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ABSTRACT

We compare inexact Newton and coordinate descent methods for optimizing the quality of a mesh by repositioning
the vertices, where quality is measured by the harmonic mean of the mean-ratio metric. The effects of problem
size, element size heterogeneity, and various vertex displacement schemes on the performance of these algorithms are
assessed for a series of tetrahedral meshes.
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1. INTRODUCTION

Mesh vertex repositioning algorithms have been used
for many years to improve solution accuracy and ef-
ficiency; see, for example, [1, 2, 3, 4]. Repositioning
techniques vary widely in the time required to imple-
ment and modify the algorithm and in the computa-
tional cost and effectiveness when applying the algo-
rithm, usually with a trade-off between these criteria.
Laplacian smoothing, for example, is easy to imple-
ment and inexpensive to apply but can produce tan-
gled meshes. Moreover, this method is limited to the
creation of smooth meshes, while vertex repositioning
can address other meshing needs such as equidistribu-
tion of volumes [5], shape improvement [6], or adaptive
R-refinement [7]. These more complex tasks can usu-
ally be posed as numerical optimization problems in
which an objective function is defined that measures
one or more mesh properties. This objective function
can then be optimized by repositioning the vertices,
leading to improvement in the mesh properties mea-
sured.

When one approaches the vertex repositioning prob-

lem from an optimization perspective, it is natural to
formulate a single objective function to measure global
mesh quality. This objective function typically ac-
cumulates contributions from local measures of mesh
quality into a scalar function of the positions of all free
vertices in the mesh.1 We consider two approaches to
numerically optimizing the global objective function.
In the all-vertex approach, all of the free vertices are
moved simultaneously within a single iteration. We
employ an inexact Newton method as our all-vertex
optimization algorithm. In the single-vertex approach,
only one vertex at a time is modified. This approach
is an instance of a coordinate descent method, and we
apply an exact Newton algorithm to solve the coor-
dinate descent subproblems. The main goal in this
paper is to determine when one of these methods is
preferable to the other, where preference can include
the ease with which the method can be implemented
and modified, the computational and memory require-
ments for applying the method, and the accuracy and

1An important alternative to mesh optimization, often
used by the unstructured mesh quality community, employs
a series of local objective functions.
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quality of the mesh produced, perhaps as a function
of CPU time. A complete answer should consider all
these characteristics.

The preferred method may differ depending on the
circumstances. For example, the coordinate descent
method may be better suited to quickly finding an ap-
proximate solution, while the inexact Newton method
may be more suitable for calculating a highly accurate
solution. Factors that may be significant in determin-
ing the preferred approach include the objective func-
tion, quality metric, the desired accuracy in the re-
sulting mesh, the mesh type (structured vs. unstruc-
tured), dimension (planar vs. volume), element type
(simplicial vs. nonsimplicial), problem size, degree of
mesh heterogeneity and anisotropy, and the degree and
manner in which the initial mesh differs from the op-
timal mesh. Algorithm implementations also have a
significant impact, since a simple implementation can
be much slower than a more sophisticated version.

In this paper we report the results of an initial explo-
ration of these factors to determine the circumstances
in which the inexact Newton method or the coordi-
nate descent method may be preferred. To make the
study manageable, we limit the number of free param-
eters and consider a fixed mesh type, quality metric,
and objective function template. In particular, we use
tetrahedral meshes, the mean-ratio quality metric for
isotropic elements, and a template that targets average
quality improvement as opposed to worst-case quality
improvement. The free parameters in this study are
the problem size, element homogeneity, initial mesh
configuration, and desired degree of accuracy in the
resulting mesh.

2. PROBLEM STATEMENT

2.1 Element and Mesh Quality

An unstructured mesh M = (VM, EM) consists of a
finite set of vertices VM and elements EM, where VM

denotes the number of vertices and EM the number of
elements. The set of boundary vertices for the mesh
is denoted by VMB , while the set of interior vertices of
the mesh, that is, those not on the boundary, is de-
noted by VMI . Let xMv be the coordinates for vertex
v ∈ VM, where xMv ∈ <d. For surface and volume
meshes d = 3, while for planar meshes d = 2. More-

over, xM ∈ <d×V
M

refers to all of the vertex coordi-
nates in the mesh. Each element e ∈ EM consists of
a small subset of the vertices and the edges between
these vertices, where |e| is the number of vertices refer-
enced by element e, Ve refers to the vertices referenced
by e, and xMVe ∈ <d×|e| denotes the matrix of coordi-
nates for the vertices. Where the context is clear, we
suppress the superscripts that refer to the mesh.

The mesh M can be decomposed into one or more
submeshes. In particular, let EN ⊆ EM, and let VN

be the set of vertices referenced by the elements of EN .
Then, N = (VN , EN ) is called a submesh of M. Each
submesh ofM has its own set of boundary and interior
vertices. The most important submeshes in this paper
are the local patches Pv. For each v ∈ VI , the set
EPv consists of the elements in E containing vertex v,
while VPv consists of the vertices in V referenced by
the elements in EPv . For each Pv, v is the only interior
vertex in the local patch.

