
A COMPARISON OF OPTIMIZATION SOFTWARE FOR

MESH SHAPE-QUALITY IMPROVEMENT PROBLEMS
1

Lori Freitag,y Patrick Knupp,� Todd Munson,y and Suzanne Shontzz

yMathematics and Computer Science Division

Argonne National Laboratory, Argonne, IL 60439

freitag,tmunson@mcs.anl.gov.

�Parallel Computing Sciences Department

Sandia National Laboratories, Albuquerque, NM 87185

pknupp@sandia.gov

zCenter for Applied Mathematics

Cornell University, Ithaca, NY 14853

shontz@cam.cornell.edu

ABSTRACT

Simplicial mesh shape-quality can be improved by optimizing an objective function based on tetrahedral shape

measures. If the objective function is formulated in terms of all elements in a given mesh rather than a local patch,

one is confronted with a large-scale, nonlinear, constrained numerical optimization problem. We investigate the

use of six general-purpose state-of-the-art solvers and two custom-developed methods to solve the resulting large-

scale problem. The performance of each method is evaluated in terms of robustness, time to solution, convergence

properties, and scalability on several two- and three-dimensional test cases.
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1. INTRODUCTION

Node point movementmethods are e�ective at im-
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These methods use an optimization algorithm
or heuristic to improve the quality of the ele-
ments adjacent to vertices being repositioned. The
most commonly used mesh-smoothing technique
is Laplacian smoothing, which relocates a single
point to the geometric center of its adjacent ver-
tices. This technique is computationally inexpen-
sive and simple to implement, but it can produce
meshes with invalid or poor-quality elements [11].
To address these problems, researchers have devel-
oped optimization-based methods that guarantee
mesh quality improvement. These methods are
formulated in terms of the design variables (one
or more vertices to be repositioned), an improve-
ment goal (the quality metric, objective function,
and constraints), and the algorithm used to calcu-
late an optimal solution.

Most work in optimization-based smoothing repo-
sitions one vertex at a time. A number of sweeps
over the adjustable vertices are performed to
achieve overall improvement in the mesh. The
quality metrics optimized range from a priori geo-
metric criteria [27, 12] and algebraic quality met-
rics [16, 17] to a posteriori metrics that minimize
solution error indicators [2]. An objective func-
tion is then de�ned based on a quality metric to
meet various improvement goals. For example, to
improve the average quality of mesh elements, one
uses an `1 or `2 norm [17]; and to improve the
worst quality element, one uses an `1 norm [12].
The optimization methods employed include con-
jugate gradient techniques [19], simplex methods
[13], and active-set algorithms [12].

Similar techniques can be used to reposition many
vertices simultaneously. However, a solution to
the resulting nonlinear, constrained optimization
problem is more diÆcult to calculate as the num-
ber of design variables increases. Several meth-
ods have been used to solve this problem for both
structured and unstructured grids.

For structured mesh generation using direct op-
timization techniques [3, 6] researchers have em-
ployed conjugate gradient [26] and truncated New-
ton [9] methods. Several strategies have been in-
vestigated for unstructured meshes. For example,
White and Rodrigue use a potential energy func-
tion de�ned on the grid nodes to push them away
from each other by using a steepest descent opti-
mization procedure [30]. The method incorporates
edge swapping, retriangularization, and Laplacian
smoothing to achieve a �nal mesh. Amezua et al.
developed a length constraint method in which a
user-de�ned density function determines the ideal
length of elements within a given region [1]. An
error function providing the di�erence between the
ideal and actual edge lengths for a patch of nodes

is de�ned and minimized by using a quasi-Newton
approach. Parthasarthy and Kodiyalam optimize
the `2 norm of the element aspect ratios and con-
strain each element to maintain positive volume
[25]. The minimization is performed by using a
modi�ed feasible direction method to �nd a search
direction at each iteration. Knupp optimizes the
condition number of tetrahedral and hexahedral
element meshes using a conjugate gradient method
[19]. Other researchers have used steepest descent
[31], quadratic programming [7], and conjugate
gradients [15] to solve related problems.

