Program Slicing

Keith Gallagher

Computer Science Department

University of Durham
South Road
Durham DH1 SLE, UK

k.b.gallagher@durham.ac.uk

Abstract

Program slicing is a decomposition technique that
elides program components not relevant to a chosen
computation, referred to as a slicing criterion. The re-
maining components form an executable program called
a slice that computes a projection of the original pro-
gram’s semantics. Using examples coupled with fun-
damental principles, a tutorial introduction to program
slicing is presented. Then applications of program slic-
ing are surveyed, ranging from its first use as a de-
bugging technique to current applications in property
verification using finite state models. Finally, a sum-
mary of research challenges for the slicing community
1s discussed.

1 A Tribute to The Little Lisper|[26]

Is Column 3 a slice of Column 1 with respect to

Column 27
Original Slicing
Program Criterion Slice
| X = 42 X x = 42 |
| d=23 d d=23 |
x = 42 x = 42
d=23 d d=23

Yes, Yes, Yes, regardless of the slicing criterion a pro-
gram is always a slice of itself, albeit not always the
best slice. A slice is computed with respect to a slic-
ing criterion which consists of a selected variable and a
program location. In the examples, the variable is listed
in the middle column at the line that is the program

location.
Are the following slices?
x =42
d =23 d d =23
x =42 x =42
d =23 X

*On sabbatical leave from Loyola College in Maryland

978-1-4244-2655-3/08/$25.00 © 2008 IEEE

58

David Binkley*
King’s College London
CREST Centre
Strand, London
WC2R 2LS, UK
binkley@cs.loyola.edu

Yes, Yes, at the location contained in the slicing crite-
rion, the slice and the original program compute the
same value for the selected variable (this variable is
henceforth termed of interest). Statements not con-
tributing to the computation of this variable can be
elided. How about

a=23

b=42 b =42
c=b+2 C c=b+2
a=12 a=12
=23

c=a+2 c c=a-+2

Yes, Yes, to preserve semantics (value computed) of the
chosen variable at the location in the slicing criterion,
variables used to assign it a value are also of interest
and assignments to them included in the slice. Next

a=42 a=42

X =2

b=23+a b=23+a
y=3

c=b+2 c c=b+2

Yes, variables used in assignments to variables of in-
terest are of interest and assignments to them are in-
cluded in the slice. Here, the assignment ¢ = b + 2,
causes variable b to be of interest and thus b = 23 +
a is included in the slice. This makes a of interest and
subsequently causes a = 42 to be included in the slice.
And

a=10

b=42

a=20 a=20
c=a+2 C c=a+2

Yes, only reaching assignments to a variable of interest
are included in the slice. In this case the definition
a = 20 kills the previous definition a = 10.

FoSM 2008

Authorized licensed use limited to: KnowledgeGate from IBM Market Insights. Downloaded on November 20, 2009 at 17:15 from IEEE Xplore. Restrictions apply.

Principal 1 — Data Dependence. A Data Depen-
dence connects a definition of a variable to a use of
that variable provided there exists a definition-free path
in the program’s control flow graph from the definition
to the use [25]. In the presence of indirect memory ref-
erences (e.g., pointers) ‘variable’ becomes ‘location’ [2].

Principals such as above formally capture key concepts
used in program slicing, in contrast to the code frag-
ments which are meant to be illustrative.

In the proceeding code there is a data dependence
from a = 20 to ¢ = a + 2, but not from a = 10 to
¢ = a + 2 because the control-flow-graph path from
a = 10to c = a + 2 is not definition free: it includes the
intervening definition a = 20. Next, consider (where P
denotes some unspecified predicate)

a=2 a=2
while (P)

{ {

x =10

b =64 b =64
{ }
c=a-+2 C c=a+2

Data dependence can be carried from one iteration of
a loop to another. Here the use of bina=b — 2 is
reached by the definition at b = 64 from the previous
iteration. A (loop-carried) data dependence connects
them and a slice including a = b — 2 will also include
b = 64.

But, is this a slice? No, the while has errantly been
elided. In the above, a = b — 2 is control dependent on
while (P). This motivates the second principal.

Principal 2 — Control Dependence. A Control
Dependence connects statement s to statement t when
the predicate at s controls the execution of t [25]. For
structured code, control dependences reflect the pro-
gram’s mnesting structure. For unstructured code, s
must have at least two control-flow graph successors,
one of which can lead to the exit node without encoun-
tering t and the other must lead eventually to t [4, 35].

