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Abstract

In this article we address the model order reduction problem for resistor networks by using methods
from graph theory. We formulate this problem through graph theory concepts, propose algorithms for
solving it, and present the computational results we have obtained for real-world resistor networks. The
results demonstrate that graph-theoretical methods produce networks that contain fewer edges and are
sparser than networks produced by state-of-the-art methods.

Key Words: Circuit simulation, graph algorithms, model order reduction, parasitic extraction, path
resistance, resistor networks, vertex cut.

Résumé

Dans cet article nous nous servons de méthodes de théorie des graphes pour étudier le problème de
la réduction du modèle dans le contexte des réseaux de résistances. Nous formulons le problème grâce
à des concepts de la théorie des graphes, proposons des algorithmes pour le résoudre et présentons les
résultats que nous avons obtenus pour des réseaux concrets. Nos résultats démontrent que des méthodes
de la théorie des graphes permettent de construire des réseaux qui contiennent moins d’arêtes et sont plus
épars que les réseaux produits par les méthodes précédentes.

Mots clés : théorie des graphes, réduction de modèles, réseaux de résistance.
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1 Introduction

Coupling effects between components in VLSI chips play an increasingly important role, and need to be
addressed thoroughly during the design and verification phases. Analysis of these effects is performed by

co-simulating the nonlinear circuits together with the extracted parasitics. Because of the increasing amount

of parasitics, full device-parasitic simulations are too costly and often impossible. Hence reduced models are

sought for the parasitics, which can reproduce the original circuit behavior when re-coupled to the devices.

Parasitic circuits are very large network models containing millions of basic circuit elements: R, RC, or
RLC(k), and also millions of nodes. Recall that R (resp. RC, RLC(k)) stands for resistor (resp. resistor-

capacitor, resistor-inductor-capacitor) network. A special subset of the nodes is the set of terminals, i.e., the

input/output nodes specified by the designer as well as the nodes connecting the parasitics to the nonlinear

devices in the circuit. Parasitic networks corresponding to modern circuits contain millions of nodes and

R/RC/RLC(k) elements, and thousands of terminals. Ideally a reduced order model for the parasitics has
fewer nodes and circuit elements than the original network, but includes the same terminal nodes in order to

guarantee that it is connected to the same devices as the original network.

The analysis is complicated by the presence of many terminals, because it introduces additional struc-

tural and computational challenges during model order reduction (MOR). Existing MOR methods are, in

general, unsuitable for circuits with many terminals since they produce dense reduced models. The circuits
corresponding to these reduced models contain fewer nodes, but more circuit elements (Rs, Cs, Ls), than the

original circuits, and their simulation often takes more time than the simulation of the original circuits. In

addition, if terminal connectivity is affected, additional elements such as current/voltage controlled sources

must be introduced to model the reconnection of reduced parasitics to other devices.

The emerging problem is to develop efficient MOR schemes for large multi-terminal circuits that are
accurate, preserve terminal connectivity, and most importantly, preserve network sparsity. In this article,

we describe methods that achieve these goals by employing graph theoretical algorithms. The work builds

on [1], where a method called reduceR was developed, and on ideas first presented in [2]. In the present

article we exploit the strength of modern graph theory to obtain a much higher degree of reduction, and
more significantly, reduced models that are much sparser than before. Although the problem of achieving a

maximum reduction of a given circuit is likely to be NP-hard and our approach is a heuristic one, the methods

described in the present article achieve tremendous reduction rates even for circuits with tens of thousands

of nodes, and yield an accurate approximation of the input/output behavior of the original circuits.

In this article, we restrict ourselves to resistor networks so as to demonstrate clearly the use of the graph-
theoretical methods. Application to RC networks is possible but requires MOR techniques for differential-

algebraic systems; these techniques must be developed further and combined with the techniques described

in the present article in order to tackle RC networks. The article is structured as follows. Section 2 contains a

review of work related to ours. Section 3 contains background material on the model order reduction problem

for resistor networks. In Section 4 we give a precise formulation of the reduction problem, and in Section 5
we present algorithms for reducing resistor networks. Section 6 contains the results of our computational

experiments, and Section 7 contains our conclusions.

2 Related work

Model order reduction consists of several techniques that reduce a very large system of differential (difference,

differential-algebraic) equations, modeling some physical problem, to a system of much smaller dimension. It
is commonly applied in many areas of applied mathematics. We want to reduce the complexity of the system

and at the same time preserve the input-output behavior of the original system as much as possible. In

particular, the physical characteristics of the reduced system should approximate closely those of the original

system. MOR is widely used for simulating and analyzing dynamical systems, electronic circuits, micro-

and nano-electromechanical systems, and systems arising in computational fluid dynamics. For example,
very large RLC circuits are usually modeled by systems that include millions of equations; if we want to
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simulate their behavior within an acceptable amount of time, we first need to simplify the original system

while preserving the relevant properties.