While several techniques have been advocated to
solve the problem of simultaneously repositioning
many vertices to improve mesh quality, it is im-
possible to compare them because di�erent merit
functions are used on varying test cases. To ad-
dress this issue, we conducted a formal study
of several existing optimization methods using a
consistent problem formulation similar to that of
Parthasarthy and Kodiyalam [25]. The problem is
described in more detail in Section 2. We then con-
sider eight solvers: six publicly available, general-
purpose software packages and two methods de-
signed speci�cally for the mesh quality improve-
ment problem. In Section 3, we give an overview
of the optimization techniques used in our study.
In Section 4, we present numerical results and an-
alyze the e�ectiveness of each solver. In particu-
lar, we examine the e�ect of initial mesh quality
on algorithm performance and evaluate the abil-
ity of the algorithms to solve several two- and
three-dimensional test cases. For the most promis-
ing algorithms, we study the convergence histories
to determine if early termination is an option to
reduce computational costs and investigate their
scalability as problem size increases. In Section
5, we summarize our �ndings and rank the algo-
rithms from most promising to least e�ective.

2. PROBLEM FORMULATION

Meshes can be improved with respect to any num-
ber of quality metrics including shape, size, align-
ment, solution error, or combinations of these. To
keep the research reported in this paper of man-
ageable size, we investigate the behavior of the op-
timization solvers using a shape metric and leave
investigation of solver behavior using the other
types of metrics for future work. Shape metrics
are important because they can be used to control
one of the most important properties of a �nite
element mesh, namely element skew and aspect
ratio. Among the various shape metrics, we have
selected the mean ratio metric [22]. Since a variety
of shape measures have been shown to be equiva-



lent in the sense that all are zero when the tetra-
hedral element is at and approach unity for an
equilateral tetrahedron [21], it is likely that the be-
havior of the optimization solvers in this compari-
son is representative of the solver behavior if other
shape metrics were used, but we have not veri�ed
this. We further limit our investigation to the op-
timization of meshes for the purpose of creating
isotropic elements. This determines a �xed weight
matrix W in the formulation of the mean ratio
below. The behavior of the solvers in this study
may di�er when applied to optimize anisotropic
meshes using a di�erent W . However, preliminary
experiments with the identity weight matrix and
FeasNewt algorithm described in Section 3 indi-
cate a minimal impact on performance when com-
pared to the same method with the weight matrix
below.

To de�ne the mean ratio metric, let � be a tetra-
hedral element with vertex coordinates x0, x1,
x2, and x3, and de�ne a matrix A such that the
three edge vectors emanating from vertex zero
form the columns of the matrix. That is, A =
[x1 � x0; x2 � x0; x3 � x0]. The mean ratio
measure is formulated in terms of A as

� =
3(�)

2

3

k A k2F
;

where � = det(A) and k � kF signi�es the Frobe-
nius matrix norm. The mean ratio approaches
zero for nearly at elements and is unity for a
right-angled tetrahedron.

Following the ideas in [11], we reformulate the
mean ratio metric proposed in [22] so that it at-
tains the maximum value for an equilateral tetra-
hedron. To do so, we introduce a weight matrix
W ,

W =

0
@ 1 1=2 1=2

0
p
3=2

p
3=6

0 0
p
2=
p
3

1
A ;

which is formed from the vertex coordinates of a
unit equilateral tetrahedron. We note that the use
of a weight matrix, W , creates a exible metric
which can be referenced to any ideal element; for
example, anisotropic elements commonly found in
boundary layer ows.

Let T be the matrix de�ned by T = AW�1 so
that T is the identity matrix when the element
is equilateral and � = det(T ). The reformulated

mean ratio measure is then

� =
3(� )

2

3

k T k2
F

:

This measure ranges from zero to unity, with zero
indicating a \at" element and unity an equilat-
eral tetrahedron. We note that this measure is
equivalent to the weighted condition number mea-
sure [18].