In the preceding example there is a control dependence
from the while to each of the three statements making
up the body of the loop. Also note that depending
on the value of predicate P the while statement may
execute zero times and thus there are data dependences
from both assignments of a to c = a + 2. Next consider

a=20 a=20

if (P) if (P)

z =230

it (Q) i (Q)
a=21 a=21

c=a+2 C c=a+2

59

A statement that controls the execution of a statement
in the slice is included in the slice. Slicing takes tran-
sitive control dependence into account. Here a = 21 is
control dependent on if (Q), which is control dependent
on if (P). Is this a slice?

x =10 x =10

y = 67

a=20 a=20
if (x> 0) if (x> 0)
a=21 a=21

c=a+2 C c=a+2

Yes, slicing traverses intertwined sequences of control
and data dependences. Encountered statements are
included in the slice. The sequence from x = 10 to
¢ = a + 2 includes the data dependence from x = 10
to if (x > 0), the control dependence from if (x > 0)
to a = 21, and the data dependence from a = 21 to
c=a+2
Is the following a slice (the program is the same as
above)?
x =10
y = 67
a=20
if (x> 0) X
a=21
c=a+2

x =10

Yes, a program has many different slicing criteria,
which may, as in this case, lead to different slices. Note
that x > 0 does not effect the value of x and is not in-
cluded in this slice. Finally

sum =0

prod =1 prod =1
i=1 i=1

while (i < 11) while (i < 11)

{ {

sum = sum + i

prod = prod * i

i=i+1
} prod
Yes, the computation of sum does not effect the compu-
tation of the prod; the slice taken with respect to prod
at the end of the program produces a (smaller) pro-
gram that only computes the product. This motivates
the penultimate principal.

prod = prod * i
i=i+1

Principal 3 — A Slice is Semantically Meaning-
ful. A slice captures a semantically meaningful sub-
computation from a program. Ignoring calling con-
text [38], this means that the slice and the original
program compute the same sequence of values for the
selected variable at the chosen location [6, 21, 31, 52].

Authorized licensed use limited to: KnowledgeGate from IBM Market Insights. Downloaded on November 20, 2009 at 17:15 from IEEE Xplore. Restrictions apply.

1.1 Some Complications 2.1 Forward Slices

while (frue) Backward slices answer the question “what program
<=1 components might effect a selected computation?” The
_ _ dual of backward slicing, forward slicing [10, 38|, an-
y=2 y y=2 ‘ on “ i
swers the question “what program components might
Programs that do not terminate still have (semanti- be effected by a selected computation?” A forward
cally) interesting slices because non-termination can be slice captures the impact of its slicing criteria [17]. For-
sliced out. ward slicing gets it’s name from the ability to compute
while (P) while (P) a forward slice by traversing data and control depen-
dence edges in the forward direction. In the following
if (Q) if (Q) example the impact of prod (i.e., those computations
break break potentially influenced by the value assigned to prod at
b=12 the point) is captured by a forward slice.
a=a+1 a=a+1 sum =0
} a } prod = 1 prod prod =1
The execution of the break affects the number of times i=1
the loop execute; a = a + 1 is control dependent on while (i < 11)
the break and consequently the if statement. { _
T (b) sum = sum —t—k |. ..
goto L2 PrOd_ = prod * i prod = prod * i
L1: L1: =i+l
y=1 y = }
goto L3 goto L3 This forward slice illustrates, among other things,
z=2 that a change to the initialization of prod potentially af-
L2: fects (only) the computation of prod found in the loop.
x=3 Because a forward slice is often not an executable pro-
goto L1 gram, one of the challenges posed by forward slicing is
L3: . L3: defining the semantics captured by a forward slice [10].
print(x) 22 D ic Sli
. . ynamic Slices
print(y) y

A static backward slice preserve the meaning of the
variable(s) in the slicing criterion for all possible inputs
to the program. A dynamic slice does so only for a sin-
gle input [1, 32, 60]. The slicing criterion is augmented

Similar to a break statement, a goto affects the flow of
control and induces control dependences.

1.2 One Final Principal

Principal 4 — Union of Slices. The slice taken with to include a particular program input. In the following,
respect to a set of criteria is the same as the union of using the input 42, the middle two statements can be
the slices taken separately with respect to each of the elided.
criteria [59]. Input < 42 >

Principal 4 is illustrated in Figure 1, which also illus- read(a) read(a)

trates Principal 3. Here slicing is used used to extract if (a <0)

two of the three interesting subprograms from the word a=-a

count program. (The three subprograms compute the x=1/a X x=1/a
number of characters, lines, and words in the program’s 2.3 (Conditioned Slices

input). The center two columns show slices taken with
respect to chars and words. These two smaller programs
compute only one of the three outputs. The final col-
umn shows the slice computed with respect to a criteria
that contains both chars and words, which is the same
as the union of the two individual slices.

Conditioned slicing can be viewed as filling the gap
between static and dynamic slicing. A conditioned slice
preserves the semantics of the slicing criterion only for
those inputs that satisfy a boolean condition [18, 20,
22]. In the following code when the input value for a
is positive, the middle two statements can be elided.

2 Kinds of Slicing — Some Examples read(a) read(a)
The slices in Section 1 are formally syntaz preserving if (a <0)
static backward slices [19, 38, 59]. This section intro- a=-a
duces several other variants of program slicing. x=1/a X x=1/a
60

Authorized licensed use limited to: KnowledgeGate from IBM Market Insights. Downloaded on November 20, 2009 at 17:15 from IEEE Xplore. Restrictions apply.

Slices taken at the end of the program with respect to
Original Program chars words lines and words
inword = F inword = F inword = F inword = F
chars =0 chars =0 chars =0 chars =0
lines =0 lines =0 lines =0 lines =0
words = 0 words = 0 words = 0 words = 0
read(c) read(c) read(c) read(c)
while(c != EOF) while(c != EOF) while(c != EOF) while(c != EOF)
{ { { {
chars++ chars++ chars++
if (c=="\n")
lines++
if (isletter(c))) if (isletter(c))) if (isletter(c)))
{ { {
if (linword) if (linword) if (linword)
{ { {
words++ words++ words++
inword = T inword = T inword = T
} } }
} } }
else else else
inword = F inword = F inword = F
read(c) read(c) read(c) read(c)
} } } }

Figure 1. Three slices of the word count program.