Existing methods for linear model order reduction can be divided into two groups [3]. The methods in the

first group are based on projection methods, whereas those in the second group are based on the singular value
decomposition (SVD). The SVD-based methods are sometimes called balancing techniques. Methods in the

first group are usually based on Krylov subspace projection methods. An important contribution is found in

Odabasioglu et al. [4], where an algorithm is proposed for generating provably passive reduced-order N -port

models for RLC interconnect circuits. The approach proposed in [4], called PRIMA, is a general method
for obtaining passive reduced-order macromodels for arbitrary RLC circuits. For small- and medium-sized

problems, the truncated balance realization (TBR) technique (see [3,5]) is often employed. Hybrid techniques

that combine some of the features of both groups of methods are studied by Li et al. in [6]. Many of the

algorithms in existence today are based on hybrid techniques. The book by Schilders et al. [7] is currently

the most comprehensive overview of MOR methods both for linear and nonlinear problems.

The applicability of traditional MOR techniques to very large circuits with many terminals is limited

because of computational limitations and sparsity and reconnectivity considerations (mentioned in the In-

troduction). While the multi-terminal problem has been addressed in numerous works (such as [8] and [9]),

it is not clear whether the performance of these methods will remain good as the number of ports increases,

especially when there are thousands of ports. Recent developments in model reduction for very large multi-
terminal R-networks were achieved in Rommes and Schilders [1], who present a method called reduceR that

uses graph-theoretical tools, fill-in minimizing, node reorderings, and node elimination in order to obtain

sparse reduced R-networks. The Sparse implicit projection (SIP) method of Ye et al. [10], designed to build

sparse reduced models for multi-terminal RLC networks, also includes reordering actions followed by the
elimination of unimportant internal nodes; the authors make several important analogies between related

methods based on node elimination (e.g., TICER in [11], and [12]) and moment-matching MOR by projec-

tion (e.g., PRIMA in [4]). Indeed the fundamental projection behind SIP goes back to the PACT methods

of [13] and [14] for reducing multi-terminal RLC networks.

Few researchers have explored graph-theoretical techniques for model order reduction. Graph reduction
techniques are mainly studied in theoretical computer science for analyzing functional languages [15]. In [16],

an algorithm is presented that uses a set of graph reduction rules to identify structural conflicts in process

models for a generic workflow modeling language. Graph reduction techniques for analyzing process models

are studied in [17]. For general background on graph theory we refer the reader to [18–20].

3 Model order reduction of resistive circuits

To understand the electrical properties of a purely resistive circuit (R-network), one takes measurements on

the substrate of that circuit in order to set up Maxwell’s equations. Then those equations are discretized,

and one obtains a version of Kirchhoff’s equations. In abstract terms, the circuit can be viewed as a graph

whose edges correspond to wires and vertices (or nodes) to intersections between wires. Some vertices are

external (i.e., linked to vertices in other circuits) and the others are internal. To each edge corresponds the
resistance of that edge. Therefore we can view a purely resistive circuit as an edge-weighted undirected graph

whose vertices are either white or black (white meaning internal and black external). A tiny example, i.e., a

model of a purely resistive circuit, is displayed in Figure 1.

The example in Figure 2 is more realistic, since it is part of a graph extracted from a real circuit provided

by the company NXP Semiconductors N.V. (see Section 6). Note that the external vertices are represented
by squares and the graph contains many “bottlenecks”, i.e., small subsets of vertices whose removal breaks

the graph into smaller graphs. In graph theory, these bottlenecks are called vertex cuts (see below for a

definition).

As explained in Section 1, simulation of resistive circuits can take an enormous amount of time, and may

indeed be impossible. Thus one would like to replace the original model by a smaller model containing the
same black (external) vertices and having the following property: the path resistance between any two black
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Figure 1: A tiny example

Figure 2: The bicycle

vertices is the same in the smaller model as in the original one. This property guarantees that the two models

have the same physical characteristics. Before explaining how to reduce the original model, we review some
concepts from graph theory (see [20]).

Definition 3.1 An undirected graph G = (U, E) consists of a set U of vertices and a set E of edges, where
an edge e is defined as a pair of (distinct) vertices.

An edge {u, v} in a graph G will be denoted by uv (note that uv is identical to vu). The vertices u and
v are called the ends or endpoints of edge uv.

Definition 3.2 An undirected graph G = (U, E) is said to be complete if its edge set includes every pair of
vertices.

Definition 3.3 Let G be an undirected graph. A path in G is a sequence (u0, u1, u2, . . . , uℓ) of distinct
vertices with ℓ ≥ 1 and such that uiui+1 is an edge for i = 0, 1, . . . , ℓ − 1. We say that G is connected if

there exists a path between any two vertices in G, and disconnected otherwise.

Definition 3.4 Let G = (U, E) be an undirected connected graph. A vertex cut in G is a set of vertices

whose removal disconnects G. If a vertex cut has one element only, we say that this vertex is a cut-vertex.

An edge cut in G is a set of edges whose removal disconnects G. In particular, if X is a nonempty proper

subset of U , the set of edges with one end in X and the other in U\X is an edge cut that will be denoted by
[X,U\X ]. In this case X and U\X are called the shores of the edge cut.

In the graph of Figure 1, {2, 4} and {6} are vertex cuts, 6 is a cut-vertex, and the set {35, 45, 46} is an
edge cut with shores {0, 1, 2, 3, 4} and {5, 6, 7, 8, 9}.