One can also derive a weighted mean ratio measure
for triangular elements referenced to an equilateral
triangle,

� =
2�

k T k2F
;

where the weight matrix is

W =

�
1 1=2
0

p
3=2

�
:

For triangles, the mean ratio measure is identical
to the condition number of T because for 2 � 2
matrices the Frobenius norm of T�1 equals the
Frobenius norm of T divided by the absolute value
of the determinant of T .

The simplest `2 objective function one can con-
struct from this measure is formed by taking the
inverse mean ratio so that each term in the ob-
jective function ranges from unity to in�nity. By
doing so, we create a \barrier" against mesh in-
version. The optimization algorithms presented
in this paper thus seek to �nd the set of free node
positions (xj; yj ; zj), j = 1; : : : ; J , that minimize

F (: : : ; xj; yj; zj; : : :) =
X
�k

��1(�k);

where the sum extends over all of the elements �k
in the mesh. Boundary nodes are assumed to be
�xed. The objective function is nonlinear because
it consists of sums of terms of quadratic functions
over polynomial functions.

We de�ne the feasible region to be the set of node
locations for which all the tetrahedra in the mesh
have positive volume, and we assume this region



is nonempty. The resulting optimization problem

min
P

�k
��1(�k)

subject to � (�k) � � for all �k

where � > 0 is suÆciently small, is given to the
optimization software along with a feasible point
where the constraints are not active. Because all
nodes on the boundary of the mesh are �xed, there
are 2VI and 3VI degrees of freedom in the opti-
mization problem for two and three-dimensional
meshes respectively, where VI is the number of in-
ternal vertices.

The objective function is continuous and bounded
below on the nonempty, closed feasible region.
Therefore, if the feasible region is also bounded,
we can assert the existence of an optimal solu-
tion to the problem. The feasible region will be
bounded, for example, if all of the mesh nodes are
in a bounded set.

3. OPTIMIZATION METHODS

The optimization problem we want to solve is both
nonconvex and nonlinearly constrained, properties
that can pose diÆculty for optimization methods.
Therefore, we evaluate a variety of algorithms to
determine their robustness and speed. The di�er-
ences among the optimization methods are in how
they handle constraints, calculate improving di-
rections, and accept new iterates. The algorithms
considered in this paper can be roughly classi�ed
into sequential quadratic programming, interior-
point, and augmented Lagrangian methods. We
refer the reader to [24] for more detailed informa-
tion on numerical optimization methods.

Sequential quadratic programming methods iter-
atively solve optimization problems containing a
quadratic approximation to the objective function
and a linear approximation of the constraints to
determine a direction. Many variations on this
theme exist and have been implemented. We con-
sider two packages in this category: FilterSQP and
SNOPT. FilterSQP [20] uses an exact Hessian and
incorporates a trust region to restrict the length
of the calculated direction. If the full direction is
not acceptable, a new direction is calculated by
tightening the length restriction. The acceptance
criterion uses the notion of a �lter and allows non-
monotonic behavior in the objective function and
norm of the constraint violation. SNOPT [14] uses
an approximation to the Hessian and a linesearch

along the calculated direction to �nd an improv-
ing iterate. Both codes use an active set method
to solve the quadratic subproblems generated.

Interior-point methods reformulate the original
inequality-constrained optimization problem into
one containing only equality constraints by adding
slack variables and then removing the bounds on
the slack variables by incorporating them into the
objective with a log-barrier penalty function. For
the problem considered, the resulting reformula-
tion is

min
P

�k
��1(�k)� �

P
�k
ln s�k

subject to � (�k) = s�k + � for all �k

where s�k are the slack variables and � is the
penalty parameter. The reformulation is then
solved for � converging to zero. LOQO and
KNITRO are the two codes that we consider in
this category. LOQO [29] solves the equality-
constrained problem using Newton's method to
calculate a direction and then �nds a new iter-
ate using a linesearch along the direction. KNI-
TRO [5] uses a sequential quadratic programming
method with a trust region to calculate the so-
lution to the equality-constrained problem for a
�xed �.