Generally conditions can be placed at arbitrary pro-
gram locations. In principal, such conditions can be
expressed as restrictions on the allowed inputs.

2.4 Amorphous Slices

The aforementioned slicing techniques involve two
requirements: a semantic requirement whereby the
slice captures some projection of the original program’s
semantics and a syntactic requirement whereby the
slice is constructed by deleting components from the
original program. Amorphous slicing relaxes the syn-
tactic requirement and thus allows additional trans-
formations to be applied [34]. There are amorphous
variants of static, dynamic, and conditioned slicing.
To illustrate transformation’s impact on a slice, the
first example below applies constant propagation and
then traditional slicing, which can then remove the first
statement.
a=42
b=a+2 b

b = 42+2

In the next example partial evaluation [11, 27, 50]
like behavior is observed in the transformation of a
statically determinable variable into a simple assign-
ment.

61

sum = 0

i=1

while (i < 11)

{ .
sum = sum + |
i=i+1

} sum

sum = b5

3 Uses of Slicing

This section considers six applications of slicing:
four traditional applications and two recent applica-
tions. The first of the traditional applications is slic-
ing’s original application, debugging. This is followed
by the application of slicing to testing and then to
maintenance. The final traditional application is in the
clustering of equivalent programs statements. The two
recent applications are slicing in support of verifying
state-based models and in determining the impact of
a database schema change. Many of these application
exploit relationships between slices.

3.1 Debugging

Program slicing was introduced by Mark Weiser as
debugging aid [58, 59]. Consider a program that out-
puts a wrong answer. A programmer trying to ascer-
tain what went wrong would have less code to consider

Authorized licensed use limited to: KnowledgeGate from IBM Market Insights. Downloaded on November 20, 2009 at 17:15 from IEEE Xplore. Restrictions apply.

if they worked with the slice taken with respect to the
errant output.

An extension of this idea further reduces the search
space for the defect: consider the situation where a
programmer knows that a program produced one cor-
rect and one errant output. Slices on these outputs
can be used to narrow the search for the defect as it
is unlikely that the statements that contribute to the
correct output contain the defect [47]. In the code be-
low, the slice on the left is taken with respect to chars,
which procures a faulty output (it has a seeded initial-
ization defect). The slice in the middle is taken with
respect to lines, which produces the expected output.
Looking at the statements from the first slice that are
not in the second, provides candidate statements likely
to contain the error. Of course, there is no guarantee
that the fault lies in the difference; it might be an er-
ror of omission or one error might mask another in the
slice with the correct output. This application, known
as program dicing [47, 48], also shows that the study of
the relationship between slices can be advantageous.

Slice on Likely
chars lines Errant
(Incorrect Output) | (Correct Output) | Statements
chars =1 chars =1
lines =0
read(c) read(c)
while(c != EOF) while(c != EOF)
{ {
chars++ chars++
if (c=="\n")
lines++
read(c) read(c)
} }

3.2 Regression Testing

The aim of regression testing is to ensure that a
change to a software system does not introduce new er-
rors in the unchanged part of the program [53]. Testing
effort can be reduced if fewer tests cases are run on a
simpler program. Program slicing can be used to par-
tition tests cases into those that need to be re-run, as
they may have been affected by a change, and those
that can be ignored, as their behavior can be guar-
anteed to be unaffected by the change [7, 9, 53]. A
partition is formed by finding all affected statements:
those statements whose backward slice includes a new
or edited statement. This set can be efficiently com-
puted as the forward slice taken with respect to the
new and edited statements. Only tests that execute an
affected statement must be rerun.

Slicing can be used to further reduce the cost by
reducing the size of the program that must be tested.
This is done by applying semantic differencing [8] to
Certified, the program that previous passed the test

62

suite, and Modified, an updated version of Certified. In
the example below Certified has an initialization error
(line = 1) that is fixed in Modified. The program Dif-
ferences captures (in an executable program) the com-
putations of the changed code. Running Differences on
selected tests reduces cost by running fewer tests on a
simpler program.

Certified Modified Differences
inword = F inword = F
chars =0 chars =0
lines =1 lines = 0 lines = 0
words = 0 words = 0
read(c) read(c) read(c)
while(c = EOF) | while(c != EOF) | while(c != EOF)
{ { {
chars++
if (c=="\n") if (c=="\n")
lines++ lines++
if (isletter(c))) if (isletter(c)))
{ {
if (!inword) if (linword)
{ {
words+-+ words+-+
inword = T inword = T
} }
} }
else else
inword = F inword = F
read(c) read(c) read(c)
} } }

3.3 Software Maintenance

Maintaining a large software system is a challenging
task. Most programs spend 70% or more of their life
time in the software maintenance phase where they are
corrected and enhanced. Slicing, in the form of De-
composition Slicing [30], has been applied to reducing
the effort required to maintain software. The decom-
position slice, taken with respect to variable v from
function f, is the union of the slices taken with respect
to v at each definition of v and at the end of f.

