

Boundary Value Analysis

Blake Neate
327966

 1

Contents

1.0 Introduction 3

2.0 The Testing Problem 3

3.0 The Typing of Languages 3

4.0 Focus of BVA 4

 5.0 Applying Boundary Value Analysis 5

 5.1 Some Important examples 6

5.2 Critical Fault Assumption 7
5.3 Generalising BVA 7
5.4 Limitations of BVA 8

6.0 Robustness Testing 8

7.0 Worst Case Testing 9

7.1Robust Worst Case Testing 10

 8.0 Examples: Test Cases 12
 8.1 Next Date problem 12
 8.2 Tri-angle problem 13

9.0 Conclusion 14

 10.0 References 15

 2

1.0 Introduction

The practice of testing software has become one of the most important aspects of the
process of software creation. When we are testing software the first and potentially most
crucial step is to design test cases. There are many methods associated with test case
design. This report will document the approach known as Boundary Value analysis
(BVA).

As the incredibly influential Dijkstra stated “Testing can show the presence of bugs, but
not the absence”. Although this is true we find that testing can be very good at the first, if
implemented correctly. For this reason we need to know of the techniques available so
we can find the correct method for the system under test (SUT).

We will look at the various topics associated with Boundary Value Analysis and use
some simple examples to show their meaning and purpose. There will be some examples
to show the usefulness of each method. There will be an ongoing “small scale” example
to help picture each method. This will be accompanied by two examples introduced by
P.C. Jorgensen [1]. These will be used to show some more “true to life” requirements for
testing techniques. There will be a chapter detailing test cases for these two more in-
depth examples.

2.0 The Testing Problem

Developing effective and efficient testing techniques has been a major problem when
creating test cases; this has been the point of discussion for many years. There are several
well known techniques associated with creating test cases for a system.

There are many issues that can undermine the integrity of the result from and given test
suite (set of tests) implementation. These issues or questions can be as basic as where do
we start? They can become more complicated when we try to ascertain where testing
should end and if we have covered all the required permutations.

3.0 The Typing Of Languages

The typing of languages can have a large bearing on the effect of the Boundary Value
Analysis approach. Strongly typed languages such as PASCAL and ADA require that all
constants or variables defined must have an associated data type, which dictates the data
ranges of these values upon definition.

A large reason for languages like these to be created was to prevent the nature of errors
that Boundary Value Analysis is used to discover. Although BVA is not completely

 3

ineffective when used in conjunction with languages of this nature, BVA can be seen as
unsuitable for systems created using them.

Boundary Value Analysis is therefore more suitable to more “free-form” languages such
as COBOL and FORTRAN which are not so strongly typed. These are also known as
weak typing languages and can be seen as languages which allow one type (i.e. a String)
to be seen as another (i.e. an Int). This can be useful but it can also cause bugs. These
bugs or errors are normally found in the ranges that BVA operates in and therefore can
find.

4.0 The Focus of BVA

Boundary Value Analysis focuses on the input variables of the function. For the purposes
of this report I will define two variables (I will only define two so that further examples
can be kept concise) X1 and X2. Where X1 lies between A and B and X2 lies between C
and D.

A ≤ X1 ≤ B
C ≤ X2 ≤ D

The values of A, B, C and D are the extremities of the input domain. These are best
demonstrated by figure 4.1.

a

c

b

d

x1

x2 Input Space (domain)

The Yellow shaded area of the graph shows the acceptable/legitimate input domain of the
given function. As the name suggests Boundary Value Analysis focuses on the boundary
of the input space to recognize test cases. The idea and motivation behind BVA is that
errors tend to occur near the extremities of the input variables. The defects found on the
boundaries of these input variables can obviously be the result of countless possibilities.

Figure 4.1

 4

But there are many common faults that result in errors more collated towards the
boundaries of input variables. For example if the programmer forgot to count from zero
or they just miscalculated. Errors in the code concerning loop counters being off by one
or the use of a < operator instead of ≤. These are all very common mistakes and
accompanied with other common errors we find an increasing need to perform Boundary
Value Analysis.