Augmented Lagrangian methods reformulate the
inequality-constrained problem into a problem
with only simple bounds by adding slack vari-
ables and incorporating the resulting equality con-
straints into the objective function. LANCELOT
[8] is in this category. It solves the resulting
bound constrained problem using a trust-region al-
gorithm. MINOS [23] is similar in that it uses an
augmented Lagrangian approach. MINOS, how-
ever, also includes a linearization of the nonlin-
ear constraints in the subproblems and solves the
linearly constrained problem with an active set
method. See [24] for a complete description of
augmented Lagrangian methods.

We also consider two methods speci�cally written
to solve the inequality-constrained optimization
problem using known information. In particular,
we are guaranteed that we will start from a feasible
point and that none of the nonlinear constraints
will be satis�ed as equalities at a solution2. The
latter condition means that the constraints are re-
dundant and can be removed, provided we safe-
guard the algorithm to prevent element inversions.

2Untangling methods can be used to create an initially

valid mesh [13] and � can always be chosen suÆciently

small to guarantee the second condition.



The �rst method, NLCG [19], uses a Polak-Ribi�ere
nonlinear conjugate gradient method [24] with an
inexact linesearch. The second, FeasNewt, is a
feasible Newton method that solves a quadratic
approximation of the objective function to �nd a
direction and performs a linesearch along this di-
rection to �nd an improved point. The step size
is reduced whenever an inverted element is found.
The direction is calculated using conjugate gradi-
ents. The use of conjugate gradients is important
because we want to calculate either a minimizer
of the quadratic approximation or a direction of
negative curvature. In most cases, the conjugate
gradient method applied to the quadratic approx-
imation of the objective function provides such di-
rections. For the test cases reported, an appropri-
ate direction was always found with the conjugate
gradient method. This approach is similar to the
Dembo and Steihaug method [9] for unconstrained
optimization.

4. NUMERICAL RESULTS

Because we want to solve mesh quality optimiza-
tion problems in multiple dimensions and for a
number of di�erent geometries, element types, and
mesh sizes, our two primary concerns when select-
ing an algorithm are robustness and speed. We
also desire a method that converges monotonically
and maintains mesh validity throughout the opti-
mization process. Such a method can be termi-
nated early with a guaranteed improvement in the
shape-quality metric. The method chosen should
also e�ectively use the initial point provided as in-
put to the optimization routine as it is typically
near a solution. This property would also ensure
e�ective restarts are possible from a partially con-
verged solution. Finally, because today's meshes
contain a very large number of elements, the cho-
sen method should be scalable with respect to the
number of elements and parallelizable.

For this study, the optimization problem was im-
plemented in the AMPL modeling language [10].
In general, modeling languages provide an easy
way to algebraically represent optimization prob-
lems, can deal with large quantities of data, and
automatically calculate the derivative and Hes-
sian information needed by the solvers. We chose
AMPL because it is commonly used and seven of
the eight optimization packages considered in this
paper accept problems written with it. We note
that some eÆciency is lost in function, gradient,
and Hessian evaluations when using a modeling
language. For our AMPL implementation of the
optimization problem, hand-coded versions of the
function, gradient, and Hessian evaluation rou-

tines were more than 10 times faster than those
generated by AMPL. However, writing the re-
quired derivative and Hessian routines is time con-
suming and prone to error. Using a consistent
approach in their computation allows us to quali-
tatively compare the di�erent methods.

To test the performance of the optimizationmeth-
ods with respect to our desired characteristics,
we developed a series of test cases in both two
and three dimensions. We examined algorithm ef-
fectiveness as the initial mesh quality degrades,
robustness on both two- and three-dimensional
meshes, convergence properties, and scalability.
The optimization packages use di�erent termina-
tion criteria related to feasibility and optimality.
In an attempt to have more uniform results, we
used a tolerance of 10�6 for the measures used
by the individual optimization methods. All tests
were run on Solaris UltraSPARC workstations.
The solvers available in AMPL were run on a 296
MHz workstation while NLCG was run on a 400
MHz workstation.