Decomposition slicing is another instance of a pro-
gram slicing technique in which the relationships be-
tween slices is advantageously exploited. Returning to
the slice shown in the third column of Figure 1, observe
that the if statements inside the main while loop do not
appear in the slices on chars or lines; they are solely
contained within one slice. The same is true of the if
statement in the slice on lines. Such statements are
called independent. Furthermore, when all the assign-
ments to a variable are solely within its decomposition
slice then the variable is also called independent. The
key insight behind the approach is that changes made

Authorized licensed use limited to: KnowledgeGate from IBM Market Insights. Downloaded on November 20, 2009 at 17:15 from IEEE Xplore. Restrictions apply.

to independence statements and variables cannot im-
pact computations in other decomposition slices. The
ability to delimit changes also impacts the amount of
regression testing needed [29, 30].

3.4 Clustering Equivalent Computations

Clustering groups a set into subsets where the ele-
ments of the subsets are similar to each other, but the
subsets are dissimilar. A dependence cluster is a set of
program points (statements), S, that mutually depend
upon one another and for which there is no other mu-
tually dependent set that contains S. This definition
is parameterized by an underlying transitive depends
relation.

One possible definition for depends is that two state-
ments, s; and ss, depend on each other if they have the
same slice [15]. In practice, same size can be used to
approximate size slice. Empirically this approximation
is 99.5% accurate [15]. Using this definition, 30 of 45
programs contained a dependence cluster of at least
20% of the code and one of the programs included a
cluster composed of 94% of the code.

Equivalent decomposition slices can also be used as
the depends relation to construct clusters [28]. Vari-
ables that have equivalent decomposition slices form
equivalence classes. An empirical study of 67 C pro-
grams found that the percentage of equivalent decom-
position slices ranged from 50 to 60% (p < 0.005).

The negative side of large dependence can be seen
in their impact on software maintenance. For exam-
ple, consider trying to reuse a small component that
turns out to be part of a large dependence cluster. On
the other hand, having large clusters has a ‘good’ side:
any test coverage method used for one variable in an
equivalence class will apply to all the variables in that
class. Furthermore, in support of program comprehen-
sion, knowing that a collection of variables belong to a
cluster means that they capture the same abstraction.
This observation can significantly reduces comprehen-
sion cost.

3.5 Model Reduction

Recently, finite-state models have been used to spec-
ify a number of non-trivial program properties (e.g.,
the dead-lock freeness of a multi-threaded program).
However, analyzing them is computationally expensive.
Hatcliff, et al. [36] and later Dwyer, et al. [23] use static
backward slicing to reduce the cost of property check-
ing. The experiments make use of Indus, a library of
Java program analysis and transformations tools [39].

In the earlier study, Hatcliff, et al. apply program
slicing techniques to remove irrelevant code and reduce
the size of the corresponding model. The study of slic-
ing’s impact considers two properties: Prop I.: states

63

140 —— Original
= 120 + + + r o
2 100 / - With Sllicing
<]
o
s g0 / —&— With Slicing +
S // Abstraction
= I/

20 + + +

0 -
1 12 1.3 14 1 12 1.3 1.4
Property

Figure 2. Slicing’s impact on model checking.

that when the main thread sends the shutdown value,
stage ¢ will eventually shutdown. Prop I1.: states that
stage ¢ only shuts down after the shutdown signal has
been sent from the main thread.

Figure 2 compares the running time for checking
the two properties (I and II) using models generated
first from the original program, then from the sliced
program, and finally from the sliced program with re-
maining queue variables abstracted using a classic signs
abstract interpretation over the abstract domain {pos,
zero, neg, T }. The cost savings from slicing comes pri-
marily from slicing away of successive pipeline stages.
Slicing based on Prop I.1 and Prop II.1 removes stages
two, three and four. Generating these slice takes less
than a second.

In later work, Dwyer, et al. [23] compare slic-
ing with call-graph reduction and partial order re-
duction (POR), which exploit the independence of
transitions to create equivalence classes of paths such
that only a single path from each equivalence class
need be explored. The motivation for applying slicing
is that while existing static analysis attempts to re-
move unreachable/non-accessed program components,
it does not eliminate code fragments that are reach-
able but where the intertwined code is irrelevant to
the property begin checked — a task to which slicing
is well suited. They observe that on average slic-
ing provides a factor of four improvement for non-
trivial model checks. With one exception slicing al-
ways yields a greater reduction than POR. Dwyer, et
al. conclude that “slicing yields non-trivial additional
reduction over partial-order reduction” and that “the
reduction [due to slicing] is orthogonal to other reduc-
tions.”

3.6 Database Schema Impact

In the second recent application, Maule, et al. study
the impact on the source code of a relational database
schema change [49]. An important compromise in the
approach is the amount of calling-context information
processed. Context-sensitivity is a measure of how pre-
cise the calling context of a procedure is represented

Authorized licensed use limited to: KnowledgeGate from IBM Market Insights. Downloaded on November 20, 2009 at 17:15 from IEEE Xplore. Restrictions apply.

