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ABSTRACT

We compare inexact Newton and block coordinate descent optimization methods for improving the quality of a mesh
by repositioning the vertices, where the overall quality is measured by the harmonic mean of the mean-ratio metric.
The effects of problem size, element size heterogeneity, and various vertex displacement schemes on the performance
of these algorithms are assessed for a series of tetrahedral meshes.
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1. INTRODUCTION

Mesh vertex repositioning algorithms have been used
for many years to improve solution accuracy and ef-
ficiency; see, for example, [1, 2, 3, 4]. Repositioning
techniques vary widely in the time required to imple-
ment and modify the algorithm and in the computa-
tional cost and effectiveness when applying the algo-
rithm, usually with a trade-off between these criteria.
Laplacian smoothing, for example, is easy to imple-
ment and inexpensive to apply but can produce tan-
gled meshes. Moreover, this method is limited to the
creation of smooth meshes, while vertex repositioning
can address other meshing needs such as equidistribu-
tion of volumes [5], shape improvement [6], or adaptive
r-refinement [7]. These more complex tasks can usu-
ally be posed as numerical optimization problems in
which an objective function is defined measuring one
or more mesh property. This objective function can
then be optimized by repositioning the vertices, lead-
ing to improvement in the mesh properties measured.

When approaching the vertex repositioning problem
from an optimization perspective, a natural idea is to
formulate a single objective function measuring global

mesh quality. This global objective function is typi-
cally constructed by accumulating contributions from
each local measure of quality into a scalar function of
the positions of all free vertices in the mesh.1 We
consider two approaches for numerically optimizing
the global objective function: an all-vertex approach
where the positions of all free vertices are moved simul-
taneously within a single iteration, and a single-vertex
approach where the position of only one vertex is mod-
ified at a time. We employ an inexact Newton method
as our all-vertex optimization algorithm and a block

coordinate descent method as our single-vertex algo-
rithm in which a Newton method is applied to solve
each coordinate descent subproblem. The goal of this
paper is to determine when one of these methods is
preferable to the other, where preference can include
the ease with which the method can be implemented
and modified, the computational and memory require-
ments for applying the method, and the accuracy and
quality of the mesh produced, perhaps as a function of
computation time. A complete answer should consider
all these characteristics.

1An important alternative to mesh optimization often
used by the unstructured mesh community employs a series
of local objective functions.



The preferred method may differ depending on the
circumstances. For example, the block coordinate de-
scent method may be better suited to quickly finding
an approximate solution, while the inexact Newton
method may be more suitable for calculating a highly
accurate solution. Factors that may be significant in
determining the preferred approach include the objec-
tive function, quality metric, desired accuracy in the
resulting mesh, mesh type (structured vs. unstruc-
tured), dimension (planar vs. volume), element type
(simplicial vs. nonsimplicial), problem size, mesh het-
erogeneity and anisotropy, and the degree and man-
ner in which the initial mesh differs from the optimal
mesh. Algorithm implementations also have a signif-
icant impact, since a simple implementation can be
much slower than a more sophisticated version.

In this paper we report the results of an initial explo-
ration of these factors to determine the circumstances
in which the inexact Newton method or the block co-
ordinate descent method may be preferred. To make
the study manageable, we limit the number of free
parameters and consider a fixed mesh type, quality
metric, and objective function template. In particu-
lar, we use tetrahedral meshes, the mean-ratio quality
metric for isotropic elements, and a template target-
ing average quality improvement. The free parameters
investigated are the problem size, element homogene-
ity, initial mesh configuration, and desired degree of
accuracy in the resulting mesh.

2. PROBLEM STATEMENT

2.1 Element and Mesh Quality

An unstructured mesh consists of a finite set of ver-
tices V and elements E , where |V| denotes the number
of vertices and |E| the number of elements. The set
of vertices on the boundary of the mesh is denoted by
VB, while the set of interior vertices, that is, those not
on the boundary, is denoted by VI . Let xv ∈ <

n de-
note the coordinates for vertex v ∈ V. For surface and
volume meshes n = 3, while for planar meshes n = 2
(in this paper we only consider volume meshes). More-
over, x ∈ <n×|V| refers to the collection of all vertex
coordinates. Each element e ∈ E consists of a small
subset of the vertices and the edges between these ver-
tices, where |e| is the number of vertices referenced by
element e, Ve refers to the vertices referenced by e,
and xe ∈ <

n×|e| the matrix of vertex coordinates for
e.

Associated with the mesh is a continuous function
q : <n×|e| → < measuring one or more geometric
properties of an element as a function of the vertex
positions.2 In particular, q(xe) measures the quality

of element e, where we assume a larger value of q(xe)

2For hybrid meshes, the exact definition of q can change

indicates a higher quality element. A specific function
q is referred to as an element quality metric. Many
functions can serve as quality metrics, so the quality
of an element is not uniquely defined. For example,
there are different metrics to measure the shape, size,
and orientation of elements. In general, useful quality
metrics possess other properties in addition to conti-
nuity, but a discussion of this topic is beyond the scope
of the present study. See, for example, [8].

The overall quality of the mesh is measured by a tem-
plate function Q : <|E| → < taking as input the vec-
tor of element quality metrics,

∏

e∈E q(xe), where
∏

denotes the Cartesian product. The mesh quality de-
pends on both the choice of the specific element quality
metric q and the particular template function Q used
to combine them. Useful template functions can be
constructed from the arithmetic or other means.

2.2 The Mean-Ratio Metric

An important variable in this study is the choice of
quality metric. In general, we expect the study re-
sults could vary significantly depending on whether
or not one were to choose shape metrics as opposed
to size, smoothness, or other metrics. For this ini-
tial algorithm comparison, we focus on the mean-ratio
shape-quality metric. Other shape metrics such as as-
pect ratio or condition number would likely give simi-
lar timing results; we plan to study these metrics and
others not explicitly focused on shape in future work.

Let S be a n × n matrix with det(S) > 0. The mean
ratio µ of S is the scalar

µ(S) =
ndet(S)2/n

‖S‖2F
,

where ‖S‖F =
√

tr(STS) is the Frobenius norm. One
can readily show that 0 < µ(S) ≤ 1. To apply the
mean ratio to element quality, assume each vertex of
the element is connected to n edges (and therefore
n other vertices) belonging to the element.3 Let xi
be the coordinates of vertex i, and let xk be the co-
ordinates of another vertex in the element connected
to vi by an edge. Construct the matrix A(i) whose
columns are the vectors xk − xi for each adjacent ver-
tex vk in the element. The columns are ordered to
preserve element orientation so that the element has
locally nonpositive volume if det(A(i)) ≤ 0 for any
vertex; such elements are called “inverted.” Let W be
a n × n reference matrix for the ideal element shape
(e.g., an equilateral reference triangle is often used for

depending on the element type. However, we assume that
the quality metric, shape, for example, is the same for every
element.

