{
lsum,s/lsum,t if lsum,s > lsum,t

lsum,t/lsum.s if lsum,t > lsum,s.

To make the triangular edge length distortion cost invariant to uniform scal-
ing from the source image to the target image, we use the center of mass of
an image. Let dmax,s and dmax,t be the maximum distances from the center of
masses to the boundary vertices in S and T , respectively. Figure 2 illustrates
dmax,s and dmax,t for a fish shape in the Brown dataset. Then, δ is defined as
follows:

δ =

{
dmax,s/dmax,t if dmax,s > dmax,t

dmax,t/dmax,t if dmax,s < dmax,t.

(a) (b)

Fig. 2. (a) A sample image shape from the Brown dataset [12]. (b) The dot in the
middle represents the center of mass for the image (this is denoted as C in the target
image), and the arrow represents the maximum distance from the center of mass in the
image to the boundary vertices (i.e., dmax,s or dmax,t)

The triangular edge length distortion cost, Edis,i, is large when δ and γ are
different. This occurs when the transformation of the triangles from the source
image to the target image does not correspond to uniform scaling. Finally, Edis,i

is defined as follows:

Edis,i =

{
log(γ/δ) if γ > δ
log(δ/γ) if γ < δ.
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The energy function, E(f), is defined as a weighted sum of the three cost
terms over the N triangles and is given by

E(f) =

N∑
i=1

Ei =

N∑
i=1

(Eedge,i + a ∗ Edef,i + b ∗ Edis,i), (1)

where, a and b are scalars. Note that small values of a and b are desirable for
highly deformable objects. Let n be the number of vertices in M . Our goal is
to determine the f that minimizes E(f). To solve the optimization problem,
the shape matching algorithm uses a dynamic programming method given in
Algorithm 1. For computational efficiency, a discrete set of grid locations, G, in
T is assumed. In line 3 of Algorithm 1, vertices i and j are the parents of the
kth vertex. The vertices in M are eliminated in order using a perfect elimination
scheme [10].

The optimal matching image (detected mesh) with the lowest possible energy
is found using the dynamic programming method shown in Algorithm 1. Note
that, for some cases, matching based on the smallest energy does not guarantee
a good match. For those cases, we choose the matching image with the next
smallest energy. In order to choose the criteria for the sub-optimal cases, we
employ the center of mass of an image, which is a global feature of an image.
Let the center of mass in T be C and the center of the matched vertices in T be
Ĉ. We define D as follows:

D =
∥∥∥C − Ĉ∥∥∥

2
.

Algorithm 1 Shape Matching Algorithm : Dynamic Programming

for k = 1 to n− 2 do
Eliminate the kth vertex in M
{i, j} ← parent(k)
for p, q ∈ G do
V [i, j] (p, q) ← min

r∈G
E(i, j, k, p, q, r) + V [i, k] (p, q) + V [j, k] (p, q)

Choose p, q ∈ G minimizing V [n− 1, n] (p, q). Trace back to find the optimal
mapping for other vertices and compute Ĉ.

end for
end for
while D > θ do

Choose new p, q ∈ G with the next smallest V [n− 1, n] (p, q). Trace back to find
the optimal mapping for other vertices and compute Ĉ.

end while

If D is greater than a threshold value of θ, it is likely that the detected mesh
on T is poor as shown in Figure 3. The threshold value, θ, can be defined using
dmax,t, the maximum distance from C to the boundary vertices in T . In Figure 3,
θ is set to dmax,t/3. In this case, we select instead the next smallest energy, and
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find a new optimal mapping (i.e., by executing the while statement in Algorithm
1) until Ĉ is such that

D ≤ θ. (2)

Fig. 3. Poor shape matching result of the algorithm in [3] (left) and improved matching
result using the center of mass in the target image (right). For these figures, the detected
mesh is illustrated on the target image. For this experiment, θ = dmax,t/3.