5.0 Applying Boundary Value Analysis

In the general application of Boundary Value Analysis can be done in a uniform manner.
The basic form of implementation is to maintain all but one of the variables at their
nominal (normal or average) values and allowing the remaining variable to take on its
extreme values. The values used to test the extremities are:

• Min ------------------------------------ - Minimal
• Min+ ------------------------------------ - Just above Minimal
• Nom ------------------------------------ - Average
• Max- ------------------------------------ - Just below Maximum
• Max ------------------------------------ - Maximum

In continuing our example this results in the following test cases shown in figures 5.1 and
5.2:

 Figure 5.1

a

c

b

d

x1

x2
Test Cases (function

of two variables)

Figure 5.2

 5

You maybe wondering why it is we are only concerned with one of the values taking on
their extreme values at any one particular time. The reason for this is that generally
Boundary Value Analysis uses the Critical Fault Assumption. There are advantages and
shortcomings of this method. The advantages will be discussed in chapter 5.2, and
alternative methods will be shown in chapter 7.

5.1 Some Important examples

To be able to demonstrate or explain the need for certain methods and their relative
merits I will introduce two testing examples proposed by P.C. Jorgensen [1]. These
examples will provide more extensive ranges to show where certain testing techniques
are required and provide a better overview of the methods usability.

• The NextDate problem

The NextDate problem is a function of three variables: day, month and year. Upon the
input of a certain date it returns the date of the day after that of the input.
The input variables have the obvious conditions:

1 ≤ Day ≤ 31.
1 ≤ month ≤ 12.
1812 ≤ Year ≤ 2012.
(Here the year has been restricted so that test cases are not too large).

There are more complicated issues to consider due to the dependencies between
variables. For example there is never a 31st of April no matter what year we are in. The
nature of these dependencies is the reason this example is so useful to us. All errors in the
NextDate problem are denoted by “Invalid Input Date.”

• The Triangle problem

In fact the first introduction of the Triangle problem is in 1973, Gruenburger. There have
been many more references to this problem since making this one of the most popular
example to be used in conjunction with testing literature.

The triangle problem accepts three integers (a, b and c)as its input, each of which are
taken to be sides of a triangle. The values of these inputs are used to determine the type
of the triangle (Equilateral, Isosceles, Scalene or not a triangle).

For the inputs to be declared as being a triangle they must satisfy the six conditions:

C1. 1 ≤ a ≤ 200.
C2. 1 ≤ b ≤ 200.
C3. 1 ≤ c ≤ 200.

 6

C4. a < b + c.
C5. b < a + c.
C6. c < a + b.

Otherwise this is declared not to be a triangle.
The type of the triangle, provided the conditions are met, is determined as follows:

1. If all three sides are equal, the output is Equilateral.
2. If exactly one pair of sides is equal, the output is Isosceles.
3. If no pair of sides is equal, the output is Scalene.

5.2 Critical Fault Assumption

The Critical Fault Assumption also known as the single fault assumption in reliability
theory. The assumption relies on the statistic that failures are only rarely the product of
two or more simultaneous faults. Upon using this assumption we can reduce the required
calculations dramatically.

The amount of test cases for our example as you can recall was 9. Upon inspection we
find that the function f that computes the number of test cases for a given number of
variables n can be shown as:

f = 4n + 1

As there are four extreme values this accounts for the 4n. The addition of the constant
one constitutes for the instance where all variables assume their nominal value.

5.3 Generalising BVA

There are two approaches to generalising Boundary Value Analysis. We can do this by
the number of variables or by the ranges these variables use. To generalise by the number
of variables is relatively simple. This is the approach taken as shown by the general
Boundary Value Analysis technique using the critical fault assumption.

Generalizing by ranges depends on the type of the variables. For example in the
NextDate example proposed by P.C. Jorgensen [1], we have variable for the year, month
and day. Languages similar to the likes of FORTRAN would normally encode the
month’s variable so that January corresponded to 1 and February corresponded to 2 etc.
Also it would be possible in some languages to declare an enumerated type {Jan, Feb,
Mar,……, Dec}. Either way this type of declaration is relatively simple because the
ranges have set values.

When we do not have explicit bounds on these variable ranges then we have to create our
own. These are know as artificial bounds and can be illustrated via the use of the Tri-

 7

angle problem. The point raised by P.C. Jorgensen was that we can easily impose a lower
bound on the length of an edge for the tri-angle as an edge with a negative length would
be “silly”. The problem occurs when trying to decide upon an upper bound for the length
of each length. We could use a certain set integer, we could allow the program to use the
highest possible integer (normally denoted as something to the effect of MaxInt). The
arbitrary nature of this problem can lead to messy results or non concise test cases.