450
400
350

300 H -m— With Shcmg /
250

/
200 / -8
/ /./

150

100 _#

50
O T T T T T T T T

1 2 3 4 5 6 7 8 9

Value of k

—— Without Slicing

e

Time (Seconds)

Figure 3. Slicing’s influence on determining
the impact of a database schema change.

during analysis. A common solution is kCFA analysis
using a call-string approach to handle context where
only the last (or first) k calls are tracked by the anal-
ysis. Maule, et al. record call strings that represent no
more than the last k call-sites; e.g., for k 2, the
most recent two call cites are included.

They employ program slicing to reduce the cost of
identifying statements affected by a database scheme
change. In a case study using the content manage-
ment system itPublisch, which contains 78,133 lines of
code with 417 query executions sites, program slicing
reduced the part of the program that had to be con-
sidered by 63% (from 191,173 instructions to 70,050
instructions).

Figure 3 shows the execution times of their analysis
for different values of k. It is clear that slicing provides
a significant improvement. Furthermore, while the use
of slicing always provides benefit, this benefit increases
with k. statistically, it increases as k increases at a
rate of 18 seconds per unit increase in k (R? = 0.94).
This is because when k = 1 constant costs of the data-
flow analysis that underlies slicing consumes 56% of the
runtime. However, by k = 9, this has dropped to just
16%.

4 Current and Future Challenges

This section considers two current challenges for
programs slicing and then speculates as to some fu-
ture challenges. The two current challenges include
the implementation of slicing tools and the size of the
resulting slices. Each subsection provides first a broad
overview and then considers one particular aspect in
greater detail.

4.1 Implementation

The first slicers were data-flow based. They sliced
by solving data flow equations [46, 59]. This approach
was inefficient and gave way to an approach that in-
volves first building a dependence graph to cache the

64

dependence information implicitly considered in the
data-flow equations [33, 38, 39, 42, 45, 51]. The lat-
ter approach is preferred when a large number of slices
is to be computed [16, 43]. Having a dependence graph
also has the advantage of supporting other dependence
based algorithms [5]. Recently, improvements in data-
flow analysis have led to more efficient data-flow based
slicers [3]. Other approaches have also been considered.
Ward implements slicing on top of the FermaT trans-
formation tool which provides a rigorous mathematical
foundation [56, 57]. Ward’s approach is based on set
theory and mathematical logic, and is thus indepen-
dent of any representation technique.

As a representative example of this challenge, the
problem of slicing parallel programs is considered in
greater detail [37]. This requires considering three de-
pendences beyond control and data dependence. First,
an interference dependence can be viewed as the par-
allelized extension of data dependence. It connects a
definition of a shared variable to a use of the shared
variable in a different thread when the two may exe-
cute asynchronously. In the following the use of b in ¢
= b 4+ ¢ makes this statement interference dependent
on the two assignments to b from the other thread.

a=10 a=10

b=11 b=11

d=13

cobegin cobegin

{

if (P) if (P)
b=a+b b=a+b
else else
b=b*b b=b*b

} }
d=d+c

} }

b=c+1 b b=c+1

These two interference dependences arise as b may hold
one of three values at ¢ = b + ¢ (11, 21, or 121), de-
pending on the value of P, and the execution order of
this assignment and the if statement.

The remaining two dependence kinds are control de-
pendences. The first, parallel dependence, connects the
statement that initiates a task and the first statement
of that task. The second, a synchronization depen-
dence, connects statement s; to s if the start or ter-
mination of s; depends on the start or termination of
So [37]

Authorized licensed use limited to: KnowledgeGate from IBM Market Insights. Downloaded on November 20, 2009 at 17:15 from IEEE Xplore. Restrictions apply.

4.2 Size

The second current challenge facing program slicing
is reducing the size of a slice. In almost all applications
of program slicing, the smaller the slice the better. Em-
pirical study places the size of the average backward
slice at about one third of a program [13]. While this
is a significant reduction, the remaining code can still
be too large to comprehend as a unit. This observation
led to the introduction of techniques such as dynamic
slicing [60] and amorphous slicing [34].

One recent addition, thin slicing, reconsiders the
fundamental dependences that slicing must cap-
ture [54]. A thin slice considers only producer state-
ments, defined in terms of direct uses of variables and
is thus always a subset of the traditional slices. A di-
rect use of a location [is a use of [excluding those that
require pointer dereferencing. The Java statement v =
z.f, z is not directly used, but o.f is directly used, as-
suming that z points to o. Again, the crucial part of
the definition is that it ignores pointers. A producer
statement is then defined transitively as the variable
of the criterion plus the other statements that write a
value to a location used by a producer.

The following shows a thin slice, where statements
in the ‘full’ slice but not the thin slice are called ez-
plainer statements. They capture the usual notions of
control dependence and heap-based data dependence.
In the example, there is a heap-based data dependence
from w.f =y to v = z.f because z and w both point
to the object created at x = new A(). When all of the
explainers are transitively included, a traditional slice
is obtained.

x = new A();
z =x;
y = new B(); y = new B();
w = X
w.f=y; w.f=vy;
iflw == z)
v = z.f; z.f v = zf;

Thin slices have been shown useful in comprehen-
sion [54] where they reduce the number of statements
that need to be examined in order to find an error by a
factor of 3 (as compared to traditional slices), and re-
duce the number of statements that need to be exam-
ined for comprehension by a factor of 9 (as compared
to traditional slices).