Associated with the mesh is a continuous function
q : <d×|e| → < that measures one or more of the ge-
ometric properties of an element as a function of the
vertex positions.2 In particular, q(xe) measures the
quality of element e, where we assume larger values of
q(xe) indicate higher quality. A specific function q is
referred to as an element quality metric. Many func-
tions can serve as quality metrics, so the quality of an
element is not uniquely defined. For example, there
are different metrics to measure the shape, size, and
orientation of an element. In general, useful quality
metrics possess other properties in addition to conti-
nuity, but a discussion of this topic is beyond the scope
of the present study [8]. The overall quality of mesh
M is measured by a function QM : <E → < that
takes as input the vector of element quality metrics,
∏

e∈E q(xe), where
∏

denotes the Cartesian product.
The mesh quality depends on both the choice of the
specific element quality metric q and the particular
template function Q used to combine them. Useful
template functions can be constructed from the arith-
metic or other means.

2.2 The Mean-Ratio Metric

An important variable in this study is the choice of
quality metric. In general, we expect that study re-
sults could vary significantly depending on whether
or not one were to chose shape metrics as opposed
to size, smoothness, combined, or other metrics. For
this initial study on solver comparisons, we focus on
the mean-ratio element shape quality metric. It seems
likely that other shape metrics such as aspect ratio or
condition number would give similar timing results; we
plan to verify this in future work, as well as consider
metrics which are not explicitly focused on shape.

Let Sd×d be a matrix with det(S) > 0. Then the mean
ratio µ of S is the scalar

µ(S) =
det(S)2/d

‖S‖2F
,

2For hybrid meshes, the exact definition of q can change
depending on the element type. However, we assume that
the quality metric, shape, for example, is the same for every
element.
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where ‖S‖F =
√

tr(StS) is the Frobenius norm. One
can readily show that 0 < µ(S) ≤ 1

d
.

To apply the mean ratio to element quality, assume
that each vertex of the element is connected to d edges
(and therefore d other vertices) belonging to the ele-
ment.3 Let xi be the coordinates of the ith vertex, and
let xk be the coordinates of one of the other vertices in
the element to which vi is connected by an edge. Con-
struct the matrix A

(i)
d×d whose columns are the vectors

xk − xi. The columns are ordered in such a way as to
preserve element orientation so that if det(A(i)) ≤ 0
for any vertex in the element, the element has locally
nonpositive volume; we call such elements “inverted.”
Let Wd×d be a reference matrix that determines the
ideal element shape (e.g., an equilateral reference tri-
angle is often used for triangular elements). The ref-
erence matrix is found by constructing W from the
ideal element in the same way A is constructed from
the mesh element. Finally, let T (i) = A(i)W−1. For
each element vertex i let µi = µ(T (i)) be the mean ra-
tio at the ith element vertex. Let these mean ratios at
the element vertices be averaged in some way to form
a mean ratio µj = µej for the jth element in the mesh
that is symmetric in the element vertex indices.4 The
shape quality of the jth element is then

qj = µjd.

As one would expect, the element shape quality met-
ric is both scale and rotation invariant. Furthermore,
0 < qj ≤ 1 with qj = 1 only when the element at-
tains the ideal reference shape. We do not define
the mean ratio for matrices with nonpositive deter-
minants. Therefore, the shape quality of “inverted”
elements is not defined. For further details on shape
metrics see [9].

2.3 Quality Improvement Problem

To improve the overall quality ofM when using Q, we

compute an x∗ ∈ <d×V
M

such that x∗ is an optimal
solution to

max
xVI

Q

(

∏

e∈E

q(xe)

)

(1)

subject to the constraint that xVB
= x̄VB

, where x̄VB

are the coordinates for the boundary vertices. Note
that additional constraints can be added if the loca-
tions for some of the interior vertices also need to be
fixed. If the objective function for this optimization
problem is uniformly concave as a function of xVI

, that
is, the Hessian matrix, ∇2

xVI
,xVI

Q(·), is uniformly

3This approach excludes elements such as pyramids but
includes triangles, tetrahedra, wedges, quadrilaterals, and
hexahedra.

4We show in [6] that averaging is unnecessary in the case
of triangular or tetrahedral elements provided the reference
element is equilateral.

negative definite, then an x∗ solving this optimization
problem exists and is unique. If the objective function
is not concave, then one can only hope to find a lo-
cal maximizer for the optimization problem and may
instead compute a critical point.

We use the harmonic mean template for all our nu-
merical results. This template produces the objective
function

E
∑

e∈E
1
µed

.

This objective function is maximized precisely when
the denominator is minimized. Therefore, the opti-
mization problem we solve is

min
xVI

Qhm(x) :=
1

E

∑

e∈E

1

µed
(2)

subject to the same boundary constraints as in (1).
The objective function in this case is below by 1 and
continuous for the set of noninverted meshes. We note
that this objective function minimizes the average in-
verse mean ratio. We assume that we start at a feasi-
ble point, that is, a noninverted mesh. We also require
the improved mesh to be noninverted, which translates
to the implicit constraint det(A(i)) > 0 for every el-
ement vertex. There is no need to implement these
constraints explicitly, however, because the denomi-
nator in the mean ratio acts as an effective barrier to
element inversion.