5.4 Limitations of BVA

Boundary Value Analysis works well when the Program Under Test (PUT) is a “function
of several independent variables that represent bounded physical quantities” [1]. When
these conditions are met BVA works well but when they are not we can find deficiencies
in the results.

For example the NextDate problem, where Boundary Value Analysis would place an
even testing regime equally over the range, tester’s intuition and common sense shows
that we require more emphasis towards the end of February or on leap years.

The reason for this poor performance is that BVA cannot compensate or take into
consideration the nature of a function or the dependencies between its variables. This lack
of intuition or understanding for the variable nature means that BVA can be seen as quite
rudimentary.

6.0 Robustness Testing

Robustness testing can be seen as and extension of Boundary Value Analysis. The idea
behind Robustness testing is to test for clean and dirty test cases. By clean I mean input
variables that lie in the legitimate input range. By dirty I mean using input variables that
fall just outside this input domain.

In addition to the aforementioned 5 testing values (min, min+, nom, max-, max) we use
two more values for each variable (min-, max+), which are designed to fall just outside of
the input range.

If we adapt our function f to apply to Robustness testing we find the following equation:

f = 6n + 1

I have equated this solution by the same reasoning that lead to the standard BVA
equation. Each variable now has to assume 6 different values each whilst the other values
are assuming their nominal value (hence the 6n), and there is again one instance whereby
all variables assume their nominal value (hence the addition of the constant 1). These
result can be seen in figures 6.1 and 6.2.

 8

Robustness testing ensues a sway in interest, where the previous interest lied in the input
to the program, the main focus of attention associated with Robustness testing comes in
the expected outputs when and input variable has exceeded the given input domain. For
example the NextDate problem when we an entry like the 31st June we would expect an
error message to the effect of “that date does not exist; please try again”.

Robustness testing has the desirable property that it forces attention on exception
handling. Although Robustness testing can be somewhat awkward in strongly typed
languages it can show up altercations. In Pascal if a value is defined to reside in a certain
range then and values that falls outside that range result in the run time errors that would
terminate any normal execution. For this reason exception handling mandates Robustness
testing.

a

c

b

d

x1

x2
Robustness Test Cases

(function of two variables)

Figure 6.1

Figure 6.2

7.0 Worst-Case Testing

Boundary Value analysis uses the critical fault assumption and therefore only tests for a
single variable at a time assuming its extreme values. By disregarding this assumption we
are able to test the outcome if more than one variable were to assume its extreme value.
In an electronic circuit this is called Worst Case Analysis. In Worst-Case testing we use
this idea to create test cases.

To generate test cases we take the original 5-tuple set (min, min+, nom, max-, max) and
perform the Cartesian product of these values. The end product is a much larger set of
results than we have seen before.

 9

We can see from the results in figures 7.1 and 7.2 that worst case testing is a more
comprehensive testing technique. This can be shown by the fact that standard Boundary
Value Analysis test cases are a proper subset of Worst-Case test cases.

a

c

b

d

x1

x2
Worst Case Test

Cases (function of two
variables)

 Figure 7.1 Figure 7.2

These test cases although more comprehensive in their coverage, constitute much more
endeavour. To compare we can see that Boundary Value Analysis results in 4n + 1 test
case where Worst-Case testing results in 5n test cases. As each variable has to assume
each of its variables for each permutation (the Cartesian product) we have 5 to the n test
cases.

For this reason Worst-Case testing is generally used for situations that require a higher
degree of testing (where failure of the program would be very costly)with less regard for
the time and effort required as for many situations this can be too expensive to justify.

7.1 Robust Worst-Case Testing

If the function under test were to be of the greatest importance we could use a method
named Robust Worst-Case testing which as the name suggests draws it attributes from
Robust and Worst-Case testing.

Test cases are constructed by taking the Cartesian product of the 7-tuple set defined in the
Robustness testing chapter. Obviously this results in the largest set of test results we have
seen so far and requires the most effort to produce.

 10

 We can see that the function f (to calculate the number of test cases required) can be
adapted to calculate the amount of Robust Worst-Case test cases. As there are now 7
values each variable can assume we find the function f to be:

f = 7n

This function has also been reached in the paper A Testing and analysis tool for Certain
3-Variable functions [2].