Definition 3.5 Let G = (U, E) be an undirected graph and X a subset of U . Then the subgraph induced by
X is the graph (X,F), where F denotes the set of edges both ends of which belong to X. The edge set F may

also be denoted by E(X).
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Definition 3.6 Let G be an undirected graph. A connected component of G is a maximal induced subgraph

of G that is connected. A connected graph G is said to be 2-connected if it does not contain any cut-vertex.

If G is connected, a 2-connected component of G is defined as a maximal 2-connected subgraph of G.

The 2-connected components of the graph displayed in Fig. 1 are induced by the sets {0, 1, 2, 3, 4, 5, 6}

and {6, 7, 8, 9}, respectively. Note that the 2-connected components of a graph may have vertices in common

but that their edge sets are pairwise disjoint.

We are now ready to discuss Kirchhoff’s equations for a purely resistive circuit. Note that in such a

circuit, the current flows from one end of an edge to the other end. The orientation does not matter since it
can be changed by modifying the sign of the current. In the sequel we choose an orientation for each edge

and “replace” the edge uv by the arc (u, v), in which the current flows from u to v. The graph thus obtained

from G is a directed graph G′. We denote by n the number of vertices of G (or G′) and by m the number of

edges of G (or the number of arcs of G′). The system of Kirchhoff’s equations is

R I − P V = 0, P t I = J,

where R is an m × m diagonal resistance matrix, P the arc-vertex incidence matrix of G (of dimension

m× n), I an m-dimensional vector of currents flowing in the arcs, V an n-dimensional vector of voltages at

the vertices, and J an n-dimensional vector of terminal currents flowing into the interconnection system.

From the above linear system one derives the equation
(

P tR−1P
)

V = J . Let M denote the matrix
P tR−1P . From M one can deduce the resistances between all pairs of vertices. Observe that for u 6= v,

the element of matrix M at the intersection of row u and column v equals −1/ruv, where ruv denotes the

resistance of edge uv. The diagonal elements of M are defined in such a way that the sum of the entries of

M in any row or column equals 0. Thus the definition of M depends only upon the graph G and not on the

orientation chosen for the arcs of G′. Note that M is singular because it has an extra row corresponding to
a ground node; nonetheless the above system has a unique solution.

Assume now that X is a vertex cut consisting of white vertices in the graph G. The removal of X

disconnects the graph G, i.e., the subgraph induced by U\X is disconnected. Assume that one of the

connected components induced by U\X contains some white vertices. Then the union of X and the set of

black vertices in this component is also a vertex cut, which we denote by U2. The set U\U2 can then be
partitioned into U1 (consisting of white vertices only) and U3 (the rest of the graph) such that any edge in

E (U\U2) belongs to E (U1) or E (U3). We now explain how to “eliminate” the vertices in U1. Note that the

so-called Y-∆ transformation is the special case of this elimination procedure where U1 is a singleton and

X = U2 consists of white vertices (for a discussion of the Y-∆ transformation see the chapter by Nick P. van
der Meijs in [7]).

The partition of U into the sets U1, U2, and U3 induces the following decomposition of the matrix P :

















A 0 0

B C 0

0 D 0

0 E F

0 0 G

















,

where A (resp. D, G) is the arc-vertex incidence matrix of the subnetwork induced by U1 (resp. U2, U3),

the submatrix [B,C] is the arc-vertex incidence matrix of the edge cut with shores U1 and U2 ∪ U3, and

the submatrix [E,F ] is the arc-vertex incidence matrix of the edge cut with shores U1 ∪ U2 and U3. This

partition of P in turn induces a partition of J into the vectors J1, J2, and J3, and the following partition of
the matrix M :







AtR−1

1 A+BtR−1

2 B BtR−1

2 C 0

CtR−1
2 B N EtR−1

4 F

0 F tR−1
4 E F tR−1

4 F +GtR−1
5 G






,
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where N is defined as CtR−1
2 C +DtR−1

3 D+EtR−1
4 E. The vector V is similarly partitioned into the vectors

x, y, and z.

We now wish to eliminate from the system
(

P tR−1P
)

V = J the subvector x, which corresponds to a
set containing white vertices only. Using Gaussian elimination we obtain a system whose constraint matrix

(denoted Mreduced) is the following:

(

HtR−1
6 H + EtR−1

4 E EtR−1
4 F

F tR−1

4 E F tR−1

4 F +GtR−1

5 G

)

,

where H is defined in such a way that

−CtR−1

2 BA′BtR−1

2 C + CtR−1

2 C +DtR−1

3 D = HtR−1

6 H

and A′ denotes the inverse of AtR−1

1 A + BtR−1

2 B. Such a matrix H exists. Indeed, one may choose for

H the arc-vertex incidence matrix of any directed graph obtained by assigning orientations to the edges of
the complete graph on U2. The path resistance between two vertices in U2 (within the subgraph induced by

U1∪U2) is given by the corresponding entry of the matrix on the left-hand side of the equation. To complete

the definition of the reduced graph, it suffices to assign the value of the path resistance to the edge linking

these two vertices in the complete graph.