4.1 E�ect of Initial Mesh Quality

We �rst evaluate the e�ectiveness and perfor-
mance of the various optimization methods as the
quality of the initial mesh degrades. For this test
we use a simple honeycomb mesh containing 2040
equilateral triangles (see the leftmost mesh in Fig-
ure 1) and create a series of increasingly poor qual-
ity meshes by perturbing the vertices by a per-
centage of the initial mesh edge length in a ran-
dom direction. The perturbed mesh is checked to
ensure that there are no inverted elements. For
this series, the perturbation percentages are 0, 50,
70, 90, and 99. The meshes corresponding to 50
and 99 percent perturbation are shown in the two
rightmost meshes in Figure 1, respectively. Table
1 reports the maximum and average value of the
mean ratio metric for the �ve initial meshes.

Table 1. Maximum and average mean ratio metric
for the honeycomb series at the initial mesh

P MRmax MRavg

0 1.00 1.00

50 1.44 1.04

70 2.10 1.08

90 4.58 1.16

99 52.2 2.60



Figure 1. The honeycomb mesh series

Seven optimization solvers were run on this series:
the six general-purpose codes and the FeasNewt
method. We are not able to report results for
NLCG on the two-dimensional test cases as it is
currently available only for three-dimensional CU-
BIT [4] meshes. Figure 2 shows the time to solu-
tion as a function of the perturbation percentage.
Because the cost of the methods varies dramati-
cally, we plot the results using a logarithmic scale
in time. No point is plotted in the graph if the
algorithm was unable to calculate an optimal so-
lution.
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Figure 2. The time to solution for the 7 methods as
a function of the perturbation percentage

The FeasNewt and KNITRO solvers reach the op-
timal mesh in the shortest amount of time for this
series of problems. In both cases, the solvers ef-
fectively use a near-optimal initial point; the zero
perturbation case is not optimal because the ini-
tial mesh points were truncated to four decimal

places in the AMPL data �le. The true optimum
is obtained in one and two iterations, and 0.61
and 1.80 seconds, respectively. As the initial qual-
ity of the mesh worsens, these two solvers require
a slowly, monotonically increasing amount of time
to �nd the optimal solution. The FeasNewt solver
is slightly faster than KNITRO, requiring a max-
imum of 5.93 seconds to solve the hardest of the
�ve test cases compared with 6.62 seconds needed
by KNITRO.

In the second performance tier, we place the
LANCELOT, LOQO, and FilterSQP solvers.
Each of these methods successfully solved all of
the test cases but required signi�cantly more time
than the FeasNewt and KNITRO solvers. In par-
ticular, these methods required 4, 50, and 12 it-
erations, and 30.91, 54.44, and 17.28 seconds to
solve the unperturbed problem, respectively. As
the perturbation increased, the solvers required
tens to hundreds of seconds to calculate a solu-
tion. One of the methods, LOQO, does not in-
crease monotonically in cost. The initial decrease
in time is likely due to the nature of interior-point
methods, which tend to perform better when the
initial point is not too close to the solution. As
the initial quality worsens, we see a general in-
crease the number of iterations. In the 90 per-
cent perturbation case, LOQO appears to invert
some elements of the mesh and must then return
to the feasible region, accounting for the spike in
the time.

SNOPT and MINOS perform the worst on this
test series. Both are prohibitively expensive; MI-
NOS required as much as 20 minutes to solve the
problem with a 90 percent perturbation and was
unable to solve the problem with a 99 percent per-
turbation. SNOPT required 3 hours to solve the
99 percent perturbation case. The longer running
times were expected because these methods use
only �rst-order information and approximate the
needed Hessian matrices.



4.2 Two-Dimensional Test Cases

To further evaluate the performance of these seven
solvers, we analyze their ability to solve two two-
dimensional test cases. Both test cases are gener-
ated using the Triangle mesh generation package
[28]. The �rst test case, ANL, has a concave geom-
etry. The mesh generated by Triangle was modi-
�ed by moving the interior vertices to deliberately
create poor-quality elements along the boundary.
The second test case, Rand, is generated by ran-
domly choosing points in the unit square and tri-
angulating them using a Delaunay criterion. In
Table 2, we give the total number of vertices and
elements, VT and E, the number of interior ver-
tices, VI , and the maximum mean ratio and aver-
age mean ratio, MRmax and MRavg for each test
case. The meshes are shown in Figure 3.