The results for the continuing example can be seen in figures 7.3 and 7.4.

Figure 7.3

Figure 7.4

8.0

Examples: Test
Cases

 11

For each example I will show test cases for the standard Boundary Value Analysis and
the Worst-case testing techniques. These will show how the test cases are performed and
how comprehensive the results are. There will not be test cases for Robustness testing or
robust Worst-case testing as the cases covered should explain how the process works.
Too many test cases would prove to be monotonous when trying to explain a concept,
however when presenting a real project when the figures are more “necessary” all test
cases should be detailed and explained to their full extent.

8.1 Next Date problem

Standard Boundary Value Analysis test cases:

Boundary Value Analysis Test Cases
Case month day year Expected Output

1 6 15 1812 June 16, 1812
2 6 15 1813 June 16, 1813
3 6 15 1912 June 16, 1912
4 6 15 2011 June 16, 2011
5 6 15 2012 June 16, 2012
6 6 1 1912 June 2, 1912
7 6 2 1912 June 3, 1912
8 6 30 1912 July 1, 1912
9 6 31 1912 error

10 1 15 1912 January 16, 1912
11 2 15 1912 February 16, 1912
12 11 15 1912 November 16, 1912
13 12 15 1912 December 16, 1912

month
min = 1

min+ = 2
nom = 6

max- = 11
max = 12

day
min = 1

min+ = 2
nom = 15
max- = 30
max = 31

year
min = 1812

min+ = 1813
nom = 1912
max- = 2011
max = 2012

Worst-Case Analysis test cases:

 12

Worst Case Test Cases (60 of 125)
Case month day year Expected Output

1 1 1 1812 January 2, 1812
2 1 1 1813 January 2, 1813
3 1 1 1912 January 2, 1912
4 1 1 2011 January 2, 2011
5 1 1 2012 January 2, 2012
6 1 2 1812 January 3, 1812
7 1 2 1813 January 3, 1813
8 1 2 1912 January 3, 1912
9 1 2 2011 January 3, 2011
10 1 2 2012 January 3, 2012
11 1 15 1812 January 16, 1812
12 1 15 1813 January 16, 1813
13 1 15 1912 January 16, 1912
14 1 15 2011 January 16, 2011
15 1 15 2012 January 16, 2012
16 1 30 1812 January 31, 1812
17 1 30 1813 January 31, 1813
18 1 30 1912 January 31, 1912
19 1 30 2011 January 31, 2011
20 1 30 2012 January 31, 2012
21 1 31 1812 February 1, 1812
22 1 31 1813 February 1, 1813
23 1 31 1912 February 1, 1912
24 1 31 2011 February 1, 2011
25 1 31 2012 February 1, 2012
26 2 1 1812 February 2, 1812
27 2 1 1813 February 2, 1813
28 2 1 1912 February 2, 1912
29 2 1 2011 February 2, 2011
30 2 1 2012 February 2, 2012

Case month day year Expected Output
31 2 2 1812 February 3, 1812
32 2 2 1813 February 3, 1813
33 2 2 1912 February 3, 1912
34 2 2 2011 February 3, 2011
35 2 2 2012 February 3, 2012
36 2 15 1812 February 16, 1812
37 2 15 1813 February 16, 1813
38 2 15 1912 February 16, 1912
39 2 15 2011 February 16, 2011
40 2 15 2012 February 16, 2012
41 2 30 1812 error
42 2 30 1813 error
43 2 30 1912 error
44 2 30 2011 error
45 2 30 2012 error
46 2 31 1812 error
47 2 31 1813 error
48 2 31 1912 error
49 2 31 2011 error
50 2 31 2012 error
51 6 1 1812 June 2, 1812
52 6 1 1813 June 2, 1813
53 6 1 1912 June 2, 1912
54 6 1 2011 June 2, 2011
55 6 1 2012 June 2, 2012
56 6 2 1812 June 3, 1812
57 6 2 1813 June 3, 1813
58 6 2 1912 June 3, 1912
59 6 2 2011 June 3, 2011
60 6 2 2012 June 3, 2012

As we can see there are only 60 of 125 test cases in this example, this shows the vast
amount of test cases produced.