3This approach excludes elements such as pyramids but
includes triangles, tetrahedra, wedges, quadrilaterals, and
hexahedra.



triangular elements). This reference matrix is found
by constructing W from the ideal element in the same
way A is constructed for the mesh element. For each
element vertex i let µi = µ(A(i)W−1) be the mean
ratio at element vertex i.

Finally, the mean ratios of the element vertices are
averaged to form an element quality metric symmetric
in the element vertex indices.4 We use the arithmetic
mean, although different means could also be applied.
The shape quality of element e is then

qe =
1

|e|

∑

i∈Ve

µi.

As one would expect, this metric is scale, translation,
and rotation invariant. Furthermore, 0 < qe ≤ 1 with
qe = 1 only when the element attains the ideal refer-
ence shape. We do not define the mean ratio for ma-
trices with nonpositive determinants. Therefore, the
shape quality of “inverted” elements is not defined.
For further details on shape metrics see [9].

2.3 Quality Improvement Problem

To improve the overall quality of the mesh, we assem-
ble the local element qualities using a template func-
tion Q. We compute an x∗ ∈ <n×|V| such that x∗ is
an optimal solution to

max
x

Q

(

∏

e∈E
q(xe)

)

(1)

subject to the constraint that xVB
= x̄VB

, where x̄VB

are the coordinates for the boundary vertices. Note
that additional constraints can be added if the loca-
tions for some of the interior vertices also need to be
fixed. If the objective function for this optimization
problem is uniformly concave as a function of xVI

, that
is, the Hessian matrix, ∇2

xVI
,xVI

Q(·), is uniformly

negative definite, then an x∗ solving this optimization
problem exists and is unique. If the objective function
is not concave, then one can only hope to find a lo-
cal maximizer for the optimization problem and may
instead compute a critical point.

We use the harmonic mean template for all our nu-
merical results. This template produces the objective
function

Qhm :=
|E|

∑

e∈E
1

qe(xe)

.

This objective function is maximized precisely when
the denominator is minimized. Therefore, the opti-
mization problem we solve is

min
x

Fhm(x) :=
1

|E|

∑

e∈E

1

qe(xe)
(2)

4We show in [6] that averaging is unnecessary in the
case of triangular or tetrahedral elements.

subject to the same boundary constraints as (1). The
objective function in this case is continuous on the set
of noninverted meshes and bounded below by one and
minimizes the average inverse mean-ratio metric. We
further assume the initial set of coordinates is feasi-
ble; that is, the corresponding mesh does not contain
inverted elements. We also require the improved mesh
to be noninverted, which translates to the implicit con-
straint det(A(i)) > 0 for every element vertex. There
is no need to implement these constraints explicitly,
however, because the denominator in the inverse mean
ratio acts as a barrier to element inversion.

3. IMPROVEMENT ALGORITHMS

Many algorithms can be applied to compute a solu-
tion to the quality improvement problem (2).5 In this
paper, we consider the block coordinate descent and
inexact Newton methods [10, 11]. The block coordi-
nate descent method optimizes the location of a single
vertex at a time by applying an optimization algorithm
to a restricted problem in which only the coordinates
for the given vertex are allowed to move. This opti-
mization step is repeated for each of the other vertices
in the mesh. This iterative repositioning stops when
the norm of the gradient of the global objective func-
tion is small. The inexact Newton method, on the
other hand, constructs a quadratic approximation to
the global objective function at the current iterate and
computes a solution to this quadratic program by solv-
ing a large system of equations. A new iterate is then
found for which the objective function has decreased.

The block coordinate descent algorithm solves a se-
quence of small optimization problems to improve the
global objective function but has a slow asymptotic
convergence rate, while the inexact Newton method
solves a large quadratic optimization problem at every
iteration but has a fast asymptotic convergence rate. If
the global objective function in (2) is uniformly convex
in the free variables, then both algorithms converge to
the same solution x∗ [10]. However, if the objective
function is not convex, as is often the case in mesh
optimization, we can only say that if the block coor-
dinate descent method converges to x∗, then x∗ is a
critical point for the optimization problem (2) and x∗

may not be a local minimizer.

Moreover, when the global objective function is not
convex, the optimization subproblems solved by the
block coordinate descent method may have either no
solution or many local minimizers. However, for the
inverse mean-ratio metric, even though the global ob-
jective function is not convex everywhere, one can

5Recall that (2) minimizes the inverse mean-ratio ob-
jective function, so the stated algorithms use minimization
terminology. However, the same algorithms can be used for
the maximization problem (1).



prove that the objective function for each subproblem
of the block coordinate descent method is strictly con-
vex [12, 13] and the feasible region is compact. There-
fore, each of the subproblems has a unique solution.
Note that the inexact Newton and block coordinate
descent algorithms may not converge to the same crit-
ical point.

3.1 Block Coordinate Descent Method

The block coordinate descent method modifies a single
vertex at a time by applying one iteration of a Newton
method to the subproblem obtained by fixing the rest
of the vertices at their current coordinates. That is,
we compute a direction d where for vertex v ∈ VI , the
vth component of d is obtained by solving the system
of equations

∇2
v,vFhm(xk)dv = −∇vFhm(xk).

The remaining components of d are set to zero. Note
that we need only the Hessian matrix with respect
to vertex v, so the complete Hessian matrix for the
global objective function does not need to be com-
puted. The direction is obtained by directly factoring
the n× n local Hessian matrix and applying it to the
right-hand side of the problem. An iterative method is
not needed in this case because the system of equations
is very small. For the metric used, the Hessian matrix
is positive definite, so the factorization can always be
computed [12, 13].

Having obtained a search direction, we then use an
Armijo linesearch [14] to obtain a new iterate with im-
proved quality. In particular, we compute the smallest
nonnegative integer m such that

Fhm(xk + β
m
d) ≤ Fhm(xk) + σβ

m∇Fhm(xk)T d,

where β ∈ (0, 1) and σ ∈ (0, 1) are chosen constants.
When searching along the direction, all points where
the resulting mesh is degenerate or inverted are re-
jected; the objective function value is treated as posi-
tive infinity in these cases. Most of the time, the full
step is accepted, and we perform only one function
evaluation. To judge progress, we need to consider
the quality of only the elements in which vertex v ap-
pears, since the quality of elements outside this set
does not change when the location of vertex v is mod-
ified. Hence, the Armijo linesearch is computationally
inexpensive. To make both the Armijo linesearch and
Hessian matrix computations efficient for the block co-
ordinate descent method, we precompute a mapping
from each vertex to the elements referencing the ver-
tex.

We then update xk = xk+βmd and choose a different
vertex to optimize. The order in which the vertices
are traversed in each pass is determined by reverse

breadth-first search [15] starting from the vertex far-
thest from the origin. This reverse breadth-first search
is applied to the given mesh to improve the locality of
reference, making the code more efficient.