Table 2. The size and initial quality of the two-
dimensional test cases

Mesh VT E VI MRmax MRavg

ANL 312 456 184 9.82 1.73

Rand 1152 2170 937 32.6 1.84

Figure 3. The two-dimensional test cases: ANL
(left), Rand (right)

The results of running each of the seven opti-
mization solvers on the two-dimensional meshes
are given in Table 3. For each solver, we report
the termination status, S, of the solver as an \S"
or an \F" for succeed or fail, respectively. If the
method fails, we give the termination message re-
ported by the solver. If the method succeeds, we
report the resulting mesh quality in terms of the
maximumand average mean ratio values, MRmax

Table 3. The mesh quality, time, and iteration
count for the optimization solvers applied to the two-
dimensional test cases

Method S MRmax MRavg T I

ANL

FeasNewt S 1.62 1.11 1.95 15

KNITRO F Trust region radius too small

LANCELOT F No decrease in constraint violation

LOQO S 1.62 1.11 1.59 18

FilterSQP S 1.62 1.11 9.10 19

SNOPT S 1.62 1.11 257 231

MINOS F Problem unbnded or badly scaled

Rand

FeasNewt S 2.20 1.12 20.0 25

KNITRO F Trust region radius too small

LANCELOT F No decrease in constraint violation

LOQO S 2.20 1.12 28.2 33

FilterSQP S 2.20 1.12 4918 264

SNOPT F Killed after 26 hours

MINOS F Cannot calculate improving point

and MRavg, respectively; the cost in seconds, T ;
and the number iterations, I.

The quality of the mesh at the optimal solution
for both test problems is considerably improved;
for ANL, MRmax has been reduced from 9.82 to
1.62, and MRavg has been reduced from 1.73 to
1.11. For Rand, MRmax has been reduced from
32.6 to 2.20, and MRavg has been reduced from
1.84 to 1.12. On these two problems, the FeasNewt
and LOQO solvers are the best performers; they
solve both test problems successfully and are com-
parable in terms of time. FilterSQP, although it
solves both test cases, is orders of magnitude more
expensive than either the FeasNewt or LOQO
solvers. KNITRO, LANCELOT, and MINOS are
unable to solve either of the two test problems
and produce tangled meshes. Once an element be-
came inverted, these algorithms proceeded to de-
crease the objective function to negative in�nity,
but never returned to the feasible region. SNOPT
solved only the relatively easy ANL test case but
required 257 seconds to do so whereas the other
successful methods required at most 10 seconds.
Given the lack of robustness and expense of KNI-
TRO, LANCELOT, SNOPT, and MINOS, we do
not consider them further.



4.3 Three-Dimensional Test Cases

We now use the remaining solvers, FeasNewt,
LOQO, and FilterSQP, to improve the quality of
four tetrahedral meshes generated using the CU-
BIT mesh generation package [4]. We also report
the results for the NLCG solver described in Sec-
tion 3. For each test case, we give in Table 4 the
total number of vertices and elements, VT and E;
the number of interior vertices, VI ; and the maxi-
mum mean ratio and average mean ratio, MRmax

and MRavg. The meshes are shown in Figure 4.

Table 4. The size and initial quality of the three-
dimensional test cases

Mesh VT E VI MRmax MRavg

Duct 1106 4267 382 3.00 1.26

Gear 866 3116 260 2.84 1.37

Foam 1337 4847 289 4.06 1.34

Hook 1190 4675 400 3.36 1.32

As with the two-dimensional cases, we report in
Table 5 the termination status, �nal mesh quality,
time to solution, and iteration count for the three-
dimensional cases.