To illustrate the construction of the reduced model, we consider again the weighted graph in Figure 1.
We first reduce it by taking X = {6}, U2 = {0, 2, 3, 4, 6}, U1 = {1, 5}, and U3 = {7, 8, 9}. Then we reduce it

by taking X = {6}, U2 = {6, 7, 9}, U1 = {8}, and U3 = {0, 2, 3, 4}. The final graph is displayed in Figure 3.

Note that the edges 06, 26, and 03 have an infinite resistance and could have been deleted from the graph.

This example shows that it is not always necessary to create a complete graph on U2 when reducing the

original graph. Note that in this case, the number of edges of the reduced graph is smaller than that of the
original graph.
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Figure 3: A reduced graph with the same physical properties as the tiny example

4 Problem statement

From the previous section it is clear that the reduction of the model can be expressed in two equivalent

forms: in terms of graphs or in terms of matrices. The term block will thus be used to denote the set

of vertices U1 ∪ (U2\X) or the submatrix corresponding to this set. The set X is included in the border.
The basic operation of model order reduction is a block reduction. The goal of model order reduction is to

obtain a system that can be solved in less time than the original system, and we use the number of edges

of the underlying graph as a measure of the time required to solve a system. We have chosen this criterion

(the number of edges) because trying to minimize the number of vertices (or nodes) tends to produce dense

matrices, which might make the reduced circuits harder to simulate. In any case, trying to minimize the
number of edges and the number of vertices at the same time raises the question of assigning weights to each

of the criteria. We now present a formal statement of the problem.
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Given an undirected graph G = (U, E) in which every vertex is either black or white, we are looking for

a partition of U of the form {B1, B2, . . . , Bk, B0}, where Bi (for 1 ≤ i ≤ k) is a block and B0 is the border.

The removal of B0 from the graph G “disconnects” G into subgraphs induced by the Bis, i.e., there is no
edge in G between a vertex in Bi and a vertex in Bj for any i 6= j. In what follows Be

i denotes the subset of

black vertices in Bi. Let B0i be defined as

{v ∈ B0 | (∃u ∈ Bi) (uv ∈ E)} .

We process the blocks in increasing order of their indices and define the reduction associated to block Bi

(and denoted by R (Bi)) as

|E (Bi ∪B0i) | − (|Be
i |+ |B0i|) | (|B

e
i |+ |B0i| − 1) |/2 +mi,

where mi is the number of edges with both endpoints in B0i that were included into the border in steps

1, 2, . . . , i − 1. In this expression the second term represents the number of edges in the complete graph on

Be
i ∪B0i, which “replaces” the subgraph induced by Bi ∪B0i.

If all the R (Bi) are nonnegative, the reduction associated to the partition is the sum of the R (Bi). If

R (Bi) is negative for some i, we can decide not to reduce block Bi! Then the reduction associated to block

Bi equals 0. Let P denote the partition {B1, B2, . . . , Bk, B0}. The reduction associated to P is defined as

R (P) =
k
∑

i=1

max {R (Bi) , 0} .

Our problem is thus to find a partition P that maximizes R(P), i.e., minimizes the number of edges of the

reduced graph. Such a partition is called an optimal partition. Once a partition has been found, the following

procedure must be applied to each block Bi (in the order 1, 2, . . . , k): Bi is replaced by the complete graph

on Be
i ∪B0i (i.e., the white vertices are eliminated), and the resistances on the edges of this complete graph

are then computed (using the definition of matrix H given above).

5 Algorithms for model order reduction in the resistive case

The combinatorial problem described in the previous section is probably NP-complete, although we do not

have a formal proof of this fact yet. In this article we present heuristic algorithms based on the search for

small cardinality vertex cuts. Even if there is no guarantee that such vertex cuts are subsets of the border in
an optimal solution, the characteristics of the circuit graphs on which we ran the algorithm led us to think

that we would obtain a good solution if we tried to “isolate” black vertices by finding small cardinality vertex

cuts separating black vertices from other black vertices. Recall that the border must include white vertices

only; thus, the vertex cuts computed by the algorithm must consist of white vertices.

Obviously, if two black vertices are adjacent, they cannot be separated by a vertex cut consisting of

white vertices. Hence we introduce the notion of black region. A black region is a set of vertices inducing

a subgraph in which the black vertices are “close” to one another. The definition of black region depends

upon a parameter, distBlack, which represents the maximum number of consecutive white vertices between
any two black vertices in the region. For instance, when distBlack equals 0, the subgraph induced by a

black region is a maximal connected subgraph consisting of black vertices only. When distBlack equals 1,

the subgraph induced by a black region has the following properties:

• for any two black vertices in the region, there is a path between those two vertices that does not contain

two consecutive white vertices,

• if two black vertices do not belong to the same region, then any path between these two vertices contains

at least two consecutive white vertices.

In the example of Figure 4 (the “toy example”), we assume that distBlack equals 0. Then there are five

black regions: {1, 37, 38, 39, 53, 56, 57}, {17}, {32}, {42}, and {47}.