3. IMPROVEMENT ALGORITHMS

Many algorithms can be applied to compute a solu-
tion to the quality improvement problem (2).5 In this
paper, we consider the block coordinate descent and
inexact Newton methods [10, 11]. The block coordi-
nate descent method optimizes the location of a single
vertex at a time by applying an optimization algorithm
to a restricted problem in which only the coordinates
for the given vertex are allowed to move. This opti-
mization step is repeated for each of the other vertices
in the mesh. This iterative repositioning stops when
the norm of the gradient of the global objective func-
tion is small. The inexact Newton method, on the
other hand, constructs a quadratic approximation to
the global objective function at the current iterate and
computes a solution to this quadratic program by solv-
ing a large system of equations. A new iterate is then
found for which the objective function has decreased.

The block coordinate descent algorithm solves a se-
quence of small optimization problems to improve the
global objective function but has a slow asymptotic

5Recall that (2) minimizes the inverse mean-ratio ob-
jective function, so the stated algorithms use minimization
terminology. However, the same algorithms can be used for
the maximization problem (1).
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convergence rate, while the inexact Newton method
solves a large quadratic optimization problem at every
iteration but has a fast asymptotic convergence rate. If
the global objective function in (2) is uniformly convex
in the free variables, then both algorithms converge to
the same solution x∗ [10]. However, if the objective
function is not convex, as is often the case in mesh
optimization, we can only say that if the block co-
ordinate descent method converges to x∗, then x∗ is
a critical point for the optimization problem (2) and
x∗ may not be a local minimizer. Moreover, the opti-
mization subproblems in the nonconvex case may have
either no solution or many local minimizers.

However, for the inverse mean-ratio metric, even
though the global objective function is not convex ev-
erywhere, one can prove that the objective function
for each subproblem of the block coordinate descent
method is strictly convex [12, 13] and the feasible re-
gion is compact. Therefore, each of these subproblems
has a unique solution. Note that the inexact Newton
and block coordinate decent algorithms may not con-
verge to the same critical point.

3.1 Block Coordinate Descent Method

The block coordinate descent method modifies a single
vertex at a time by applying one iteration of an exact
Newton method to the subproblem obtained by fixing
the rest of the vertices at their current coordinates.
That is, we computed a direction d where for vertex
v ∈ VI , the vth component of d is obtained by solving
the system of equations

∇2
v,vQhm(xk)dv = −∇vQhm(xk).

The remaining components of d are set to zero. Note
that we need only the Hessian matrix with respect to
vertex v, so the complete Hessian matrix for the global
objective function does not need to be computed. The
direction is obtained by computing the LDLT factor-
ization of the d× d local Hessian matrix and applying
it to the right-hand side of the problem. An iterative
method is not needed in this case because the system
of equations is very small. For the metric used, the
Hessian matrix is positive definite, so the factorization
can always be computed.

Having obtained a search direction, we then use an
Armijo linesearch [14] to obtain a new iterate with im-
proved quality. In particular, we compute the smallest
nonnegative integer m such that

Qhm(xk + βmd) ≤ Qhm(xk) + σβm∇Qhm(xk)T d.

When searching along the direction, all points where
the resulting mesh is degenerate or inverted are re-
jected; the objective function value is treated as pos-
itive infinity in these cases. To judge progress, we

need consider the quality of the elements only in local
patch Pv, since the quality of the elements outside of
this patch do not change when the location of vertex
v is modified. Hence, the Armijo linesearch is compu-
tationally inexpensive. To make both the Armijo line-
search and Hessian matrix computations efficient for
the block coordinate descent method, we precompute
a mapping from each vertex to the elements referenc-
ing the vertex.

We then update xk = xk+βmd and choose a different
vertex to optimize. The order in which the vertices
are traversed in each pass is determined by a reverse
breadth-first search starting from the vertex farthest
from the origin.

An iteration of the block coordinate descent method
consists of a single repositioning of each of the inte-
rior vertices. Once each of the interior vertices has
been repositioned, we proceed to the next iteration,
by setting xk+1 = xk, and repeat the local improve-
ment process until the gradient of the global objective
function is less than some tolerance.

3.2 Inexact Newton Method

The inexact Newton method computes a direction d
by solving the system of equations

∇2
xVI

,xVI
Qhm(xk)d = −∇xVI

Qhm(xk)

by applying the conjugate gradient method with a
block Jacobi preconditioner [15], where xk is the cur-
rent iterate. Having obtained a search direction, we
then use an Armijo linesearch [14] to obtain a new
iterate with a sufficiently improved quality. This line-
search is the same as the block coordinate descent
linesearch but must consider the improvement in the
global objective function instead of the improvement
in the local patch.

The gradient and Hessian of the objective function are
calculated by assembling the gradients and Hessians
for each of the element functions into a vector and
symmetric sparse matrix. Only the upper triangular
part of the Hessian matrix is stored in a block com-
pressed sparse row format. Each block corresponds
to a coordinate in the original problem. The gradient
and Hessian elements corresponding to fixed vertices
on the boundary of the domain are ignored.

The preconditioner consists of the Hessian with re-
spect to the (i, i) coordinates, resulting in a block di-
agonal preconditioner, where each block consists of a
d × d matrix. An LDLT factorization of each diag-
onal matrix is performed when calculating the pre-
conditioner. The preconditioner is applied by setting
y = L−T (D−1(L−1x)). We store D−1 so that the mid-
dle product consists of a few multiplications, instead
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of a few divisions. Each diagonal block of the Hes-
sian matrix is positive definite even though the overall
Hessian is indefinite in general [12, 13], so the precon-
ditioner can always be computed.