An iteration of the block coordinate descent method
consists of a single repositioning of each interior ver-
tex. Once each of the interior vertices has been repo-
sitioned, we proceed to the next iteration by setting
xk+1 = xk. The local improvement process is repeated
until the gradient of the global objective function is
less than some tolerance.

3.2 Inexact Newton Method

The inexact Newton method computes a direction d

by solving the system of equations

∇2
xVI

,xVI
Fhm(xk)d = −∇xVI

Fhm(xk)

by applying the conjugate gradient method with a
block Jacobi preconditioner [15], where xk is the cur-
rent iterate. When the Hessian matrix is indefinite,
the conjugate gradient method can terminate with a
direction of negative curvature. This direction of nega-
tive curvature is used as our search direction. Having
obtained a search direction, we then use an Armijo
linesearch [14] to obtain a new iterate with a suffi-
ciently improved global objective function value. This
linesearch is the same as the block coordinate descent
linesearch but must consider the improvement in the
global objective function instead of the improvement
to only the elements referenced by a single vertex.
Many global objective function evaluations can be per-
formed to obtain sufficient decrease when far from a
solution, particularly when a direction of negative cur-
vature is encountered. In a neighborhood of a solution,
the full step is taken, and only one global objective
function evaluation is performed.

The gradient and Hessian of the objective function are
calculated by assembling the gradients and Hessians
for each element function into a vector and symmetric
sparse matrix. Only the upper triangular part of the
Hessian matrix is stored in a block compressed sparse
row format. Each block corresponds to a coordinate
in the original problem. The gradient and Hessian ele-
ments corresponding to fixed vertices on the boundary
of the domain are ignored.

The preconditioner consists of the Hessian with re-
spect to the (i, i) coordinates, resulting in a block di-
agonal preconditioner, where each block consists of a
n × n matrix. An LDLT factorization of each diag-
onal matrix is performed when calculating the pre-
conditioner. The preconditioner is applied by setting
y = L−T (D−1(L−1x)). We store D−1 so that the mid-
dle product consists of a few multiplications, instead
of a few divisions. Each diagonal block of the Hes-
sian matrix is positive definite even though the overall



Hessian is indefinite in general [12, 13], so the precon-
ditioner can always be computed.

3.3 Implementation Characteristics

Our implementations of the block coordinate descent
method and the inexact Newton method have been
coded with a bias toward achieving high performance
with minimal memory requirements. These algorithms
were coded using the same infrastructure and have
been extensively refined so that we can draw compar-
isons between them. Both codes use analytic gradient
and Hessian evaluations, since finite-difference approx-
imations for the inverse mean-ratio metric are ineffi-
cient by comparison.

To make both the inexact Newton and block coordi-
nate descent methods run faster, instead of computing
with W−1 in the mean ratio metric, we precompute
a QR factorization of W , where Q is an orthogonal
matrix with determinant equal to one, R is an up-
per triangular matrix, and W−1 = R−1QT . The QT

matrix can then be ignored in the mean-ratio metric
when using this form of W−1 due to properties of the
Frobenius norm and determinant. Hence, µ(A(i)W−1)
is equivalent to µ(A(i)R−1). The latter definition is
computationally advantageous, because the function,
gradient, and Hessian matrices take fewer operations
to compute than ifW−1 were stored as a general dense
matrix because the fact that R−1 is an upper triangu-
lar matrix can be exploited.

One of the main computational tasks associated with
the inexact Newton method is obtaining an efficient
evaluation for the Hessian of the global objective func-
tion. This computation requires obtaining the Hessian
for each individual element function. The code for
calculating the gradient of the element function uses
the reverse mode of differentiation [16] on the element
quality metric. The Hessian calculation uses the for-
ward mode of differentiation on the gradient evalua-
tion and matrix-matrix products for efficiency. For the
general case with an upper triangular matrix, it takes
750 floating-point operations to compute the function,
gradient, and Hessian for each element. The inexact
Newton method specialized for an equilateral reference
element uses 576 floating-point operations per element
in the function, gradient and Hessian evaluations. The
other significant computational task is performing the
matrix-vector products required by the conjugate gra-
dient method to compute the search direction.

Good locality of reference in the Hessian evaluation
and matrix-vector products is obtained by reordering
the vertices and elements in the initial mesh by apply-
ing a reverse breadth-first search. The ordering starts
by selecting the (boundary) vertex farthest from the
origin. A breadth-first search of the vertices in the

mesh is then performed and the order they are vis-
ited is tracked. We then reverse the order in which
the vertices were visited to obtain the reordering for
the problem. Once the vertices are reordered, the ele-
ments are then reordered according to when they are
visited by the Hessian evaluation. This reordering is
used by both the block coordinate descent and inexact
Newton methods.

Each iteration of the block coordinate descent method
consists of computing the gradient and Hessian for
each subproblem, obtaining the direction, and com-
puting each improving point. The gradient and Hes-
sian evaluation is the most expensive operation. To
minimize the number of floating-point operations per-
formed per iteration of the block coordinate descent
method, separate evaluation routines for taking the
gradient and Hessian with respect to each vertex in
the inverse mean-ratio metric are used because we only
need to compute a small portion of the gradient and
Hessian. An iteration of the block coordinate descent
method calls each of the four routines once per element
because we need to get gradient and Hessian informa-
tion for each vertex in the mesh. Using the original
function, gradient, and Hessian calculation from the
inexact Newton algorithm would cost 3000 floating-
point operations per element in the general case with
an upper triangular weight matrix, while an imple-
mentation using four separate routines in which only
the unnecessary computations are removed from the
original calculation consumes 1447 floating-point op-
erations per element.

More improvement can be made to these local rou-
tines by applying an even permutation to the input
data (coordinates for both the trial and reference el-
ements) to put the desired coordinate in the last po-
sition, computing the QR factorization for each per-
muted reference element, and then taking the gradi-
ent and Hessian with respect to the last vertex of this
equivalent function definition. When all these opera-
tions are performed offline for the given weight matri-
ces and the permuted weight matrices are stored, the
cost is reduced to 520 floating-point operations per el-
ement in the general case with an upper triangular
weight matrix. This strategy is memory efficient only
when the number of weight matrices is small. If the
number of weight matrices is large (there is a differ-
ent weight matrix for each element, for example) and
memory consumption is a concern, then the permuta-
tion and factorization can be performed by the code as
needed without explicitly storing the permuted weight
matrices. This change leads to a cost of approximately
900 floating-point operations per element, depending
on the technique used to compute the QR factoriza-
tion. The savings attributed to using this approach
are significant when compared to using a single Hes-
sian evaluation routine; the cost per iteration of an



implementation using the original calculation is over
three times that of an efficient implementation.

The local routines can be further refined when using
an equilateral reference element to reduce operation
counts. In particular, for the equilateral weight ma-
trix, R−1 is the same for each of the permuted refer-
ence elements. The block coordinate descent method
specialized for an equilateral reference element uses
480 floating-point operations per element in the func-
tion, gradient and Hessian evaluations.