In Section 3 we introduced the notion of “shore” in the context of edge cuts. In this section we use the

term in the context of vertex cuts.
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Figure 4: A toy example

Definition 5.1 Let G = (U, E) be an undirected graph and X a vertex cut in G. The shores of X are the

vertex sets of the connected components of the subgraph of G induced by U\X.

We also define the border of a subset of vertices in a graph.

Definition 5.2 Let G be an undirected graph and S a subset of vertices of G. The border of S is the set of
vertices u of G that do not belong to S but are adjacent to at least one member of S.

For instance, in the toy example, the shores of the vertex cut {46, 49} are the sets {41, 42, 43, 44, 45} and

V \{41, 42, 43, 44, 45, 46, 49} (where V denotes the vertex set of the graph). The border of the largest black

region is the set {0, 20, 26, 27, 40, 51, 54, 55}.

Before presenting our algorithms, we formalize what we mean by “isolating black vertices” and discuss
briefly the procedure that returns a minimum cardinality vertex cut separating two vertices. We will use the

phrase white vertex cut to denote a vertex cut consisting of white vertices only. We say that a vertex cut

separates vertex u from vertex v if u and v do not belong to the same shore of the vertex cut. Similarly a

vertex cut separates two black regions if those regions are not included in the same shore of the vertex cut.

A procedure for finding a vertex cut (of any color) between two vertices is described in Sections 7.3 and 8.2
of [20]. This procedure reduces the vertex cut problem to an edge cut problem, which in turn is reduced

to a network flow problem in which all the capacities equal 1. To make sure that this procedure returns a

white vertex cut (if there is one), it suffices to assign an infinite capacity to each arc replacing a black vertex

in the directed graph on which the network flow algorithm is applied. Although the procedure described
in [20] returns a vertex cut separating two vertices, it can be modified in a straightforward manner to return

a vertex cut separating two subsets of vertices.

The basic algorithm, given below, starts by computing the connected components of the graph and the

black regions of every component. It then processes each component and tries to “isolate” black regions

within that component. The algorithm uses a FIFO list (i.e., a queue) whose elements are sets of vertices
waiting to be subdivided. Initially the FIFO list contains one set only, the set of all vertices of the current

component (denoted S). The algorithm finds a minimum cardinality white vertex cut containing at most

limitCut vertices and separating the largest black region from the vertex (denoted by v) that is furthest from

it. The reduction corresponding to the shore that contains v (denoted by PieceV ) is the difference between

• the number of edges in the subgraph induced by PieceV and its border, and

• the number of edges in the complete graph on the union of the set of black vertices in PieceV and the

border of PieceV .
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A good vertex cut has been found if the reduction corresponding to PieceV is at least a certain percentage

(percentLimit) of the number of edges of the subgraph induced by PieceV and its border, or if the cardinality

of PieceV is sufficiently large with respect to that of S, i.e., if the product of a parameter called factor and
the cardinality of PieceV is at least the cardinality of S. When a good vertex cut has been found, each of its

shores (not only that containing v) is evaluated. If the shore contains fewer than minNbBlack vertices or its

percentage of black vertices is at least blackLimit or its reduction is large enough (see the above criterion),

then the shore need not be separated into smaller pieces and is considered a block. Otherwise the shore is

appended to the FIFO list.

We mentioned above that a network flow algorithm can be used to find a vertex cut separating two subsets

of vertices. Before calling this algorithm, however, one must check that the subsets are compatible, i.e., there is

no path between the two subsets in which all the internal vertices are black. Our first algorithm is summarized

below and consists of the Main algorithm and the sub-algorithm Separate a component into pieces. The input

to the main algorithm consists of the edges of an undirected graph, along with the resistances of those edges
and the color (white or black) of every vertex.

Main algorithm

1: Compute the connected components
2: Compute the set of black vertices within each connected component

3: Compute the set of black regions within each connected component

4: for each connected component do

5: separate the component into pieces by finding vertex cuts in the component
6: end for

Separate a component into pieces

1: insert the set SInitial of all vertices into the FIFO list Q

2: while Q is not empty do

3: let S be the first set in Q

4: remove S from Q
5: find a black vertex in S belonging to a black region R of maximum cardinality

6: let Source be the intersection of S and R

7: let Targets denote the set of all targets (i.e., S, for the time being)

8: goodV ertexCut ← false

9: while (not goodV ertexCut) and (there are more targets) do
10: let v denote the target furthest from Source

11: if Source and v are compatible then

12: find a minimum cardinality white vertex cut V Cut separating Source from v

13: if cardinality of V Cut ≤ limitCut then
14: PieceV ← shore of V Cut containing v

15: goodV ertexcut ← (the reduction of PieceV is large enough) or (factor ∗ |PieceV | ≥ |S|)

16: end if

17: end if

18: remove v from Targets
19: end while

20: if goodV ertexCut then

21: for each shore T determined by V Cut do

22: if there is no need to decompose T then

23: create a block corresponding to T

24: else

25: append T to the FIFO list Q

26: end if

27: end for

28: else

29: create a block corresponding to S
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30: end if