3.3 Implementation Characteristics

Our implementations of the coordinate descent
method and the inexact Newton method have been
coded with a bias toward achieving high performance
with minimal memory requirements. Both codes use
analytic gradient and Hessian evaluations, since finite
difference approximations for the inverse mean-ratio
metric are inefficient by comparison.

In order to minimize the number of floating-point op-
erations performed per iteration, the coordinate de-
scent algorithm has separate evaluation routines for
taking the gradient and Hessian with respect to each
vertex in the inverse mean-ratio metric. Each routine
is obtained by applying an even permutation to the in-
put data (coordinates for both the trial and reference
elements), computing W−1 for the permuted reference
element, using rotation matrices on the resulting W−1

to produce an upper triangular matrix W̄−1, and tak-
ing the gradient and Hessian with respect to the de-
sired vertex of this equivalent function definition. All
of these operations are performed offline for the given
weight matrix, and the resulting code can be further
refined to reduce operation counts. In particular, for
the equilateral weight matrix, W̄−1 is the same for all
four routines. For a different weight matrix, however,
four different versions of the weight matrix may be re-
quired. The savings attributed to this approach are
significant compared to a simple implementation that
uses a single Hessian evaluation routine for the en-
tire element; for equilateral tetrahedral elements, the
cost per iteration of the simple implementation is over
three times that of the efficient implementation.

One of the main computational tasks associated with
the inexact Newton method is obtaining an efficient
evaluation for the Hessian of the global objective func-
tion. This computation requires obtaining the Hes-
sian for each of the individual element functions. The
code for calculating the gradient of the element func-
tion uses the reverse mode of differentiation [16] on
the element quality metric. The Hessian calculation
uses the forward mode of differentiation on the gra-
dient evaluation and matrix-matrix products for ef-
ficiency. The other significant computational task is
the matrix-vector products required by the conjugate
gradient method to compute the search direction.

In order to obtain good locality of reference in the Hes-
sian evaluation and matrix-vector products, the ver-
tices and elements in the initial mesh are reordered by
applying a breadth-first search. The ordering starts

by selecting the (boundary) vertex farthest from the
origin. A breadth-first search of the vertices in the
mesh is then performed, and the order they are vis-
ited is tracked. We then reverse the order in which
the vertices were visited to obtain the reordering for
the problem. Once the vertices are reordered, the ele-
ments are then reordered according to when they are
visited by the Hessian evaluation. This reordering is
used by both the coordinate descent and inexact New-
ton methods.

Each iteration of the coordinate descent method con-
sists of computing the gradient and Hessian for each
subproblem, obtaining the direction, and computing
each improving point. The gradient and Hessian eval-
uation is the most expensive operation and requires a
total of 508 floating-point operations per element in
the tetrahedral mesh. Each iteration of the inexact
Newton method consists of computing the gradient
and Hessian evaluation of the global objective func-
tion, obtaining the direction by the conjugate gradi-
ent method, and computing the improving point. The
gradient and Hessian evaluation in this case requires
689 floating-point operations per element in the mesh.
Just looking at the cost of obtaining the gradient and
Hessian information, we can see that the coordinate
descent method should be faster per iteration than the
inexact Newton method.

In addition to the computational effort, we are also
interested in evaluating the memory footprint of each
method as the problem size increases. Our implemen-
tation of the coordinate descent method for tetrahe-
dral elements has a steady-state memory requirement
of approximately 23V + 12E integer values, where V
is the number of vertices and E is the number of ele-
ments in the mesh. The formula for memory usage of
the inexact Newton method is more complicated due
to the storage requirements for the Hessian matrix and
is given by 64V + 18E + 19NB integer values, where
NB denotes the number of off-diagonal blocks in the
Hessian matrix. On the tetrahedral meshes tested, the
number of off-diagonal blocks is bounded above by the
number of elements in the mesh. Therefore, the mem-
ory usage is approximately 64V + 37E integer values
for the inexact Newton method, about three times the
storage required for the coordinate descent method.

Conclusion 1: The coordinate descent method is
faster per iteration and consumes less memory than
the inexact Newton method but has a slow asymptotic
convergence rate. Furthermore, the inexact Newton
method requires a higher initial investment in coding
routines to assemble the global Hessian matrix from
the element Hessian matrices, construct the precondi-
tioner, and perform the preconditioned conjugate gra-
dient method to compute the direction. Once this in-
frastructure has been built, however, changing to a
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Figure 1: Sample meshes on the duct and clipped cube
geometries.

new metric requires only an efficient computation of
the element Hessian matrix. To change the metric
for the coordinate descent method, we need to imple-
ment four different gradient and Hessian evaluation
routines. Moreover, if the new metric is not rotation-
ally invariant, then the rotation operations used with
the inverse mean-ratio metric cannot be performed,
and a different technique must be devised to obtain
an efficient coordinate descent method.

4. NUMERICAL EXPERIMENTS

In this section, we perform numerical tests to evalu-
ate the block coordinate descent and inexact Newton
techniques to determine if and when one method is
preferred to the other using a subset of the criteria
given in Section 1. We solve the optimization prob-
lem (2) on a series of tetrahedral meshes generated
with the CUBIT [17] and GRUMMP [18] mesh gen-
eration packages. We consider two different compu-
tational domains, duct and clipped cube, and show
sample meshes on these geometries in Figure 1. In this
paper, we study the effects of three different problem
parameters on the time taken to reach x∗: problem
size, element heterogeneity, and initial mesh configura-
tion. For each parameter studied, we create a suite of
test meshes in which we isolate the parameter of inter-
est, allowing it to vary, while simultaneously holding
the other parameters as constant as possible.