4.3 Future Research Challenges

This section concludes by considering future trends
that provide research challenges for those working on
and around program slicing.

65

Increasing Dynamic Nature of Languages
The increasingly dynamic nature of modern pro-
gramming languages is an issue for all static anal-
ysis. This trend is clearly evident over the past 20
years in the transition from imperative languages
to object-oriented languages to agent-based lan-
guages. In each case, it becomes less possible
to predict (statically) which program elements
will interact. Analysis of such programs will in-
evitably, become more specialized considering only
certain classes of inputs or execution environ-
ments.

Slicing Will Become More Specialized
Weiser’s initial study demonstrated that program-
mers intuitively sliced programs while debug-
ging [58]. Early slicing tools attempted to mimic
this behavior. To date, these tools have failed to
capture the complete intuition that programmers
appear to bring to the task. Until such time as
they do, slicing will continue to be used more as
a building block in analysis tools rather than a
discipline in and of itself.

Beyond Slicing Programs
The first slicing algorithms applied to programs
and produced slices that were executable programs.
This helped defined the term slice. For better or
for worse, what is slicable and what is a slice have
broadened (e.g., the expansion of ‘program’ slicing
to finite state models was described in Section 3.5).
Working in this domain, Korel, et al. report a sig-
nificant reduction in the size of state-based mod-
els [41]. More recently, architecture descriptions
written in the UML have been sliced. A Model
Dependence Graph [44] supports slicing by repre-
senting UML use cases, classes, objects, and their
interconnection similar to how programs are rep-
resented in Program Dependence Graph [24].

Fundamental Program Building Blocks
Fifty years ago programs were composed of assem-
bler instructions. Modern programs of higher level
syntactic entities such as statements and func-
tions. Looking forward, perhaps future programs
will be composed of semantic entities. Perhaps
a library of slices could be selected by a pro-
grammers and ‘woven’ together by a compiler.
This will provide programmers with more “bang
for the buck” (assuming the US dollar recovers)
or perhaps better stated as more “bang for the
keystroke.”

5 Summary

Program slicing has been applied to a range of main-
tenance tasks. This paper attempts to provide the in-
tuition behind computing a program slice and considers

Authorized licensed use limited to: KnowledgeGate from IBM Market Insights. Downloaded on November 20, 2009 at 17:15 from IEEE Xplore. Restrictions apply.

several representative applications. Several surveys on
various types and applications of program slicing have
been written and provide excellent sources for further
information on program slicing [12, 14, 40, 55]. Finally,
this paper lays out some challenges and future work for
program slicing researchers.

6 Acknowledgements

Our special thanks to the following for their com-
ments and suggestions Francoise Balmas, Andrea De
Lucia, Mark Harman, Michael Hind, Jim Lyle, Rajib
Mall, Thomas Reps, Frank Tip, Paolo Tonella, Neil
Walkinshaw, and Martin Ward. Dave Binkley is sup-
ported by EPSRC grant GR/F010443 to the CREST
Centre.

References

[1] H. Agrawal and J. R. Horgan. Dynamic program slic-
ing. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 246256,
June 1990.

P. Anderson, D. Binkley, G. Rosay, and T. Teitel-
baum. Flow insensitive points-to sets. In Proceedings of
the first IEEE Workshop on Source Code Analysis and
Manipulation, pages 79-89, Los Alamitos, California,
USA, Nov. 2001. IEEE Computer Society Press.

D. C. Atkinson and W. G. Griswold. Implementa-
tion techniques for efficient data-flow analysis of large
programs. In IEEFE International Conference on Soft-
ware Maintenance (ICSM’01), Los Alamitos, Califor-
nia, USA, Nov. 2001. IEEE Computer Society Press.

T. Ball and S. Horwitz. Slicing programs with arbi-

trary control-flow. In P. Fritzson, editor, 1°* Confer-
ence on Automated Algorithmic Debugging, pages 206—
222, Linkoping, Sweden, 1993. Springer.

2]

3]

[4]

[5] F. Balmas. Using dependence graphs as a support to
document programs. In 2°! IEEE International Work-
shop on Source Code Analysis and Manipulation, pages
145-154, Los Alamitos, California, USA, Oct. 2002.

IEEE Computer Society Press.

D. Binkley. Precise executable interprocedural slices.
ACM Letters on Programming Languages and Systems,
3(1-4):31-45, 1993.

D. Binkley. Semantics guided regression test cost re-
duction. IEEE Transactions on Software Engineering,
23(8):498-516, Aug. 1997.

D. Binkley. Semantics guided regression test cost re-

duction. IEEFE Transactions on Software Engineering,
23(8):498-516, August 1997.

D. Binkley. The application of program slicing to re-
gression testing. Information and Software Technology
Special Issue on Program Slicing, 40(11 and 12):583—
594, 1998.

D. Binkley, S. Danicic, T. Gyim6thy, M. Harman, Akos
Kiss, and B. Korel. Theoretical foundations of dy-
namic program slicing. Theoretical Computer Science,
360(1):23-41, 2006.