31: end while

The main algorithm produces a partition of the vertex set of the graph into blocks and a border, along

with the information that a given block should be reduced (or not). In a block that cannot be reduced, one

can nonetheless try to apply the Y-∆ transformation. Actually the circuit graphs we use in our tests have

many vertices of degree three (see the next section). Thus the repeated application of the Y-∆ transformation
may result in a substantial reduction in the number of vertices (and possibly the number of edges) of a block

that cannot be reduced otherwise. Indeed it is even possible to apply a sequence of Y-∆ transformations to a

block whose reduction is positive and thus obtain a “better” reduced subgraph. Therefore, after executing the

main algorithm, we can examine every block in order to find out which reduction is the best one: the “global

reduction” or a sequence of Y-∆ transformations. Of course we choose the best reduction for each block, and if
the graph obtained still contains more edges than the complete graph on the set of black vertices, we replace

it by this complete graph. We will call basic algorithm the main algorithm followed by the improvement

phase comparing the reduction obtained by the main algorithm with the repeated application of the Y-∆

transformation.

We now describe the steps of the basic algorithm on the toy example pictured in Figure 4. First the
algorithm tries to separate the largest black region (the set {1, 37, 38, 39, 53, 56, 57}, in this case) from the

rest of the graph. In order to do this, it computes a minimum cardinality white vertex cut separating the

region {1, 37, 38, 39, 53, 56, 57} from the vertex that is furthest from this region (i.e., vertex 7). The vertex

cut returned by the algorithm is {20, 27, 40} and its shores (V1 and V2) are evaluated. Let V1 denote the
shore containing the largest black region (i.e., the set {0, 1, 37, 38, 39, 41..57}, where 41..57 denotes the set of

all vertices comprised between 41 and 57) and V2 the shore including vertex 7 (i.e., V \(V1 ∪ {20, 27, 40})).

Replacing the subgraph induced by V2 ∪{20, 27, 40} by the complete graph on {17, 32, 20, 27, 40} reduces the

number of edges by more than 75% (we assume that percentLimit equals 75.0). Thus V2 is considered a

block of the decomposition and will not be appended to the FIFO list.

On the other hand V1 cannot be reduced in the same way and is appended to the FIFO list. Again the

algorithm computes a minimum cardinality white vertex cut separating the largest black region (within V1)

from the vertex that is furthest from this region within V1 (i.e., vertex 42). The vertex cut returned by

the algorithm is {46, 49} and its shores are V4 = {41..45} and V3 = V1\(V4 ∪ {46, 49}). Since V4 contains

only one black vertex and we have set minNbBlack to 2, it will not be decomposed and is not appended to
the FIFO list. The shore V3 will not be decomposed either because its proportion of black vertices is too

high (blackLimit has been set to 40.0). Hence when the main algorithm terminates, the border is the set

{20, 27, 40, 46, 49} and the blocks are the three sets V2, V4, and V3. Each of V2 and V4 can be reduced, that

is, replaced by the complete graph on the union of its border and its set of black vertices.

The set V3 cannot be reduced but we can apply the Y-∆ transformation to vertex 52 and its neighbors.
Therefore the singleton {52} becomes a block and its neighbors 48 and 51 become border nodes (40 is also

a neighbor of 52 but was already a border node). Because of this transformation all the neighbors of 47 are

border nodes, which means that the singleton {47} is now also a block. Thus at the end of the improvement

phase, the border (denoted by B0 in Section 4) is the set {20, 27, 40, 46, 48, 49, 51}, while the remaining
vertices are partitioned into the following blocks: {0, 1, 26, 37, 38, 39, 50, 53..57}, {47}, {52}, {41..45}, and

{2..19, 21..25, 28..36}. The first and second blocks will not be reduced while the third, fourth, and fifth blocks

will be. The resulting graph is pictured in Figure 5.

The basic algorithm is “greedy” in the sense that it chooses a good vertex cut as soon as it has found

one. In that case the evaluation of the vertex cut relies on one of its shores only (the shore containing the
target v). In theory, to find a “good” vertex cut, the basic algorithm can take time proportional to the

product of the number of nodes and the total number of edges (note that finding a vertex cut whose size is

bounded a priori takes time linear in the number of edges). The graphs on which we conducted experiments

(see Section 6) are sparse, so that their number of edges is approximately 1.5 times their number of vertices.

Therefore in pratice, the basic algorithm does not consume much time, especially in the case of networks
that contain several small cardinality vertex cuts.
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Figure 5: The reduced graph corresponding to the toy example

A procedure consuming more time (the alternate algorithm) computes a minimum cardinality vertex cut
separating two given black regions (for all possible pairs of regions) and separates the current piece along

the vertex cut affording the maximum reduction. To compute the latter, the alternate algorithm takes into

account the reductions corresponding to all the shores of the vertex cut. In the case of our toy example, one

has to compute 10 vertex cuts, one for each pair of black regions. For the toy example, this computation will
still lead the algorithm to choose the vertex cut {20, 27, 40} and the final partition of the vertex set will be

the same as that found by the basic algorithm. For larger examples, however, the alternate algorithm may

produce a better decomposition than the basic algorithm.