8.2 Tri-angle problem

Standard Boundary Value Analysis test cases:

Case a b c Expected Output
1 100 100 1 Isosceles
2 100 100 2 Isosceles
3 100 100 100 Equilateral
4 100 100 199 Isosceles
5 100 100 200 Not a Triangle
6 100 1 100 Isosceles
7 100 2 100 Isosceles
8 100 199 100 Isosceles
9 100 200 100 Not a Triangle

10 1 100 100 Isosceles
11 2 100 100 Isosceles
12 199 100 100 Isosceles
13 200 100 100 Not a Triangle

Boundary Value Analysis Test Cases

min = 1
min+ = 2

nom = 100
max- =

199
max = 200

Worst-Case Analysis test cases:

 13

Case a b c Expected Output
1 1 1 1 Equilateral
2 1 1 2 Not a Triangle
3 1 1 100 Not a Triangle
4 1 1 199 Not a Triangle
5 1 1 200 Not a Triangle
6 1 2 1 Not a Triangle
7 1 2 2 Isosceles
8 1 2 100 Not a Triangle
9 1 2 199 Not a Triangle

10 1 2 200 Not a Triangle
11 1 100 1 Not a Triangle
12 1 100 2 Not a Triangle
13 1 100 100 Isosceles
14 1 100 199 Not a Triangle
15 1 100 200 Not a Triangle
16 1 199 1 Not a Triangle
17 1 199 2 Not a Triangle
18 1 199 100 Not a Triangle
19 1 199 199 Isosceles
20 1 199 200 Not a Triangle
21 1 200 1 Not a Triangle
22 1 200 2 Not a Triangle
23 1 200 100 Not a Triangle
24 1 200 199 Not a Triangle
25 1 200 200 Isosceles
26 2 1 1 Not a Triangle
27 2 1 2 Isosceles
28 2 1 100 Not a Triangle
29 2 1 199 Not a Triangle
30 2 1 200 Not a Triangle

Case a b c Expected Output
31 2 2 1 Isosceles
32 2 2 2 Equilateral
33 2 2 100 Not a Triangle
34 2 2 199 Not a Triangle
35 2 2 200 Not a Triangle
36 2 100 1 Not a Triangle
37 2 100 2 Not a Triangle
38 2 100 100 Isosceles
39 2 100 199 Not a Triangle
40 2 100 200 Not a Triangle
41 2 199 1 Not a Triangle
42 2 199 2 Not a Triangle
43 2 199 100 Not a Triangle
44 2 199 199 Isosceles
45 2 199 200 Scalene
46 2 200 1 Not a Triangle
47 2 200 2 Not a Triangle
48 2 200 100 Not a Triangle
49 2 200 199 Scalene
50 2 200 200 Isosceles
51 100 1 1 Not a Triangle
52 100 1 2 Not a Triangle
53 100 1 100 Isosceles
54 100 1 199 Not a Triangle
55 100 1 200 Not a Triangle
56 100 2 1 Not a Triangle
57 100 2 2 Not a Triangle
58 100 2 100 Isosceles
59 100 2 199 Not a Triangle
60 100 2 200 Not a Triangle

Worst Case Test Cases (60 of 125)

Again this is only up to 60 of 125 test cases.

9.0 Conclusion

As Glenford J. Myers [3] summarises, we can find that Boundary Value Analysis “if
practised correctly, is one of the most useful test-case-design methods”. But he goes on to
say that it is often used ineffectively as the testers often see it as so simple they misuse it,
or don’t use it to its full potential. This is a very true interpretation of the use of Boundary
Value Analysis.

BVA can provide a relatively simple and formal testing technique that can be very
powerful when used correctly. When issues arise such as dependencies between variables
or a need for foresight into the system’s functionality, we can find Boundary Value
Analysis restrictive (as shown by the NextDate problem).

 14

The underlying fact is that generally Boundary Value Testing techniques are
computationally and theoretically inexpensive in the creation of test cases. For this reason
in many cases it can be desirable in its results to effort ratio. This means that Boundary
Value Analysis still has a part to play in modern day testing practises and should be wit
us for some time to come.

10.0 References

[1] P. Jorgenson, Software Testing- A Craftsman’s Approach, CRC Press, New York,

1995

[2] Naryan C Debnath, Mark Burgin, Haesun K. Lee, Eric Thiemann, A Testing and

analysis tool for Certain 3-Variable functions, Winona State University.

[3] Glenford J. Myers, The Art of Software Testing, John Wiley and Sons, Inc. 2004

 15