In addition to computational effort, we are also in-
terested in evaluating the memory footprint of each
method as the problem size increases. Our imple-
mentation of the block coordinate descent method for
tetrahedral elements has a steady-state memory re-
quirement of approximately 23|V| + 12|E| integer val-
ues. The formula for memory usage of the inexact
Newton method is more complicated due to the stor-
age requirements for the Hessian matrix and is given
by 64|V|+18|E|+19N integer values, where N denotes
the number of off-diagonal blocks in the Hessian ma-
trix. On the tetrahedral meshes tested, the number of
off-diagonal blocks is bounded above by the number of
elements in the mesh. Therefore, the memory usage is
approximately 64|V| + 37|E| integer values for the in-
exact Newton method, about three times the storage
required for the block coordinate descent method.

Conclusion 1: Analytic Comparison of Time

per Iteration, Memory Requirements, and

Coding Effort. Our block coordinate descent method

for solving the mesh improvement problem with the in-

verse mean-ratio metric specialized to the equilateral

reference element case is faster per iteration and con-

sumes less memory than the inexact Newton method

but has a slow asymptotic convergence rate. This
conclusion can be drawn by looking at the num-
ber of floating-point operations performed per ele-
ment by the function, gradient, and Hessian evalua-
tion routines for each method, 480 for the block coor-
dinate descent method and 576 for the inexact New-
ton method. Furthermore, the inexact Newton method

requires a higher initial coding investment. In partic-
ular, routines to assemble the global Hessian matrix
from the element Hessian matrices, construct the pre-
conditioner, and perform the preconditioned conjugate
gradient method to compute the direction need to be
written. Once this infrastructure has been built, how-
ever, changing to a new metric requires only an effi-
cient computation of the gradient and Hessian for the
entire element. To change the metric for the block co-
ordinate descent method, four different routines need
to be implemented, one for computing the gradient
and Hessian with respect to each vertex of the ele-
ment. Moreover, if the new metric cannot exploit the
permutation and QR factorization scheme, then a dif-

Z

Y

X

Figure 1: Sample meshes on the duct and clipped cube
geometries.

ferent technique must be devised to obtain an efficient
block coordinate descent method.

Note that if a different weight matrix were associated
with each element, then the inexact Newton method
could be faster per iteration if the permuted weight
matrices are not stored (approximately 900 floating-
point operations would be needed in the function,
gradient, and Hessian evaluations for the block co-
ordinate descent method versus 576 for the inexact
Newton method) or could consume less memory if
the permuted matrices are stored (23|V| + 60|E| in-
tegers for the block coordinate descent method versus
64|V|+49|E| integers for the inexact Newton method).

4. NUMERICAL EXPERIMENTS

In this section, we report the results of numerical tests
designed to determine when the block coordinate de-
scent and inexact Newton techniques are preferred us-
ing a subset of the criteria given in Section 1. The
implementations specialized for an equilateral refer-
ence element are used for all the numerical tests. We
solve the optimization problem (2) on a series of tetra-
hedral meshes generated with the CUBIT [17] and
GRUMMP [18] mesh generation packages. We con-
sider two different computational domains, duct and
clipped cube, and show sample meshes on these geome-
tries in Figure 1. In this paper, we study the effects of
three different problem parameters on the time taken
to reach x∗: problem size, element heterogeneity, and
initial mesh configuration. For each parameter stud-
ied, we create a suite of test meshes in which we isolate
the parameter of interest and allow it to vary, while
simultaneously holding the other parameters as con-
stant as possible.

Because the objective function used for these problems
is not convex, it is likely that different local solutions
to the optimization problem exist. It is therefore pos-
sible that the solutions would not be the same for the
block coordinate descent and inexact Newton meth-



Table 1: Initial mesh characteristics for increasing problem size on the duct geometry.
Inverse Mean Ratio Element Volume

Mesh |V| |E| avg median σn max avg median σn
Duct20 1067 4104 1.208 1.176 .115 2.2 1167 1176 .285
Duct15 2139 9000 1.210 1.179 .116 2.1 532 519 .304
Duct12 4199 19222 1.209 1.182 .111 2.1 249 237 .327
Duct10 7297 35045 1.120 1.170 .106 2.2 136 128 .310
Duct8 13193 65574 1.19 1.162 .105 2.4 73 68 .320
DuctBig 177887 965759 1.18 1.160 .109 4.9 4.1 2.91 .587

ods. To ensure that this is not affecting our study, we
computed the difference between corresponding vertex
locations computed by the two solution techniques. If
the difference between two vertices was less than 1% of
the average element edge length of the mesh, we con-
sidered them to be in the same location. In all cases,
the maximum difference between vertex locations com-
puted by the inexact Newton and block coordinate de-
scent method solutions was well within our tolerance;
a typical value was .0001% or less. Thus the two tech-
niques are converging to the same solution. To study
the effect of initial mesh configuration, we perturb the
vertices in different ways from the optimal mesh. For
these cases, we also compared the final solutions to the
initial optimal mesh from which the vertices were per-
turbed. Again, the differences are well within our 1%
tolerance level with the maximum percent difference
being .21%. Thus the inexact Newton and block coor-
dinate descent methods methods are finding the same
optimal solution that is found in the unperturbed case,
even when the perturbation is large.

In each of the following subsections, we give the prob-
lem characteristics of the test suite in terms of the
number of vertices and elements, initial mesh quality
as evaluated by the inverse mean-ratio metric, and spe-
cific parameter values used such as the perturbation of
the optimal mesh. We then provide performance re-
sults for both the inexact Newton and block coordinate
descent methods. For the inexact Newton method, the
maximum number of solver iterations is 500, and the
maximum number of conjugate gradient subiterations
is 100, while for the block coordinate descent method,
the maximum number of iterations (sweeps over the
free vertices) is 1000. In both cases, the solution is
considered to be optimal when the two-norm of the
gradient of the global objective function is less than
1.0 · 10−6. All experiments were run on a dedicated
1.6 GHz Linux workstation running Red Hat Enter-
prise 3.

4.1 Increasing Problem Size

To test the effect of increasing the problem size, we use
CUBIT to generate tetrahedral meshes with uniform

quality and element size but with an increasing num-
ber of vertices for the duct geometry shown in Figure 1.
In Table 1, we give the number of vertices and ele-
ments, along with the average, median, and standard
deviation normalized by the average value, denoted
σn, for the inverse mean-ratio metric and element vol-
ume. One can see that within each mesh, we achieve
roughly uniform element size and shape quality distri-
butions while increasing the problem size from 4104
elements to 965759 elements. In addition, the element
quality characteristics are similar across this suite of
initial meshes as the problem size increases. In par-
ticular, the initial mesh quality is quite good, with an
average inverse mean-ratio value of 1.2 (the optimal is
one) and a maximum value ranging from 2.2 to 5.