The basic algorithm can be modified in another way. In the above pseudocode, the FIFO list contains

one set only (the set of all vertices) before the execution of the outer while loop. One can also compute the
2-connected components of the subgraph induced by the current set using a well-known linear time algorithm

(see [20]). Then one can include into the FIFO list the 2-connected components that are separated from

the rest of the graph by white cut-vertices. If a 2-connected component is separated from a neighboring

component by a black cut-vertex, it is merged with its neighbor. This process is repeated until one obtains a

union of 2-connected components that is separated from the rest of the graph by white vertices. This union
is then appended to the FIFO list.

In the next section we report on experiments with four algorithmic variants:

1. the computation of 2-connected components followed by the basic algorithm,

2. the basic algorithm without pre-computation of 2-connected components (see the above pseudocode),

3. the computation of 2-connected components followed by the alternate algorithm, and

4. the alternate algorithm without pre-computation of the 2-connected components.

6 Experiments

To carry out our tests we used three networks supplied by the company NXP Semiconductors N.V. (see
www.nxp.com). Actually each of these networks has many connected components. Network A (resp. B, C)

has 14 (resp. 323, 101) components. The sizes of the components vary a lot, but generally speaking, one can

make the following observations about them:

• the components are sparse, i.e., the average degree of a vertex is around three, and they actually contain

many vertices of degree three,

• many of them contain grid-like structures; and

• almost all of them contain many small cardinality vertex cuts.
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These characteristics of the components, especially the third one, led us to think that an algorithm based on

the computation of vertex cuts would produce good reductions of the components. One of the components

of Network A is depicted in Figure 2 (see Section 3).

Our intention was to compare the four variants mentioned at the end of the previous section, as well as
a previously published algorithm (see the work of Lenaers [21], which is based on the article of Zečević and

Šiljak [22]). We set the parameters of the algorithm as follows: percentLimit = 80.0, minNbBlack = 5,

blackLimit = 20.0, distBlack = 4, limitCut = 16, and factor = 10. Note that these values are not exactly

the same as those used for the toy example, because we had to make sure that the algorithm did not spend
too much time on very large instances. Our main goal was to obtain reduced graphs with as few edges as

possible, not to minimize the running time of the algorithm.

We can report that our algorithms are fairly robust, in the sense that the parameter values given above

can be modified without introducing major changes in the results. The only exception to this observation

concerns percentLimit: if its value is too high (say, equal to 90.0), the algorithm might not be able to find
a “good” vertex cut even if the graph contains one. We can also report that the time consumed for finding

the partition into blocks is generally significantly less than the time spent computing the resistances of the

reduced network. We have also verified, for each network, that the solution of a system involving the reduced

matrix was identical to the solution of the corresponding system involving the original matrix.

In Table 1 we present the results for Network A and its five largest components (each of the remaining
components contains two vertices only). The last line of the table displays the results for the whole network,

and the first five lines correspond to the largest components. The first three columns contain respectively

the number of vertices, the number of black vertices, and the number of edges in the component or network.

The fourth (resp. fifth) column contains the number of vertices (resp. edges) in the network produced by

the algorithm of Lenaers. Similarly each of the following groups of columns gives the number of vertices and
the number of edges in the network produced by an algorithmic variant. The number of edges produced by

the algorithm of Lenaers is set in boldface type; so is the smallest number of edges produced by any of our

algorithmic variants.

In Table 2 we give results for Network B and the 20 components of Network B that have more than 1000

vertices, and in Table 3, results for Network C and the 12 components of Network C that have more than
1000 vertices. Finally, in Table 4, we summarize the results for the three networks and express as percentages

the number of vertices and the number of edges obtained by the algorithm of Lenaers and all the algorithmic

variants. The examination of the four tables reveals that for almost all components, the number of edges

produced by the algorithm of Lenaers is greater than the smallest number of edges produced by any of our
algorithmic variants. In the few cases where this does not occur, the difference between the two numbers (set

in boldface type in the tables) is small. We also note that the superior results of our algorithms are especially

obvious in the case of large components.

Table 1: Results for Network A

Original network Lenaers Variant 1 Variant 2 Variant 3 Variant 4

V B E V E V E V E V E V E
2300 59 3683 79 709 63 878 60 902 252 997 114 637

1542 39 2476 39 741 39 741 39 741 240 638 242 633

1210 76 1936 104 1167 157 823 150 849 157 823 151 850
341 28 555 40 121 83 110 83 110 83 110 83 110
244 54 333 236 330 150 214 147 214 150 214 147 215
5658 274 8997 516 3077 510 2775 497 2825 900 2791 755 2454

The first three columns contain respectively the number of vertices (V), the number of black vertices (B), and the number of
edges (E) of the original network. The other columns contain the numbers of vertices and edges of the five reduced networks
(note that the number of black vertices does not change). The number of edges of the component produced by the algorithm
of Lenaers is in boldface type; so is the smallest number of edges produced by any of our algorithmic variants. The results for

the whole network are displayed in the last line while the other lines contain the results for the largest components.
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Table 2: Results for Network B