In each of the following subsections, we give the prob-
lem characteristics of the test suite in terms of the
number of vertices and elements, initial mesh qual-
ity as evaluated by the inverse mean-ratio metric, and
specific parameter values used such as the perturba-
tion of the initial mesh. We then provide the results
for both the inexact Newton and coordinate descent
mesh quality improvement techniques. For the inex-
act Newton method, the maximum number of solver
iterations is 500, and the maximum number of CG
subiterations is 100, while for the coordinate descent
method, the maximum number of iterations, that is,

passes through the free vertices, is 1000. In both cases,
the solution is considered to be optimal when the norm
of the gradient is less than 1.0× 10−6.

4.1 Increasing Problem Size

For the duct geometry shown in Figure 1, we used CU-
BIT to generate tetrahedral meshes with uniform qual-
ity and element size but with an increasing number of
vertices. In Table 1, we give the number of vertices, V ,
and elements, E, along with the average, median, and
standard deviation normalized by the average value,
denoted σn, for the inverse mean-ratio metric, 1

µd
, and

element volume, evol. One can see that within each
mesh, we achieve roughly uniform element size and
shape quality distributions while increasing the prob-
lem size from 4,104 elements to 965,759 elements. In
addition, the element quality characteristics are sim-
ilar across this suite of initial meshes as the problem
size increases. In particular, the initial mesh quality is
quite good, with an average inverse mean-ratio value
of 1.2 (optimal is 1) and a maximum value ranging
from 2.2 to 5.

We optimized each test mesh until a very accurate
solution was computed, and in Table 2, we give the
number of iterations, I, and time, T100, required to
achieve the optimal solution. In all cases, both I and
T100 are significantly smaller for the inexact Newton
solver because of its superior asymptotic convergence
rate. As the problem size increases, the disparity in
time to solution increases monotonically from a factor
of 6.4 to a factor of 40.

However, a highly accurate solution is often not re-
quired in mesh smoothing applications. Therefore, the
time required to reach a partially improved mesh is
also of interest. As a particular example, we include
the time required to achieve 50% of the optimal solu-
tion as defined by the global objective function value,
T50, in Table 2. For every mesh in this test suite,
the coordinate descent method takes less time than
the inexact Newton method to reach this suboptimal
solution, typically by a factor of 1.5.

To examine this behavior more closely, we recorded
the objective function and gradient values at each it-
eration. A typical time history is shown for the Duct15
mesh in Figure 2. Because the inexact Newton method
converges to the optimal solution much more quickly
than the coordinate descent method, we show the com-
plete time history of the inexact Newton solver and
only the corresponding portion of the coordinate de-
scent method. Because the initial mesh quality is very
good, both methods make significant progress toward
the optimal solution in their first few iterations. How-
ever, significant setup overhead is associated with com-
puting the sparsity pattern of the Hessian matrix for
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Table 1: Initial mesh characteristics for increasing problem size on the duct geometry.
Inverse Mean Ratio Element Volume

Mesh V E avg median σn max avg median σn
Duct20 1067 4104 1.208 1.176 .115 2.2 1167 1176 .285
Duct15 2139 9000 1.210 1.179 .116 2.1 532 519 .304
Duct12 4199 19222 1.209 1.182 .111 2.1 249 237 .327
Duct10 7297 35045 1.120 1.170 .106 2.2 136 128 .310
Duct8 13193 65574 1.19 1.162 .105 2.4 73 68 .320
DuctBig 177887 965759 1.18 1.160 .109 4.9 4.1 2.91 .587

Table 2: Number of iterations, total time, and time to
achieve a 50% optimal solution as problem size increases.

Newton Coordinate Descent
V I T100 T50 I T100 T50

1067 4 .05 .015 33 .32 .005
2139 5 .13 .025 46 1.1 .011
4199 5 .34 .056 74 4.2 .037
7297 5 .69 .106 105 11.6 .081
13193 5 1.4 .213 146 31.0 .152
177887 8 44.3 4.52 548 1738 2.47

the inexact Newton method because the edges in the
mesh need to be sorted with a radix sort. During this
setup time, the coordinate descent method is able to
complete one iteration through the mesh, which is suf-
ficient to achieve 46% of optimality. Clearly, there is a
point at which the inexact Newton solution is more ac-
curate than the coordinate descent solution. We call
this point the crossover point, and it is highlighted
with an asterisk in Figure 2. In the Duct15 case, the
mesh is 96% optimized when the crossover point oc-
curs.

We address the questions: “What is the percent accu-
racy achieved at the crossover point?” and “What is
the time required by each method to achieve a certain
level of optimality?” To answer these questions, for
each method we plot the percent accuracy obtained,
the number of coordinate descent iterations, and the
percentage of time spent in setup by each solver at the
crossover point as a function of an increasing problem
size in the top graph in Figure 3. In all cases, the mesh
is nearly optimal at the crossover point even though
the number of coordinate descent iterations completed
is quite small, typically less than five. As the problem
size increases, the setup time for the inexact Newton
solver is greater than 25% of the time to reach the
crossover point and typically less than 10% for the
coordinate descent method. In this case, the setup
time is the primary factor in determining which solver
reaches suboptimal solutions faster.