In Table 2, we give the number of iterations, I, and
time, T100, required to achieve the optimal solution.
In all cases, both I and T100 are significantly smaller
for the inexact Newton solver because of its superior
asymptotic convergence rate. As the problem size
increases, the disparity in time to solution increases
monotonically from a factor of 6.4 to a factor of 40.

However, a highly accurate solution is often not re-
quired in mesh smoothing applications. Therefore, the
time required to reach a partially improved mesh is
also of interest. As a particular example, we include
the time required to achieve 50% of the optimal solu-
tion as defined by the global objective function value,
T50, in Table 2. For every mesh in this test suite, the
block coordinate descent method takes less time than

Table 2: Number of iterations, total time, and time to
achieve a 50% optimal solution as problem size increases.

Newton Coordinate Descent
|V| I T100 T50 I T100 T50

1067 4 .05 .015 33 .32 .005
2139 5 .13 .025 46 1.1 .011
4199 5 .34 .056 74 4.2 .037
7297 5 .69 .106 105 11.6 .081
13193 5 1.4 .213 146 31.0 .152
177887 8 44.3 4.52 548 1738 2.47
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Figure 2: Objective function value and gradient norm as
a function of time for the Duct15 mesh.

the inexact Newton method to reach this suboptimal
solution, typically by a factor of 1.5.

To examine this behavior more closely, we recorded
the objective function and gradient values at each it-
eration. A typical time history is shown for the Duct15
mesh in Figure 2. Because the inexact Newton method
converges to the optimal solution much more quickly
than the block coordinate descent method, we show
the complete time history of the inexact Newton solver
and only the corresponding portion of the block co-
ordinate descent method. Because the initial mesh
quality is very good, both methods make significant
progress toward the optimal solution in their first few
iterations. However, significant setup overhead is as-
sociated with computing the sparsity pattern of the
Hessian matrix for the inexact Newton method be-
cause the edges in the mesh need to be sorted. During
this setup time, the block coordinate descent method
completes one iteration through the mesh, which is
sufficient to achieve 46% of optimality. Clearly, there
is a point in time at which the inexact Newton solu-
tion is closer to optimal than the block coordinate de-
scent solution. We call this point the crossover point,
and it is highlighted with an asterisk in Figure 2. In
the Duct15 case, the mesh is 96% optimized when the
crossover point occurs.

Based on these results, it is natural to ask the ques-
tions: “What is the percent improvement achieved at
the crossover point?” and “What is the time required
by each method to achieve a certain level of optimal-
ity?” as the problem size increases. To answer these
questions, for each method we plot the percent im-
provement obtained, the number of block coordinate
descent iterations, and the percentage of time spent in
setup by each solver at the crossover point as a func-
tion of an increasing problem size in the top graph in
Figure 3. In all cases, the mesh is nearly optimal at
the crossover point even though the number of block
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Figure 3: Various quantities of interest at the crossover
point as the problem size increases (top) and the ratio
of the times required by the inexact Newton and block
coordinate descent solvers to achieve certain levels of
improvement (bottom).

coordinate descent iterations completed is quite small,
typically less than five. As the problem size increases,
the setup time for the inexact Newton solver is greater
than 25% of the time to reach the crossover point and
typically less than 10% for the block coordinate de-
scent method. In this case, the setup time is the pri-
mary factor in determining which solver reaches sub-
optimal solutions faster.

In the bottom graph in Figure 3, we show the ra-
tio of the time required by the inexact Newton solver
and block coordinate descent solver to achieve certain
levels of improvement. Each line in the graph repre-
sents a different problem size, and the flat line at one
represents the point at which the preferred method
changes. Data above this line indicates that the block
coordinate descent method is faster; data below in-
dicates the opposite. In this case, we see that the
smaller problem sizes are more affected by the setup
time differences, but as the problem size exceeds 20000
elements, the methods behave similarly. In particu-
lar, it takes roughly twice as long to compute sub-
optimal meshes using the inexact Newton approach



Table 3: Initial mesh characteristics for heterogeneous element size distributions.

Inverse Mean Ratio Element Volume
Mesh |V| |E| avg median σn max avg median σn max/min

Hetero1 10318 54132 1.271 1.171 .330 17.1 1.84·10−5 1.10·10−5 1.11 5.5·103

Hetero2 9883 56184 1.274 1.172 .371 30.2 1.77·10−5 6.04·10−6 1.46 2.3·105

Hetero3 10926 58610 1.275 1.173 .413 58.6 1.70·10−5 3.89·10−7 1.74 7.2·107

Hetero4 11057 59985 1.272 1.173 .322 16.1 1.66·10−5 1.59·10−6 2.08 4.2·106

for a wide range of desired improvement percentages.
As the improvement percentage increases, the inexact
Newton method becomes more competitive, but only
when nearly optimal meshes are desired does the inex-
act Newton method outperform the block coordinate
descent method.

Conclusion 2: Performance Comparison for

Optimization of Homogeneous Tetrahedral

Meshes. The results of the tests in this subsection
show that the block coordinate descent method typi-

cally outperforms the inexact Newton method when a

suboptimal mesh is acceptable. This was true for a wide
range of problem sizes. We can explain the outperfor-
mance by noting that the inexact Newton method has
high setup costs associated with computing the spar-
sity pattern of the Hessian matrix, which cannot be
amortized over a large number of iterations because
suboptimal meshes require relatively few iterations. If
an optimal mesh is required, then the inexact Newton

method outperforms block coordinate descent. The test
problems used in this study were generated using the
GRUMMP and Cubit tetrahedral meshing algorithms.
Because these packages create, for the most part, rea-
sonably well-shaped elements, the initial meshes used
in these tests are not too far from optimal, as mea-
sured by the mean ratio shape-quality metric. There-
fore, when optimizing homogeneous, reasonably high-

quality tetrahedral meshes to further improve shape

quality, the block coordinate descent method is prefer-

able because a few iterations creates a near-optimal

mesh without the start-up costs of the inexact New-

ton method. The reader is cautioned that this conclu-
sion may not extend to other important applications of
mesh optimization using the mean ratio, particularly
if the initial mesh is far from optimal.

4.2 Element Size Heterogeneity

Our second test suite was generated using GRUMMP
with the aim of testing the effect of element size (vol-
ume) heterogeneity on the two algorithms. A sim-
ple geometry consisting of the unit cube with a small
tetrahedral volume clipped from one corner was used
to create graded meshes with grid points clustered
around that corner. GRUMMP parameters that deter-

mined the smallest element size and gradation of the
mesh were manipulated to create a series of meshes
with roughly the same number of vertices and ele-
ment quality distribution but with different ranges of
element sizes. We note that in generating the initial
meshes for these test cases, we did not take advantage
of GRUMMP’s mesh quality improvement tools.