In all cases, the average mean ratio is improved
at the optimal solution, reecting the goal of the
objective function formulation. We note that the
improvement is not as dramatic as it was in the
two-dimensional cases, because the initial mesh
quality is good. In three of the four test cases,
the maximum mean ratio is also improved, even
though it is not explicitly the goal of the opti-
mization procedure; in the Gear test problem it
is slightly worsened. All four methods are able to
solve all of the test cases; these are, listed in order
from fastest to slowest: FeasNewt, LOQO, NLCG,
and FilterSQP. The FeasNewt solver is a factor of
2.2 to 4.5 times faster than its nearest competi-
tor in all test cases. While FilterSQP successfully
solved all test cases, it is a factor 5.6 to 19 times
slower than FeasNewt.

4.4 Convergence Histories

In many cases, the exact optimal solution is not
required from a mesh improvement technique.
Rather, a very good solution is desired quickly.

Table 5. The results of the optimization solvers on
the three-dimensional test cases

Method S MRmax MRavg T I

Duct

FeasNewt S 2.92 1.24 14.9 6

FilterSQP S 2.92 1.24 282 82

LOQO S 2.92 1.24 75.2 24

NLCG S 2.92 1.24 67.5 50

Gear

FeasNewt S 3.28 1.33 9.8 5

FilterSQP S 3.28 1.33 54.7 21

LOQO S 3.28 1.33 21.8 11

NLCG S 3.28 1.33 40.1 41

Foam

FeasNewt S 3.52 1.33 10.9 5

FilterSQP S 3.52 1.33 86.2 30

LOQO S 3.52 1.33 35.3 17

NLCG S 3.52 1.33 76.3 58

Hook

FeasNewt S 2.91 1.30 15.9 5

FilterSQP S 2.91 1.30 276 67

LOQO S 2.91 1.30 52.6 16

NLCG S 2.91 1.30 83.0 62

Thus, we now evaluate the convergence history of
each method to determine the feasibility of early
termination to reduce computational costs. The
two characteristics that would make this possible
are monotonic convergence to the solution and sig-
ni�cant early progress toward the optimal point.
We plot the value of the objective function as
a function of time for each solver on the three-
dimensional test cases and show the results in Fig-
ure 5. Note that the horizontal axis is scaled to
highlight the early convergence behavior of the
methods, and the complete time history of some
of the methods is not shown.

The FeasNewt, FilterSQP, and NLCG solvers all
converge to the optimal solution monotonically,
making them candidates for early termination.
LOQO does not always converge monotonically as
is illustrated by the Duct, Hook, and Foam test
cases. This nonmonotonic behavior is caused by
the penalty function, which allows LOQO to visit
points far from the solution before converging to
the optimal point. Thus, even though its total
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Figure 5. The convergence histories for FeasNewt, FilterSQP, and LOQO on the four tetrahedral mesh test cases

time to solution as reported in Table 5 is less than
FilterSQP in all cases and is less than NLCG in
three cases, it typically takes much longer to ap-
proach the optimal solution. Thus, it is not a good
candidate for early termination.

Of the three methods that converge monotoni-
cally, FeasNewt approaches the optimal solution
the quickest in all four cases. In two of the four
cases, the NLCG method is very competitive with
FeasNewt in terms of how it approaches the opti-
mal solution, even though it takes much longer to
converge to the exact optimal point. In the other

two cases, it takes about twice as long to approach
the optimal point. FilterSQP takes two to three
times longer than FeasNewt to approach the op-
timal point in all cases. Furthermore, FilterSQP
is not guaranteed to monotonically decrease the
objective function, even though this behavior was
observed on the test problems.

4.5 Scalability

To obtain a sense of how these methods will scale
as the problem size increases, we examine their



performance on the Duct geometry as the number
of elements increases. The mesh sizes and quality
information are given in Table 6.

