Denial of Service

- **denial of service (DoS)** an action that prevents or impairs the authorized use of networks, systems, or applications by exhausting resources such as central processing units (CPU), memory, bandwidth, and disk space.
- attacks
 - network bandwidth
 - system resources
 - application resources
- have been an issue for some time
Classic Denial of Service Attacks

- can use simple flooding ping
- from higher capacity link to lower
- causing loss of traffic
- source of flood traffic easily identified
Classic Denial of Service Attacks
Source Address Spoofing

- use forged source addresses
 - given sufficient privilege to “raw sockets”
 - easy to create
- generate large volumes of packets
- directed at target
- with different, random, source addresses
- cause same congestion
- responses are scattered across Internet
- real source is much harder to identify
SYN Spoofing

- other common attack
- attacks ability of a server to respond to future connection requests
- overflowing tables used to manage them
- hence an attack on system resource
TCP Connection Handshake

1. Client sends SYN (seq = x)
2. Server receives SYN (seq = x) -> Send SYN-ACK (seq = y, ack = x+1)
3. Client receives SYN-ACK (seq = y, ack = x+1) -> Send ACK (ack = y+1)
4. Server receives ACK (ack = y+1)
SYN Spoofing Attack
SYN Spoofing Attack

- attacker often uses either
 - random source addresses
 - or that of an overloaded server
 - to block return of (most) reset packets
- has much lower traffic volume
 - attacker can be on a much lower capacity link
Types of Flooding Attacks

• classified based on network protocol used
• ICMP Flood
 - uses ICMP packets, eg echo request
 - typically allowed through, some required
• UDP Flood
 - alternative uses UDP packets to some port
• TCP SYN Flood
 - use TCP SYN (connection request) packets
 - but for volume attack
Distributed Denial of Service Attacks

- have limited volume if single source used
- multiple systems allow much higher traffic volumes to form a Distributed Denial of Service (DDoS) Attack
- often compromised PC’s / workstations
 - zombies with backdoor programs installed
 - forming a botnet
- e.g. Tribe Flood Network (TFN), TFN2K
DDoS Control Hierarchy
Reflection Attacks

- use normal behavior of network
- attacker sends packet with spoofed source address being that of target to a server
- server response is directed at target
- if send many requests to multiple servers, response can flood target
- various protocols e.g. UDP or TCP/SYN
- ideally want response larger than request
- prevent if block source spoofed packets
Reflection Attacks

- further variation creates a self-contained loop between intermediary and target
- fairly easy to filter and block
Amplification Attacks
DNS Amplification Attacks

- use DNS requests with spoofed source address being the target
- exploit DNS behavior to convert a small request to a much larger response
 - 60 byte request to 512 - 4000 byte response
- attacker sends requests to multiple well connected servers, which flood target
 - need only moderate flow of request packets
 - DNS servers will also be loaded
DoS Attack Defenses

- high traffic volumes may be legitimate
 - result of high publicity, e.g. “slash-dotted”
 - or to a very popular site, e.g. Olympics etc
- or legitimate traffic created by an attacker
- three lines of defense against (D)DoS:
 - attack prevention and preemption
 - attack detection and filtering
 - attack source traceback and identification
Attack Prevention

- block spoofed source addresses
 - on routers as close to source as possible
 - still far too rarely implemented
- rate controls in upstream distribution nets
 - on specific packets types
 - e.g. some ICMP, some UDP, TCP/SYN
- use modified TCP connection handling
 - use SYN cookies when table full
 - or selective or random drop when table full
Attack Prevention

- block IP directed broadcasts
- block suspicious services & combinations
- manage application attacks with “puzzles” to distinguish legitimate human requests
- good general system security practices
- use mirrored and replicated servers when high-performance and reliability required
Responding to Attacks

• need good incident response plan
 - with contacts for ISP
 - needed to impose traffic filtering upstream
 - details of response process

• have standard filters

• ideally have network monitors and IDS
 - to detect and notify abnormal traffic patterns
Responding to Attacks

- identify type of attack
 - capture and analyze packets
 - design filters to block attack traffic upstream
 - or identify and correct system/application bug
- have ISP trace packet flow back to source
 - may be difficult and time consuming
 - necessary if legal action desired
- implement contingency plan
- update incident response plan
Summary

- introduced denial of service (DoS) attacks
- classic flooding and SYN spoofing attacks
- ICMP, UDP, TCP SYN floods
- distributed denial of service (DDoS) attacks
- reflection and amplification attacks
- defenses against DoS attacks
- responding to DoS attacks