In Table 3, we give the statistics for these meshes in
terms of numbers of vertices, elements, shape qual-
ity distribution, and element volume. The numbers
of vertices, although not identical, are all within 6%
of 10470. The normalized standard deviation of the
element volumes and the ratio of the maximum-sized
element to the minimum-sized element show that the
element size varies dramatically within a given mesh.
The shape quality distributions across the meshes in
the test suite are similar; the average shape quality
is nearly the same as in the uniform element size test
cases, but the normalized standard deviation is higher,
indicating a wider range of individual element quali-
ties. In particular, the maximum mean ratio of the
heterogeneous element size meshes exceeds a value of
15 in all cases, whereas it is approximately 2.5 in the
uniform element size test suite.

In Table 4, we give the number of iterations and the
times to reach the optimal and 50% improved solu-
tions as the element heterogeneity, measured by the
ratio of maximum element volume to minimum ele-
ment volume, increases. As with the uniform element
distribution test suite, the inexact Newton method is
significantly faster than the block coordinate descent

Table 4: Number of iterations, total time, and time to
achieve 50% optimal solution as the element heterogene-
ity increases.

Newton Coordinate Descent
Mesh I T100 T50 I T100 T50

Hetero1 16 4.24 .386 674 122 .128
Hetero2 13 3.53 .345 708 132 .192
Hetero3 21 5.41 .432 505 93 .207
Hetero4 15 4.22 .641 554 109 .168
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Figure 4: Objective function value and gradient norm as
a function of time for the Hetero4 mesh.

method when the optimal solution is desired. If a 50%
improved solution is desired, however, the block coor-
dinate descent method outperforms the inexact New-
ton method by a factor that ranges from 1.5 to 4, com-
pared to the factor of 1.5 for the uniform distribution
case of the previous subsection.

We examine the convergence history of one particular
case, Hetero4, to obtain insight into this result. Fig-
ure 4 shows the value of the objective function and
gradient as a function of time for both the inexact
Newton and block coordinate descent methods. The
block coordinate descent method maintains a steep ini-
tial decrease in the objective function value, while the
inexact Newton method has more difficulty. In partic-
ular, many of the initial iterations of the inexact New-
ton method encounter directions of negative curvature
because the global objective function is not convex at
those iterates. Typically, a small step is taken when
such directions are found by the conjugate gradient
method. Thus, the superior asymptotic convergence
rates of the inexact Newton method are not evident
until approximately two seconds have elapsed.

Because the inexact Newton method has difficulty
with these problems in the initial iterations, the block
coordinate descent method has the time to take sev-
eral iterations, and the mesh in nearly 100% improved
at the crossover point in all cases. As before, the inex-
act Newton method uses twice as much time in setup
as does the block coordinate descent method. Unlike
the uniform element size test suite, however, this is
not the dominant factor in determining the crossover
time because both methods use less than 5% of their
total time in setup.

For this test suite, in Figure 5 we show the ratio of the
time required by the inexact Newton method and the
time required by the block coordinate descent method
to reach a number of different levels of improvement.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

% Improvement

N
ew

to
n 

tim
e/

C
D

 ti
m

e

Newton time/CD time vs. % Improvement
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hetero1:  norm vol dev = 1.11
hetero2:  norm vol dev = 1.46
hetero4:  norm vol dev = 1.74
hetero3:  norm vol dev = 2.08

Figure 5: Ratio of the inexact Newton and block coor-
dinate descent times for various levels of improvement in
the objective function.

For comparison, we also show the curves for the two
uniform element size test cases, Duct10 and Duct8,
which tightly bracket the number of elements in the
clipped cube meshes. The normalized standard devia-
tion values for the Duct 10 and Duct8 meshes are .310
and .320, respectively. In almost all cases, the block
coordinate descent method is two to three times faster
than the inexact Newton method to reach a desired
level of improvement. In fact, in several cases, the
ratio of the times required to achieve higher levels of
improvement actually increases rather than decreases
as a result of the steep initial convergence of the block
coordinate descent method. Furthermore, this method
is more competitive than the inexact Newton method
on the heterogeneous element size meshes than on the
uniformly sized element meshes.

Conclusion 3: Performance Comparison for

Optimization of Heterogeneous Tetrahedral

Meshes. As element size heterogeneity increases,
mesh quality as defined by the mean ratio metric de-
creases for these tests. Thus, the initial meshes used
in this part of the study are further from optimal than
were the initial meshes in the part of the study leading
to Conclusion 2. Even so, the inexact Newton method

is still the preferred method if the optimal solution is

desired. When suboptimal meshes are acceptable, the

block coordinate descent method outperforms the inex-

act Newton method. In contrast to Conclusion 2 how-
ever, where high start up costs are the primary factor,
this conclusion is primarily due to the directions of
negative curvature encountered by the inexact New-
ton method. Negative curvature typically leads to the
linesearch taking a small step that does not improve
the global objective function very much. In such cases,
the global objective function is evaluated many times
during the linesearch, leading to a significant increase
in the time required to complete the iteration. The



negative curvature is attributed to the lack of convex-
ity in the objective function.

4.3 Initial Mesh Configuration

The final mesh test suite was designed to investigate
the effect of the degree and manner in which the initial
mesh differs from the optimal mesh. To address this
issue, our approach was to apply systematic or random
perturbations of the optimal positions of the interior
mesh vertices. We started with the optimized DuctBig
mesh and applied three different perturbation schemes
that involved random, translational, and oscillatory
movement of the mesh vertices. In all three cases, we
consider perturbations applied to all of the vertices
and to randomly chosen vertex subsets that contained
1%, 10%, and 25% of the total number of vertices. The
formulas for the perturbations are as follows:

Random: xv = xv +αr, where r is a vector containing
random numbers generated using the function rand

and α is a multiplicative factor controlling the degree
of perturbation. For this test suite, we chose α= .001,
.005, .01, and .05.

Translational: xv = xv+αs, where s is a direction vec-
tor giving the coordinates to be shifted and α is again
a multiplicative factor controlling the degree of pertur-
bation. In this case we considered a “right” shift (R)
with s = [1 0 0]T and a “northeast” shift (NE) with
s = [1 1 0]T and chose α = .1, .2, and .3. In the case
of the NE shift, we also considered a series of meshes
with large values of 2√

2
α = 1, 2.5, 5, 7.5, 10, 12.5, and

15 which resulted in very large perturbations of the
optimal mesh. Results for the latter perturbation are
discussed in Section 4.3.2, while results for all other
perturbations can be found in Section 4.3.1.

Oscillatory: xv = xv +αsin(ωxv), where α and ω con-
trol the amplitude and frequency of the perturbation,
respectively, and sine is performed on each component
of xv. For this test suite, we considered three different
frequencies ω = .01, .05, and .1, and for each frequency,
two different amplitudes α =.01 and .05.