[11] D. Binkley, S. Danicic, M. Harman, J. Howroyd, and
L. Ouarbya. A formal relationship between program

(6]

7]

8]

[9]

[10]

66

slicing and partial evaluation. Formal Aspects of Com-
puting, 18(2):103-119, 2006.

[12] D. Binkley and K. B. Gallagher. Program slicing. In
M. Zelkowitz, editor, Advances in Computing, Volume
48, pages 1-50. Academic Press, 1996.

[13] D. Binkley, N. Gold, and M. Harman. An empirical
study of static program slice size. ACM Transactions
on Software Engineering and Methodology, 16(2):1-32,
2007.

[14] D. Binkley and M. Harman. A survey of empirical
results on program slicing. Advances in Computers,
62:105-178, 2004.

D. Binkley and M. Harman. Locating dependence clus-
ters and dependence pollution. In 21%% IEEE Inter-
national Conference on Software Maintenance, pages

177-186, Los Alamitos, California, USA, 2005. IEEE
Computer Society Press.

D. Binkley, M. Harman, and J. Krinke. Empirical
study of optimization techniques for massive slicing.
ACM Transactions on Programming Languages and
Systems, 2008. To appear.

[15]

[16]

[17] S.E. Black. Computing ripple effect for software main-
tenance. Journal of Software Maintenance and Evolu-
tion: Research and Practice, 13:263-279, 2001.

G. Canfora, A. Cimitile, and A. De Lucia. Conditioned
program slicing. Information and Software Technology
Special Issue on Program Slicing, 40(11 and 12):595—
607, 1998.

S. Danicic, D. Binkley, T. Gyiméthy, M. Harman, Akos
Kiss, and B. Korel. A formalisation of the relationship
between forms of program slicing. Science of Computer
Programming, 62(3):228-252, 2006.

S. Danicic, A. De Lucia, and M. Harman. Building
executable union slices using conditioned slicing. In
12" International Workshop on Program Comprehen-
sion, pages 89-97, Los Alamitos, California, USA, June
2004. IEEE Computer Society Press.

S. Danicic, M. Harman, J. Howroyd, and L. Ouarbya.
A lazy semantics for program slicing. In 15" Interna-
tional Workshop on Programming Language Interfer-
ence and Dependence, Verona, Italy, Aug. 2004.

M. Daoudi, S. Danicic, J. Howroyd, M. Harman,
C. Fox, L. Ouarbya, and M. Ward. ConSUS: A scal-
able approach to conditioned slicing. In IEEE Work-
ing Conference on Reverse Engineering (WCRE 2002).
IEEE Computer Society Press, Oct. 2002.

M. B. Dwyer, J. Hatcliff, M. Hoosier, V. P. Ranganath,
Robby, and T. Wallentine. Evaluating the effective-
ness of slicing for model reduction of concurrent object-
oriented programs. In TACAS, 2006.

J. Ferrante, K. Ottenstein, and J. Warren. The pro-
gram dependence graph and its use in optimization.
ACM Transactions on Programming Languages and
Systems, 9(3):319-349, July 1987.

J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependence graph and its use in optimiza-

tion. ACM Transactions on Programming Languages
and Systems, 9(3):319-349, July 1987.

D. P. Friedman and M. Felleisen. The little LISPer
(2nd ed.). SRA School Group, USA, 1986.

Y. Futamura and K. Nogi. Generalized partial compu-
tation. In D. Bjrner, A. P. Ershov, and N. D. Jones, ed-
itors, IFIP TC2 Workshop on Partial Evaluation and
Mized Computation, pages 133—-151. North—Holland,
1987.

[18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]

[27]

Authorized licensed use limited to: KnowledgeGate from IBM Market Insights. Downloaded on November 20, 2009 at 17:15 from IEEE Xplore. Restrictions apply.

[28] K. Gallagher and D. Binkley. An empirical study of
computation equivalence as determined by decomposi-
tion slice equivalence. In 102" IEEE Working Confer-
ence on Reverse Engineering (WCRE 2003), Victoria,
British Columbia, Canada, Nov. 2003. IEEE Computer
Society Press.

K. Gallagher, T. Hall, and S. Black. Reducing re-
gression test size by exclusion. In 23rd International
Conference on Software Maintenance, pages 157 — 166,
Paris, France, 2007. ISBN 1-4244-1256-0.

K. B. Gallagher and J. R. Lyle. Using program slic-
ing in software maintenance. IEEE Transactions on
Software Engineering, 17(8):751-761, Aug. 1991.

[31] R. Giacobazzi and I. Mastroeni. Non-standard seman-
tics for program slicing. Higher-Order and Symbolic
Computation, 16(4):297-339, 2003.

[32] R. Gopal. Dynamic program slicing based on depen-
dence graphs. In IEEE Conference on Software Main-
tenance, pages 191-200, 1991.

[33] Grammatech Inc. The codesurfer slicing system, 2002.

[34] M. Harman, D. Binkley, and S. Danicic. Amorphous
program slicing. Journal of Systems and Software,
68(1):45-64, Oct. 2003.

[35] M. Harman, A. Lakhotia, and D. Binkley. A frame-
work for static slicers of unstructured programs. Infor-
mation and Software Technology, 48(7):549-565, 2006.

J. Hatcliff, M. B. Dwyer, and H. Zheng. Slicing soft-
ware for model construction. Higher-Order and Sym-
bolic Computation, 13(4):315-353, Dec. 2000.