Table 6. The size and initial quality of a series of
meshes created on the duct geometry to test scala-
bility

Mesh VT E VI MRmax MRavg

Duct1 1067 4104 382 2.34 1.21

Duct2 2139 9000 965 3.55 1.21

Duct3 4199 19222 2302 3.29 1.21

Duct4 7297 35045 4480 2.71 1.20

Duct5 13193 65574 8738 4.30 1.19

The total time to solution and iteration counts
for the FeasNewt, FilterSQP, LOQO, and NLCG
methods are given in Table 7. A dash entry in-
dicates that the method was unable to solve the
problem in a reasonable amount of time. As the
problem size increases, the FeasNewt method is
consistently the fastest method and maintains a
nearly constant number of iterations. Each itera-
tion becomes more expensive as the problem size
increases, but of all the methods considered, this
method's total time to solution grows the most
slowly. Although LOQO and NLCG require about
the same amount of time to solve the Duct1 prob-
lem, the NLCG method is more scalable in that
its time to solution grows more slowly as the the
problem size increases. In particular, the Duct5
to Duct1 ratio for NLCG is 43.8 and for LOQO
is 91.8. The FilterSQP method does not perform
well as the problem size increases, requiring over
5 hours to solve the Duct3 problem. We did not
investigate its behavior on the Duct4 and Duct5
problems.

5. CONCLUSIONS

We have conducted a series of numerical experi-
ments to determine which of several selected opti-
mizationmethods are most suitable for solving the
mesh shape quality optimization problem where
all of the vertices are simultaneously repositioned
to improve average quality. We compared eight
di�erent solvers: six state-of-the-art solvers and
two custom solvers we developed. In Table 8 we
summarize our �ndings in terms of the methods'

robustness, time to solution, exibility to be used
with an early stopping criterion, and scalability.
In each category, we score the methods as excel-
lent (X), good (G), average (A), or poor (P). A
dashed line indicates that the method was not an-
alyzed for a given characteristic.

The two methods that performed the best were,
not surprisingly, those written speci�cally for the
mesh quality improvement problem. In particu-
lar, the custom-developed FeasNewt method is the
best performer in all categories. It solves every
test problem and was consistently the fastest tech-
nique, particularly in three dimensions. It mono-
tonically converges to a solution and can therefore
be used with a exible stopping criterion. Fur-
thermore, it e�ectively uses a good initial start-
ing point and the computational cost grows as the
quality of the initial mesh degrades. A complete
description of this solver is planned for another
paper. Following FeasNewt, the NLCG method is
also considered to be a top performer. Although
we could not test it on the two-dimensional test
cases, it solved every three-dimensional problem,
and the method is well suited for quickly �nd-
ing good solutions. Further, only FeasNewt and
NLCG are guaranteed to remain feasible with re-
spect to the nonlinear constraints in the optimiza-
tion problem.

The LOQO and FilterSQP methods, although ro-
bust, are not as good as either of the other two
methods. LOQO's convergence properties, both
as the initial mesh becomes more diÆcult to solve
and within a given run, make it an unpredictable
solver that cannot be terminated early. Filter-
SQP was observed to converge monotonically but
is prohibitively expensive unless early termina-
tion is considered. Both LOQO and FilterSQP
would be more competitive with NLCG if we were
to remove our reliance upon AMPL and write
custom interfaces. The other four solvers, KNI-
TRO, LANCELOT, SNOPT, and MINOS, were
unable to solve one or more of the two-dimensional
problems; they were not considered in the three-
dimensional test cases.

Now that promising methods have been identi�ed
for solving the mesh shape quality optimization
problem, a number of interesting extensions to this
comparison can be considered. First, we note that
our tests of the solvers used the mean ratio metric.
Although this represents a typical shape metric, in
the future it will be necessary to perform similar
tests on other shape metrics, anisotropic meshes,
other types of mesh quality optimization metrics,
and di�erent objective functions. This compari-
son of optimization software packages is not ex-
haustive. However, since it appears better to use



Table 7. The time to solution in seconds, T , and cost in iterations, I, for the four solvers as mesh size in the
Duct geometry increases

FeasNewt FilterSQP LOQO NLCG

Mesh T I T I T I T I

Duct1 12.2 4 360 96 68.7 20 66.0 48

Duct2 37.1 5 2842 257 181 20 169 51

Duct3 90.6 5 18750 630 807 31 518 64

Duct4 151 4 { { 1777 24 984 67

Duct5 401 5 { { 6309 24 2889 101

solvers tailored to the shape optimization problem
as opposed to general purpose solvers, inclusion of
other examples of the latter in future studies may
not be worthwhile.
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