3 Experiments

This section describes the experimental evaluation of our shape matching algo-
rithm and provides a comparison of our results with those in [3], i.e., the shape
matching algorithm which is the most similar to ours. We use the well-known
Brown [12] dataset to test our algorithm. The Brown dataset has 99 images
divided into 9 categories (each of which has 11 images). The Brown dataset is
challenging because it includes both occluded images and images with missing
parts. Sample images from the Brown dataset are illustrated in Figure 4. We
use the standard evaluation method to test our algorithm. For each image, we
count how many of the 10 best matches (i.e., as defined by the smallest cost)
belong to the same category. For our algorithm, the detected mesh with the
smallest cost must also satisfy (2). We use 25 pixels for the distance between
successive boundary vertices. The grid size in the target images is set to 30x30.
We use a=4b in (1). The threshold value θ is set to dmax,t/3. Our experimental
results show that choosing a value of θ between dmax,t/3 and dmax,t/2 gives good
matching results.

Figure 5 shows some of the good matching results obtained with our algo-
rithm. For these source images, both our algorithm and Felzenszwalb’s algorithm
show good matching results. However, our algorithm shows slightly better match-
ing results. Felzenszwalb’s algorithm shows incorrect matching results for some
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Fig. 4. Sample images in the Brown dataset [12]. Three sample images are shown per
category.

Fig. 5. Good shape matching results for the Brown dataset on three source (query)
images and comparison with [3]. For each source image, the 10 best matching results
are shown with the smallest (left) to the largest (right) energy. The top figures in each
group represent the matching results obtained from our algorithm, whereas the bottom
figures in each group represent matching results using the algorithm in [3]. For these
experimental sets, only two matching results of [3] (i.e., the bottom right images) fail
to match.
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cases (e.g., the bottom right images). Interestingly, we see that our algorithm
and Felzenszwalb’s algorithm show different rank orderings among the 10 best
matching results. Figure 6 shows some poor matching results for our matching
algorithm on the Brown data set. For these images, Felzenszwalb’s algorithm
fails in most cases and succeeds in only a few instances.

Fig. 6. Poor shape matching results for the Brown dataset on three source (query)
images and comparison with [3]. For each source image, the 10 best matching results
are shown with the smallest (left) to the largest (right) energy. The top figures in each
group represent the matching results obtained from our algorithm, and the bottom
figures in each group represent matching results using the algorithm in [3]. For this
experimental data set, both our algorithm and [3] show poor matching results. However,
our algorithm shows better matching results than does the method in [3].

The recognition rates comparing our algorithm with Felzenszwalb’s algorithm
are shown in Table 1. The recognition rate is defined as the ratio of the total
number of correct hits to the total number of correct hits possible [7]. For the
Brown data set, the total number of correct hits possible is 99*10 since there are
99 images, and we find the 10 best matches. Our algorithm yields a 7.8% higher
recognition rate when compared with Felzenszwalb’s algorithm on the Brown
data set. Several matching results, which include detected meshes on the target
image, are shown in Figure 7. We observe that the algorithm in [3] produces
poor matching results when detected meshes (triangles) are placed in poor po-
sitions within a target image. This often results in a large D value. This occurs
because [3] matches the target image only by considering the local properties
of each triangle such as shape similarity and the edge boundary. However, our
algorithm produces better matching results by using global image features as
shown in Figure 7.
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Table 1. Recognition rate results on the Brown dataset.

Method Recognition Rate

Felzenszwalb’s algorithm [3] 64.4 %
Our algorithm 72.2 %

4 Conclusions and Future Work

We have proposed a shape matching algorithm for deformable objects using
both local and global shape information. In particular, we employ the center
of mass of an image as a global image feature. Similar to the algorithm in [3],
our algorithm does not need initialization to detect deformable objects. Experi-
mental results show that Felzenszwalb’s algorithm [3] sometimes produces poor
matching results because it only considers the local properties of each triangle
such as shape similarity and the edge boundary. However, our method produces
improved matching results using a new energy function term and improved dy-
namic programming based upon global image features. Experimental results on
the Brown dataset show a 7.8% higher recognition rate when compared to Felzen-
szwalb’s algorithm. To further improve the recognition rate, we plan to use the
symmetry of an image for deformable shape matching as in [13].
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