D. Hisley, M. J. Bridges, and L. L. Pollock. Static
interprocedural slicing of shared memory parallel pro-
grams. In PDPTA ’02: Proceedings of the Inter-
national Conference on Parallel and Distributed Pro-
cessing Techniques and Applications, pages 658-664.
CSREA Press, 2002.

S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. ACM Transactions
on Programming Languages and Systems, 12(1):26-61,
1990.

G. Jayaraman, V. P. Ranganath, and J. Hatcliff.
Kaveri: Delivering the Indus java program slicer to
Eclipse. In LNCS, volume 3442, pages 269-273.
Springer-Verlag, April 2005.

M. Kamkar, N. Shahmehri, and P. Fritzson. Inter-

procedural dynamic slicing. In Proceedings of the 4"
Conference on Programming Language Implementation
and Logic Programming, pages 370-384, 1992.

B. Korel, I. Singh, L. Tahat, and B. Vaysburg. Slicing
of state based models. In IFEFE International Confer-
ence on Software Maintenance (ICSM’03), pages 34—
43, Los Alamitos, California, USA, Sept. 2003. IEEE
Computer Society Press.

J. Krinke. Static slicing of threaded programs. In ACM
SIGPLAN-SIGSOFT Workshop on Program Analy-
sis for Software Tools and Engineering (PASTE’98),
pages 35-42, June 1998.

J. Krinke. Evaluating context-sensitive slicing and
chopping. In IEEE International Conference on Soft-
ware Maintenance, pages 22—-31, Los Alamitos, Califor-
nia, USA, Oct. 2002. IEEE Computer Society Press.

J. Lallchandni and R. Mall. Personal communication,
2008.

[45] L. D. Larsen and M. J. Harrold. Slicing object-oriented

[29]

[30]

[36]

37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

67

software. In Proceedings of the 18th International
Conference on Software Engineering, pages 495-505,
Berlin, 1996.

[46] J. R. Lyle, D. R. Wallace, J. R. Graham, K. B. Gal-
lagher, J. P. Poole, and D. Binkley. Unravel: A CASE
tool to assist evaluation of high integrity software, Vol-
ume 1: Requirements and design. Technical Report NI-
STIR 5691, US Department of Commerce, Technology
Administration, National Institute of Standards and
Technology, Computer Systems Laboratory, Gaithers-
burg, MD 20899., 1995.

J. R. Lyle and M. Weiser. Automatic program bug lo-

cation by program slicing. In 2"? International Confer-
ence on Computers and Applications, pages 877-882,
Los Alamitos, California, USA, 1987. IEEE Computer
Society Press.

[47]

[48] J. R. Lyle and M. D. Weiser. Experiments on slicing-
based debugging aids. In E. Soloway and S. Iyengar,
editors, Empirical Studies of Programmers. Ablex Pub-

lishing Corporation, Norwood, New Jersey, 1986.
A. Maule, W. Emmerich, and D. Rosenblum. Im-

pact analysis of database schema changes. In 20"
IEEE International Conference and Software Engi-
neering (ICSE 2008). IEEE Computer Society Press,
May 2008.

U. Meyer. Techniques for partial evaluation of imper-
ative programs. In Conference on Partial Evaluation
and Semantics—Based Program Manipulation (PEPM).
Association for Computer Machinery, 1991. Proceed-
ings in SIGPlan Notices, 26(9), 1991.

K. J. Ottenstein and L. M. Ottenstein. The program
dependence graph in software development environ-
ments. Proceedings of the ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Soft-
ware Development FEnvironmt, SIGPLAN Notices,
19(5):177-184, 1984.

T. Reps and W. Yang. The semantics of program slic-
ing. Technical Report Technical Report 777, University
of Wisconsin, 1988.

[53] G. Rothermel and M. J. Harrold. Analyzing regres-
sion test selection techniques. IEEE Transactions on
Software Engineering, 22(8):529-551, Aug. 1996.

M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing.
SIGPLAN Not., 42(6):112-122, 2007.

F. Tip. A survey of program slicing techniques. Jour-
nal of Programming Languages, 3(3):121-189, Sept.
1995.

M. Ward. Program slicing via FermaT transfor-

mations. In 26" IEEE Annual Computer Software
and Applications Conference (COMPSAC 2002), pages
357-362, Los Alamitos, California, USA, Aug. 2002.
IEEE Computer Society Press.

[57) M. Ward and H. Zedan. Slicing as a program trans-
formation. ACM Transactions on Programming Lan-
guages and Systems, 29(2), April 2007.

[658] M. Weiser. Programmers use slices when debug-
ging. Communications of the ACM, 25(7):446-452,
July 1982.

[59] M. Weiser. Program slicing. IEEE Transactions on
Software Engineering, 10(4):352-357, 1984.

[60] X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic
slicing algorithms. In IEEE/ACM International Con-

ference on Software Engineering, Portland, Oregon,
May 2003.

[49]

[50]

[51]

[52]

[54]

[55]

[56]

Authorized licensed use limited to: KnowledgeGate from IBM Market Insights. Downloaded on November 20, 2009 at 17:15 from IEEE Xplore. Restrictions apply.