These perturbations can be characterized in terms of
both amplitude α and wavelength λ. The random
perturbation corresponds to a zero-wavelength pertur-
bation and the translational to an infinite-wavelength
perturbation. The wavelength of the oscillatory per-
turbation can be computed from the frequency by
λ = 2π

ω
, and for the values of ω used here, λ ranges

from 63 to 628. As a point of comparison the the av-
erage edge length of the mesh which is approximately
3.6.

We considered two series of tests. In the first, we per-
turbed all or some of the vertices by a small amount
to determine the effect of the type of perturbation on

Table 5: Number of iterations and total time to achieve
100% and 50% of the optimal solution as the element
heterogeneity increases.

Newton Coord. Descent
Pert. α I T100 T50 I T100 T50

.001 3 11.8 7.46 325 104 3.90
Rand .005 4 23.6 7.53 387 324 3.84
(λ = 0) .01 4 23.3 7.53 414 427 3.89

.05 4 22.6 7.42 476 664 3.84

Osc. .01 4 22.7 7.56 279 244 5.59
(λ = 63) .05 4 21.2 7.50 338 368 5.63

Osc. .01 4 24.1 7.95 374 353 4.77
(λ = 125) .05 5 22.4 8.02 435 550 4.74

Osc. .01 4 25.4 8.29 415 425 4.75
(λ = 628) .05 4 24.7 8.32 477 655 4.76

Trans .1 5 30.6 8.31 502 789 4.72
(R) .2 7 36.7 8.35 528 904 4.79

(λ =∞) .3 10 47.2 7.42 545 956 8.24

Trans .1 5 31.1 8.32 496 800 4.64
(NE) .2 7 38.1 8.66 522 905 4.66

(λ =∞) .3 11 59.4 13.5 539 962 7.99

the mesh. In the second test suite, we perturbed all of
the vertices a large amount to change the scale of the
perturbation.

4.3.1 Small perturbations

All vertices perturbed. For this test suite, we
perturbed all of the vertices a small amount (the values
of α given above that are less than .5). The resulting
quality characteristics of the meshes as the perturba-
tions increase do not vary significantly, and we do not
include the details. In particular, the average inverse
mean ratio value is approximately 1.13, the ratio of
the standard deviation to the average is approximately
.093, and the maximum inverse mean ratio is approx-
imately 2.21 in all cases.

In Table 5, we give the iterations and time to reach
the 100% and 50% improved solutions for the cases in
which we perturb all of the vertices in the mesh ac-
cording to the formulas and parameters given above.
As with the other test suites, if a highly accurate solu-
tion to the optimization problem is sought, the inex-
act Newton method outperforms the block coordinate
descent method in every case. If the 50% improved so-
lution is sought, the block coordinate descent method
outperforms the inexact Newton method for all the
test cases.

In Figure 6, we examine the ratio of the time re-
quired by the inexact Newton method and the block
coordinate descent method as the desired degree of
optimality increases. In all cases considered, as a
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Figure 6: Ratio of the times required by the inexact Newton and block coordinate descent solvers to achieve certain levels
of improvement for the random (top left), NE translational (top middle), and oscillatory (top two right) perturbations and
for the cases where a subset of vertices are perturbed randomly (bottom two left), NE translational (bottom two middle),
and oscillatory (bottom two right).



more improved solution is sought, the inexact New-
ton method looks increasingly attractive. For the ran-
dom test suite, however (top left), the block coor-
dinate descent method always outperforms it up to
90% improvement. For the translational and oscilla-
tory test suites (top middle and top two right), the
performance of the block coordinate descent method
is not as good. In these cases, the local nature of
the block coordinate descent method can only slowly
eliminate the long-wavelength errors introduced by the
perturbation scheme. In contrast, the inexact New-
ton method has access to global information and is
able to overcome this difficulty. Thus the block co-
ordinate descent method still outperforms the inexact
Newton method for approximate solutions, but at best
the mesh is only 75% optimal at the crossover point.
This degrades to approximately 63% for the oscillatory
case as the degree of perturbation increases. The setup
time is again a contributing factor in determining the
crossover point and requires about 30% of the solu-
tion time for the inexact Newton method compared to
approximately 10% for the block coordinate descent
method.

Some vertices perturbed. To determine whether
the number of vertices that we perturb affects the rel-
ative performance of the two solvers, we give the ra-
tio of the inexact Newton method and block coordi-
nate descent method times to achieve various levels of
improvement (see the bottom two rows of Figure 6)
when a subset of the vertices is perturbed. The per-
centage of vertices that were randomly selected to be
perturbed is 1%, 10%, and 25% or 1779, 17789, and
44472 vertices, respectively. We show results for only
a subset of the cases analyzed; the results for the cases
not shown are qualitatively the same. In all cases, the
inexact Newton method is unable to outperform the
block coordinate descent method when a suboptimal
solution (90% improved or less) is sought. This result
is particularly interesting for the oscillatory and trans-
lational perturbations (bottom two middle and right,
respectively). In these cases, because only a subset
of the vertices were perturbed, the long-wavelength
errors that affected the performance of the block co-
ordinate descent method are no longer evident, and
the block coordinate descent method is again able to
quickly approach the optimal solution.

Conclusion 4: Sensitivity of Optimization

Methods to the Initial Mesh. Three different
types of perturbations (random, translational, and os-
cillatory) from the optimal mesh were used in the test
problems in this subsection to study the sensitivity
of each method to the initial mesh. For all types of

perturbations, wavelengths, and amplitudes, the nu-

merical results show once again that the block coordi-

nate descent method outperforms the inexact Newton

Table 6: Initial mesh characteristics for increasing NE
shift perturbation of the duct geometry.

Inverse Mean Ratio Element Volume
2√
2
α avg σn max max σn

Opt. 1.135 .093 2.21 30.2 .540

1 1.155 .179 2.72 30.2 .546
2.5 1.423 2.25 283 30.2 .593
5 2.062 8.95 1.59 · 104 50.1 .755
7.5 2.550 58.1 1.43 · 105 52.7 .841
10 2.508 13.0 2.02 · 104 57.8 .865
12.5 2.636 69.9 1.80 · 105 65.5 .869
15 2.468 7.75 9.47 · 103 59.8 .869

method if suboptimal solutions to improving the mean

ratio metric are acceptable. This conclusion is due in
part to the high setup costs associated with the inexact
Newton method. That said, as evidenced in Table 5,
long-wavelength perturbations present difficulties for
the block coordinate descent method due to the lack
of access to global information. The inexact Newton

method outperforms block coordinate descent if an op-

timal solution is required.