In the bottom graph in Figure 3, we show the ratio
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Figure 2: Objective function value and gradient norm as
a function of time for the Duct15 mesh.

of the time required by the inexact Newton solver and
coordinate descent solver to achieve certain levels of
accuracy. Each line in the graph represents a differ-
ent problem size, and the flat line at 1 represents the
point at which the preferred method changes. Data
above this line indicates that the coordinate descent
method is faster; data below indicates the opposite.
In this case, we see that the smaller problem sizes are
more affected by the setup time differences, but as
the problem size exceeds 20,000 elements, the meth-
ods behave similarly. In particular, it takes roughly
twice as long to compute suboptimal meshes using the
inexact Newton approach for a wide range of desired
accuracies. As the accuracy level increases, the inex-
act Newton method becomes more competitive, but
only when nearly optimal meshes are desired does the
inexact Newton method outperform the coordinate de-
scent method.

Conclusion 2: For good-quality, uniformly sized
tetrahedral meshes, the inexact Newton method out-
performs the coordinate descent method if an optimal
mesh is desired. If a suboptimal mesh is sufficient,
the coordinate descent method typically outperforms
the inexact Newton method because of the high setup
costs associated with computing the sparsity pattern
of the Hessian matrix, which cannot then be amortized
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Figure 3: Various quantities of interest at the crossover
point as the problem size increases (top) and the ratio
of the times required by the inexact Newton and coordi-
nate descent solvers to achieve certain levels of accuracy
(bottom).

over a large number of iterations because we start from
a nearly optimal solution. This conclusion is true for
a wide range of problem sizes, including the largest.

We emphasize that the conclusion in this section has
been demonstrated only for the mean-ratio metric and
harmonic mean template function on initial meshes
with (nearly) uniformly sized, well-shaped tetrahedral
elements. Whether it extends to other situations re-
mains to be seen. In the remainder of this section,
we examine the behavior of the solvers under different
conditions.

4.2 Element Size Heterogeneity

Our second test suite was generated using GRUMMP
with the aim of testing the effect of element size (vol-
ume) heterogeneity on the two solvers. A simple geom-
etry consisting of the unit cube with a small tetrahe-
dral volume clipped from one corner was used to create
graded meshes with grid points clustered around that
corner. GRUMMP parameters that determined the
smallest element size and gradation of the mesh were

manipulated to create a series of meshes with roughly
the same number of vertices and element quality dis-
tribution but with different ranges of element sizes.
In Table 3, we give the statistics for these meshes in
terms of numbers of vertices, elements, shape qual-
ity distribution, and element volume. The numbers
of vertices, although not identical, are all within 6%
of 10,470. The normalized standard deviation of the
element volumes and the ratio of the maximum-sized
element to the minimum-sized element show that the
element size varies dramatically within a given mesh.
The shape quality distributions across the meshes in
the test suite are similar; the average shape quality
is nearly the same as in the uniform element size test
cases, but the normalized standard deviation is higher,
indicating a wider range of individual element quali-
ties. In particular, the maximum mean ratio of the
heterogeneous element size meshes exceeds a value of
15 in all cases, whereas it is approximately 2.5 in the
uniform element size test suite.

In Table 4, we give the number of iterations and the
times to reach the optimal and 50% accurate solutions
as the element heterogeneity, measured by the ratio of
maximum element volume to minimum element vol-
ume, increases. As with the uniform element distri-
bution test suite, the inexact Newton method is sig-
nificantly faster than the coordinate descent method
when the optimal solution is desired. If a 50% ac-
curate solution is desired, however, the coordinate de-
scent method outperforms the inexact Newton method
by a factor that ranges from 1.5 to 4, compared to the
factor of 1.5 for the uniform distribution case of the
previous subsection.

We examine the convergence history of one particular
case, Hetero4, to obtain insight into this result. Fig-
ure 4 shows the value of the objective function and
gradient as a function of time for both the inexact
Newton and coordinate descent methods. The coordi-
nate descent method maintains a steep initial decrease
in the objective function value, while the inexact New-
ton method has more difficulty. In particular, many
of the initial iterations of the inexact Newton method
encounter directions of negative curvature because the
global objective function is not convex at that iterate.
Typically, a small step is taken when such directions
are found by the conjugate gradient method. Thus,
the superior asymptotic convergence rates of the in-
exact Newton method are not evident until approxi-
mately two seconds have elapsed.

Because the inexact Newton method has difficulty
with these problems in the initial iterations, the co-
ordinate descent method has the time to take several
iterations, and the accuracy of the solution is near
100% at the crossover point in all cases. As before,
the inexact Newton method uses twice as much time
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Table 3: Initial mesh characteristics for heterogeneous element size distributions.

Inverse Mean Ratio Element Volume
Mesh V E avg median σn max avg median σn max/min

Hetero1 10318 54132 1.271 1.171 .330 17.1 1.84·10−5 1.10·10−5 1.11 5.5·103

Hetero2 9883 56184 1.274 1.172 .371 30.2 1.77·10−5 6.04·10−6 1.46 2.3·105

Hetero3 10926 58610 1.275 1.173 .413 58.6 1.70·10−5 3.89·10−7 1.74 7.2·107

Hetero4 11057 59985 1.272 1.173 .322 16.1 1.66·10−5 1.59·10−6 2.08 4.2·106

Table 4: Number of iterations, total time, and time to
achieve 50% optimal solution as the element heterogene-
ity increases.