Original network Lenaers Variant 1 Variant 2 Variant 3 Variant 4

V B E V E V E V E V E V E
16053 509 25594 989 18100 2303 6373 2095 6922 3045 10026 3606 9914
13168 430 21209 823 13787 3361 9407 3090 9029 3243 9212 3130 9131
12821 160 23222 952 8017 270 4937 270 4937 249 4609 249 4609
4836 123 7877 294 3026 374 2332 411 2063 307 2324 590 2584
3526 18 5776 18 153 18 153 18 153 18 153 20 143

3102 93 5105 170 2631 1029 3031 1019 2965 190 2794 709 4012
2580 72 4155 168 2212 373 1153 345 1142 504 1585 500 1494
2549 74 4048 231 1656 292 1073 273 1064 706 1753 470 1240
2440 57 4009 57 1596 255 1180 171 1055 115 1511 101 1359
2297 7 3526 8 14 13 16 7 21 13 16 7 21
2091 58 3430 136 1199 157 774 188 793 174 907 148 780
2040 54 3302 95 1110 115 834 142 758 109 1232 95 1218
1851 45 3082 45 990 145 719 148 696 105 822 45 990
1475 57 2430 94 1351 454 1296 426 1214 111 1030 57 1596
1436 45 2356 77 873 45 990 45 990 95 760 94 738

1381 60 2272 73 1188 118 1073 391 1167 117 1033 60 1770
1287 37 113 61 657 71 634 65 519 71 634 37 666
1095 33 1798 40 522 33 528 33 528 66 462 33 528
1059 42 1751 69 706 100 753 117 746 87 684 89 674

1030 44 1637 57 145 88 129 50 337 88 129 50 337
99112 3399 161183 6012 62685 11885 40768 10758 42399 11684 45059 11544 49104

Table 3: Results for Network C

Original network Lenaers Variant 1 Variant 2 Variant 3 Variant 4

V B E V E V E V E V E V E
36393 197 58054 881 8268 1661 5127 614 3263 345 7866 596 4018
11783 309 18762 626 7420 1373 5300 1496 4885 2919 8039 2620 8313
10776 45 16551 63 471 54 521 46 871 54 521 46 801
7632 184 12222 530 6239 2695 7605 2674 7027 388 4997 3371 9353
5471 107 8559 304 2837 434 2132 239 1576 1152 2841 683 2032
4657 96 7459 96 4560 944 2635 579 2084 835 2399 857 2438
3694 52 5891 52 1326 52 1326 52 1326 114 1211 94 1199

3394 89 5475 161 2198 799 2497 1593 3758 201 2714 229 2442

3285 87 5291 103 2360 192 2366 988 2975 177 2099 203 1897

2964 17 4483 18 93 20 55 18 81 20 55 18 81
2961 67 4834 102 1689 156 1883 195 1394 140 1187 175 1243
1157 5 2176 5 10 5 10 5 10 5 10 5 10

103549 1978 164213 3880 39011 9715 33311 9536 31459 7680 35793 9929 36091

Table 4: Summary of results in absolute and relative terms

Lenaers Variant 1 Variant 2 Variant 3 Variant 4

Network A 516 3077 510 2775 497 2825 900 2791 755 2454
% 9.12 34.20 9.01 30.84 8.78 31.40 15.91 31.02 13.34 27.28

Network B 6012 62685 11885 40768 10758 42399 11684 45059 11544 49104
% 6.07 38.89 11.99 25.29 10.85 26.30 11.79 27.96 11.65 30.46

Network C 3880 39011 9715 33311 9536 31459 7680 35793 9929 36091
% 3.75 23.76 9.38 20.29 9.21 19.16 7.42 21.80 9.59 21.98

The first, third, and fifth rows contain the numbers of vertices and edges of the five reduced networks. The second, fourth, and
sixth rows contain these numbers expressed as percentages (with respect to the original network); for instance the number of
vertices of the reduced network produced by the first algorithmic variant on Network A is 9.01% of the number of vertices of

the original network.
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Finally, we conducted preliminary experiments on Network D, a network with around 1.5 million resistors

and 738 connected components. Only 26 of the components have more than 10000 vertices, and the proportion

of black vertices within a component varies greatly. For 18 out of these 26 components, the number of black
(external) vertices is at most 150 and a very large reduction (usually more than 90%) is obtained by replacing

the component by the complete graph on its set of black (external) vertices. On the other hand, for 6 of

the remaining components, the number of external vertices in each component exceeds 400 and, as a result,

the components are difficult to reduce. We plan to continue our investigation of circuits that have a high

proportion of external vertices and to improve our methods for these circuits.

7 Conclusions and future work

In this article we present algorithms that produce significant reductions in the size of purely resistive circuits

while preserving their physical properties. The algorithms also produce better results than state-of-the-art

methods, especially for large circuits. In particular our algorithms achieve reductions of almost 75% in the

number of edges for two of the networks and a reduction of more than 80% for the third network. There is still
scope for the design of better algorithms, however. In particular, it is possible that dynamic programming

principles may enable one to design algorithms that produce even smaller models. We also plan to apply our

present and future algorithms to other types of circuits, and even models from other disciplines of engineering.

Finally, we plan to continue the study of the combinatorial problem that was formally defined in the article;
in particular we hope to prove that it is NP-complete.
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