4.3.2 Large perturbations

For this test suite, we considered large perturbations
of the NE translational type. In Table 6, we give
the initial mesh quality characteristics for the DuctBig
meshes with translational perturbations corresponding
to 2√

2
α = 1, 2.5, 5, 7.5, 10, 12.5, and 15. For com-

parison, we note that the average edge length in the
mesh is 3.6. The value of α corresponds to the max-
imum amount a node was moved in the mesh. Some
nodes may move a smaller distance, determined by an
iterative backtracking procedure, to prevent inverted
elements in the initial mesh. As α increases, the qual-
ity of the initial mesh clearly decreases although that
degradation is not monotonic. The average mean ratio
metric value goes from an average value of 1.14 to over
2.63 with the worst quality element exceeding a mean
ratio metric value of 1.80 · 105. Element volumes vary
similarly.

The solution time required for each method was con-
siderably more than what was needed for smaller per-
turbations. In general, as the perturbation ampli-
tude increased and the mesh quality degraded, the
total time to solution increased. It is interesting to
note that as the perturbation amplitude increased, the
time and number of iterations required by the inexact
Newton method to find an optimal solution also in-
creased, but remained approximately constant for the
block coordinate descent method. Even so, the inex-
act Newton method outperformed the block coordi-



Table 7: Number of iterations and total time to achieve
100% and 50% of the optimal solution as the perturba-
tion increases.

Newton Coordinate Descent
2√
2
α I T100 T50 I T100 T50

1 19 100 26.4 575 1106 19.3
2.5 61 355 28.4 616 1266 35.0
5 68 388 42.2 632 1313 36.5
7.5 83 452 52.7 635 1329 34.1
10 89 503 45.7 635 1347 30.2
12.5 115 644 59.4 635 1339 34.0
15 94 525 48.2 633 1328 26.8

nate descent method for 100% improved solutions by
a factor of 11 (for 2√

2
α = 1) to 2.5 (for 2√

2
α = 15).

In most cases, the block coordinate descent method
was 30% to 80% faster for approximate solutions that
were 50% improved, but in the case of 2√

2
α = 2.5 the

inexact Newton method was faster for both the highly
improved solution and the approximate solution.

The top image in Figure 7 shows the ratio of times
required by the inexact Newton method and block co-
ordinate descent method to achieve certain levels of
improvement. These results are considerably more in-
teresting than the corresponding plots for increasing
problem size and element size heterogeneity shown in
Figures 3 and 5. In particular, in a number of cases
there appear to be several crossover points and if a
very approximate solution is sought (less than 40%
improved), the inexact Newton method is preferred
to the block coordinate descent method. Interestingly
if the desired level of improvement is between 40%
and 90%, the block coordinate descent method is pre-
ferred. This behavior is very unlike what was seen
in the earlier test cases. To help explain this more
clearly, we include the time history of the objective
function value and gradient norm for the perturbation
2√
2
α = 1 in the bottom two images of Figure 7. The

block coordinate descent method is unable to make
early progress toward the optimal solution because it
does not have access to global information. The in-
exact Newton method is able to overtake it although
its progress is sporadic. After approximately 20 it-
erations, the block coordinate descent method begins
to make rapid progress and significantly improves the
mesh in a few iterations, overtaking the inexact New-
ton method. As the mesh gets closer to the optimal
solution, the quadratic convergence rates of the New-
ton method allow it to reach the optimal solution more
quickly than the block coordinate descent method.

Conclusion 5: Sensitivity of Optimization

Methods to Large Perturbations. Large ampli-
tude perturbations from the optimal mesh result in
significantly longer optimization times for both the

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

% Improvement

N
ew

to
n 

tim
e/

C
D

 ti
m

e

Newton time/CD time vs. % Improvement

NE 0
NE 0.2801
NE 0.7003
NE 1.4006
NE 2.1008
NE 2.8011
NE 3.5014
NE 4.2017

0 20 40 60 80 100 120

0.135

0.14

0.145

0.15

0.155

time (s)

O
bj

ec
tiv

e 
fu

nc
tio

n

Objective function vs. time

Newton Setup Complete at t = 3.2  s

(CD Solution is 0.35148% improved)

Crossover at t = 4.2482 s

(Both solutions are 0.55847% improved)

Newton
CD

0 20 40 60 80 100 120

10
−6

10
−4

10
−2

10
0

10
2

10
4

time (s)

G
ra

di
en

t

Gradient vs. time

Newton
CD

Figure 7: The ratio of the times required by the inexact
Newton and block coordinate descent solvers to achieve
certain levels of improvement as the perturbation size
increases. Note that the numbers in the key correspond
to the maximal actual perturbation scaled by the average
element length.



block coordinate descent and inexact Newton meth-
ods. More importantly, unlike many of the test cases

discussed earlier, the tests in this subsection identi-

fied situations for which the inexact Newton method

outperforms the block coordinate descent method, even

when suboptimal solutions are acceptable.

5. FUTURE WORK

The numerical results show that the block coordinate
descent method is often best for making fast improve-
ments in the shape quality of tetrahedral meshes with
an equilateral reference element. The inexact New-
ton method is best when a very accurate solution to
the optimization problem is necessary. We note that a
50% optimization level may be somewhat misleading
in that it does not indicate the degree of the accuracy
in the solution. For most of the duct meshes, the iter-
ate at a 50% optimization level has four or five digits
of accuracy in the objective function value. If the ini-
tial quality of the mesh is very poor, however, then
the iterate at a 50% optimization level may not have
any digits of accuracy in the objective function value.
Alternative definitions of ‘solution accuracy’ will be
explored in future work.

This study was limited to ideal shape improvement
of tetrahedral meshes using an equilateral reference
element; triangular, quadrilateral, and hexahedral
meshes were not included in the study. Preliminary ex-
perience with planar quadrilateral meshes shows that
the crossover point for our two codes generally occurs
earlier, but further study is warranted. In particular,
the efficiency of the block coordinate descent method
is related to the structure of the reference element.
Some of the efficiency in our implementation for equi-
lateral elements is lost when using a different refer-
ence element. The storage required when applying a
fast block coordinate descent method to an anisotropic
mesh in which the reference element is different for
each element is significant. While the storage can be
reduced by applying a permutation and factorization
as needed, the performance of the block coordinate
descent method degrades.

Furthermore, because the global objective function is
not convex, a trust-region method for the inexact New-
ton code may perform better since it can handle direc-
tions of negative curvature more rigorously. A limited-
memory quasi-Newton method may also outperform
the block coordinate descent method when obtaining
an approximate solution in a small amount of time. Ef-
ficient implementations of these methods can be based
on our existing infrastructure developed for the inex-
act Newton and block coordinate descent methods.

In conclusion, there are many factors which can affect
whether or not one should use a block coordinate de-

scent method or an inexact Newton method for mesh
optimization. The present work identifies some of the
potentially important factors and develops a method-
ology for further investigations on this topic. Future
work will consider remaining open questions includ-
ing consideration of other mesh element types, qual-
ity metrics, objective function templates, movement of
nodes along the boundary of the domain, and different
applications of mesh optimization such as r-adaptivity
in which the reference element will not be constant as
it was in this study.
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