Newton Coordinate Descent
Mesh I T100 T50 I T100 T50

Hetero1 16 4.24 .386 674 122 .128
Hetero2 13 3.53 .345 708 132 .192
Hetero3 21 5.41 .432 505 93 .207
Hetero4 15 4.22 .641 554 109 .168
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Figure 4: Objective function value and gradient norm as
a function of time for the Hetero4 mesh.

in setup as does the coordinate descent method. Un-
like the uniform element size test suite, however, this is
not the dominant factor in determining the crossover
time because both methods use less than 5% of their
total time in setup.

For this test suite, in Figure 5 we show the ratio of
the time required by the inexact Newton method and
the time required by the coordinate descent method to
reach a number of different accuracies. For compari-
son, we also show the curves for the two uniform ele-
ment size test cases, Duct10 and Duct8, which tightly
bracket the number of elements in the clipped cube
meshes. The normalized standard deviation values for
the Duct 10 and Duct8 meshes are .310 and .320, re-
spectively. In almost all cases, the coordinate descent
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duct10:   norm vol dev = .310
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hetero1:  norm vol dev = 1.11
hetero2:  norm vol dev = 1.46
hetero4:  norm vol dev = 1.74
hetero3:  norm vol dev = 2.08

Figure 5: Ratio of the inexact Newton and coordinate
descent times for various levels of accuracy in the objec-
tive function.

method is two to three times faster than the inex-
act Newton method to reach a desired level of accu-
racy. In fact, in several cases, the ratio of the times
required to achieve higher levels of accuracy actually
increases rather than decreases as a result of the steep
initial convergence of the coordinate descent method.
Furthermore, the coordinate descent method is more
competitive than the inexact Newton method on the
heterogeneous element size meshes than on the uni-
formly sized element problems.

Conclusion 3: As element size heterogeneity in-
creases and mesh quality decreases for tetrahedral
meshes, the coordinate descent method is increasingly
attractive for suboptimal solutions. If the optimal so-
lution is desired, the inexact Newton method is pre-
ferred.

4.3 Initial Mesh Configuration

The final mesh test suite was designed to investigate
the effect of the degree and manner in which the initial
mesh differs from the optimal mesh. To address this
issue, our approach was to apply systematic or random
perturbations of the optimal positions of the interior
mesh vertices. We started with the optimized DuctBig
mesh and applied three different perturbation schemes
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that involved random, translational, and oscillatory
movement of the mesh vertices. In all three cases, we
consider perturbations applied to all of the vertices
and to randomly chosen vertex subsets of size 1000,
2000, and 5000. The formulas for the perturbations
are as follows:

Random: xv = xv + ar, where r is a three-vector con-
taining random numbers generated using the function
rand and a is a multiplicative factor controlling the
degree of perturbation. For this test suite, we chose
a= .001, .005, .01, and .05.

Translational: xv = xv + as, where s is a direction
vector giving the coordinates to be shifted and a is
again a multiplicative factor controlling the degree of
perturbation. In this case we considered a “right” shift
(R) with s1 = [1 0 0]T and a “northeast” shift (NE)
with s2 = [1 1 0]T and chose a = .1, .5, and .7.

Oscillatory: xv = xv + bsin(axv), where the scalars
a and b control the frequency and amplitude of the
perturbation, respectively. For this test suite, we con-
sidered two different amplitudes, b=.01 and .05, and,
for each amplitude, three different frequencies a = .01,
.05, and .1. The wavelength of the perturbation can
be computed from the frequency by w = 2π/a, and we
note that for this test suite w ranges from 63 to 628,
which exceeds the average edge length of the mesh of
approximately 3.6.

The perturbation amounts were chosen to avoid in-
verting any of the elements of the initial mesh. The
resulting quality characteristics of the meshes as the
perturbations increase do not vary significantly, and
we do not include the details. In particular, the av-
erage inverse mean ratio value is approximately 1.13,
the ratio of the standard deviation to the average is
approximately .093, and the maximum inverse mean
ratio is approximately 2.21 in all cases.

In Table 5, we give the iterations and time to reach
the 100% and 50% accurate solutions for the cases in
which we perturb all of the vertices in the mesh ac-
cording to formulas and parameters given above. As
with the other test suites, if a highly accurate solu-
tion to the optimization problem is sought, the inexact
Newton method outperforms the coordinate descent
method in every case. If the 50% solution is sought,
the coordinate descent method outperforms the inex-
act Newton method for the random and translational
test cases. For these cases, the solutions are greater
than 95% accurate at the crossover points. The setup
time is the primary factor determining the crossover
point and requires about 30% of the inexact Newton
solution time compared to approximately 10% for co-
ordinate descent. If a 50% accurate solution is sought
for the oscillatory test suite, the results are mixed.
For both amplitudes considered, as the wavelength in-

Table 5: Number of iterations and total time to achieve
100% and 50% of the optimal solution as the element
heterogeneity increases.

Newton Coordinate Descent
Pert. a I T100 T50 I T100 T50

.001 3 18.0 3.17 176 586 2.23
Rand .005 4 25.0 3.18 220 729 2.28

.01 4 25.0 3.18 245 792 2.31

.05 6 33.0 3.17 305 995 2.26

Trans .1 3 17.5 3.10 139 439 2.04
(R) .5 3 17.5 3.11 142 445 2.02

.7 3 17.5 3.10 145 459 1.97

Trans .1 3 17.6 3.12 138 437 2.02
(NE) .5 3 17.8 3.19 146 455 1.97

.7 3 17.7 3.21 150 469 1.94

Osc. .01 3 19.8 3.64 268 885 2.06
(b=.01) .05 3 21.1 4.35 360 1124 5.34

.1 3 21.5 4.39 309 989 14.2

Osc. .01 3 20.7 4.12 329 1072 2.42
(b=.05) .05 3 22.4 4.82 421 1324 17.3

.1 4 28.2 4.41 363 1173 15.6

creases, the inexact Newton method outperforms the
coordinate descent method.

In Figure 6, we examine the ratio of the time required
by the inexact Newton method and the coordinate de-
scent method as the desired degree of optimality in-
creases. In all cases considered, as a more accurate
solution is sought, the inexact Newton method looks
increasingly attractive. For the random and transla-
tional test suites, however (top left and middle fig-
ures, respectively), the coordinate descent method al-
ways outperforms it up to 90% accuracy. As the de-
gree of perturbation increases in the translational test
suite, the relative performance of the coordinate de-
scent method improves, whereas the relative perfor-
mance is unaffected as the degree of perturbation in-
creases in the random test suite. For the oscillatory
test cases, we separate the plots for the two differ-
ent amplitudes (top right). For both amplitudes, as
the wavelength increases, the inexact Newton method
is the method of choice for all levels of accuracy for
high amplitude or long wavelength perturbations. In
this case, the local nature of the coordinate descent
method can only slowly eliminate the long wavelength
errors introduced by the perturbation scheme. In con-
trast, the inexact Newton method has access to global
information and is able to overcome this difficulty.

To determine whether the number of vertices that
we perturb affects the relative performance of the
two solvers, we give the ratio of the inexact New-
ton method and coordinate descent method times to
achieve various levels of accuracy (see the bottom row
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Figure 6: Ratio of the times required by the inexact Newton and coordinate descent solvers to achieve certain levels of
accuracy for the random (top left), NE translational (top middle), and oscillatory (top right) perturbations and for the
cases where a subset of vertices are perturbed randomly (bottom left), NE translational (bottom middle), and oscillatory
(bottom right).

of Figure 6) when a subset of the vertices is perturbed.
The number of randomly selected vertices perturbed
is 1,000, 2,000, and 5,000. We show results for only a
subset of the cases analyzed; the results for the cases
not shown are qualitatively the same. In all cases,
the inexact Newton method is unable to outperform
the coordinate descent method for suboptimal solution
values. This result is particularly interesting for the
oscillatory perturbations (bottom right). In this case,
because only a subset of the vertices were perturbed,
the long wavelength errors that affected the perfor-
mance of the coordinate descent method are no longer
evident, and the coordinate descent method is again
able to quickly approach the optimal solution. In the
case of the translational perturbations (bottom mid-
dle), we see that as we increase the number of vertices
perturbed, the relative performance of the coordinate
descent method decreases.

Conclusion 4: For random and translational per-
turbations of uniform tetrahedral meshes, the coor-
dinate descent method outperforms the inexact New-
ton method if suboptimal solutions to improve shape
are sought. Large wavelength errors, such as those
introduced by the oscillatory perturbations of all the
vertices, present difficulties for the coordinate descent
method, and the inexact Newton method is often pre-
ferred.

5. FUTURE WORK

The numerical results show that the block coordinate
descent method is most useful for making fast improve-
ment in the shape quality of tetrahedral meshes. The
inexact Newton method is the most appropriate when
a very accurate solution to the optimization problem
is necessary. We note that a 50% optimization level
may be somewhat misleading in that it does not in-
dicate the degree of the accuracy in the solution. For
most of the Duct meshes, the iterate at a 50% opti-
mization level has four or five digits of accuracy in the
objective function value. If the initial quality of the
mesh is very poor, however, then the iterate at a 50%
optimization level may not have any digits of accuracy
in the objective function value.

Because of the size limitations of this paper, the im-
pact of several important factors could not be inves-
tigated. In particular, we limited ourselves to shape
improvement of tetrahedral meshes and ignored tri-
angular, quadrilateral, and hexahedral meshes. Pre-
liminary experience with planar quadrilateral meshes
shows that the crossover point for our two codes gen-
erally occurs earlier, but further study is warranted.

Furthermore, because the global objective function is
not convex, a trust-region method for the inexact New-
ton code may be perform better since it can han-
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dle directions of negative curvature more rigorously.
A limited-memory quasi-Newton method may also be
better than the coordinate descent method at obtain-
ing an approximate solution in a small amount of
time. Efficient implementations of these methods can
be based on the infrastructure developed for the inex-
act Newton and coordinate descent methods.

In conclusion, there are many factors which can af-
fect whether or not one should use a coordinate de-
scent solver or an inexact Newton method for mesh
optimization. The present work identifies many of the
potentially important factors and develops a method-
ology for investigations on this topic. Future work will
consider many of the remaining open questions.
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