Data Flow Testing

CS-399: Advanced Topics in Computer Science

Mark New (321917)

Abstract

This document discusses data flow testing: a form of structural (white
box) testing that is a variant on path testing, focussing on the definition
and usage of variables, rather than the structure of the program. Two
different topics relating to data flow testing are discussed: define/use
testing, along with a set of test coverage metrics; and the concept of
splitting a program into slices, according to its variables, to ease the
testing of large software systems.

Contents

1 Introduction

2 Example Used

3 Define/Use Testing
4 Program Slices

5 Conclusion

References

13

16

17

1 Introduction

An overwhelming majority of programs written today handle data. Most pro-
gramming language paradigms utilise the concept of variables: marked sec-
tions of memory that can be assigned (and reassigned) a particular value —
for example, an integer or ASCII character. Multiple variables can be used
together to calculate the values of other variables; and variables can receive
their values from other sources — such as human input via a keyboard, for
instance.

This increased level of complexity can result in errors within programs:
references may be made to variables that don’t exist, or the value of variables
may be changed in an unexpected and undesired manner. The concept of Data
Flow Testing allows the tester to examine variables throughout the program,
helping him to ensure that none of the aforementioned errors occur.

Data flow testing can be considered to be a form of structural testing: in
contrast to functional testing, where the program can be tested without any
knowledge of its internal structures, structural testing techniques require the
tester to have access to details of the program’s structure. Data flow testing
focuses on the variables used within a program. Variables are defined and
used at different points within the program; data flow testing allows the tester
to chart the changing values of variables within the program. It does this by
utilising the concept of a program graph: in this respect, it is closely related to
path testing, however the paths are selected on variables.

There are two major forms of data flow testing: the first, called define/use
testing, uses a number of simple rules and test coverage metrics; the second
uses “program slices” — segments of a program.

The importance of analysing the use of variables in programs has been
recognised for a long time. Compilers for languages such as COBOL intro-
duced a feature in which

Variables have been seen as the main areas where a program can be tested
structurally. Early methods of data testing involved static analysis: the com-
piler produces a list of lines at which variables are defined or used. The term
static analysis refers to the fact that the tester does not have to run the pro-
gram to analyse it. Static analysis allows the tester, according to Jorgensen, to
focus on three “define/reference anomalies” [1]:

“A variable that is defined but never used (referenced).
A variable that is used but never defined.
A variable that is defined twice before it is used.”

Static analysis is still used. For instance, a search of the World Wide Web
reveals a number of tools that perform static data flow analysis. One tool, AS-

2

SENT, by Tata Consulting Services, is described as “a global data flow static
analysis tool that automatically ensures conformance of C/C++ and Java
code”!. Another example of a static analysis tool is called LDRA Testbed?.

Dynamic data testing is different: by selecting, for instance, paths through
the program according to the locations and properties of references to vari-
ables within the program code, a program can be analysed in terms of how
the variables are affected, assigned and changed throughout the course of the
program when running with certain test data. This complements (or maybe
even replaces) the concept of selecting paths according to the structure of the
program (looking at its loops, branches etc.).

An alternative approach is to again look at the program according to its
variables; however, this time to ‘slice’ the program into a number of individu-
ally executable components, each focussing on one particular variable at one
particular location within the program. It will then be possible to examine the
program with respect to those variables without having to examine the entire
program. Relationships and linkages between variables can then more easily
be examined, and the slices can be tested individually.

This document will provide a relatively informal and concise description of
these data flow testing techniques, hopefully providing a sense of their useful-
ness as part of an overall testing strategy.

!Website: http://www.tcs.com/0_products/assent/index.htm; description quoted from
http://www.testingfags.org/t-static.html#ASSENT
ZWebsite: http://www.ldra.co.uk/

10

11

12

13

14

15

16

17

2 Example Used

Throughout this document, concepts related to data flow testing will be demon-
strated or illustrated using an example. This example will be briefly outlined
below.

Staff Discount Program

The following program is used in a hypothetical retail situation. The owner
of a shop has decided that her staff can have a 10 percent discount on all
their purchases. If they spend more than £15, then the total discount is in-
creased by 50 pence. The price of each item being purchased is input into
the program. When -1 is entered, the total price is displayed, as well as the
calculated discount and the final price to pay.

For example, the values £5.50, £2.00 and £2.50 are input, equalling £10.00.
The total discount would equal £1.00 (10% of £10.00), with the total price to
pay equalling £9.00.

A second example would have purchases of £10.50 and £5.00, equalling
£15.50. In this case, as the total value is over £15, the discount would be
£2.05 (10% of £15.50 is £1.55, plus 50p as the original total is over £15),
meaning that the total price to pay would be £13.45.

The source code, written in pseudocode, for a program which has been
written to perform the task described above, is shown below:

program Example()
var staffDiscount, totalPrice, finalPrice, discount, price
staffDiscount = 0.1
totalPrice = 0
input (price)
while(price != -1) do
totalPrice = totalPrice + price
input (price)
od
print("Total price: " + totalPrice)
if (totalPrice > 15.00) then
discount = (staffDiscount * totalPrice) + 0.50
else
discount = staffDiscount * totalPrice
fi
print("Discount: " + discount)
finalPrice = totalPrice - discount

18

19

@@

Figure 1: The program graph for the example code

print("Final price: " + finalPrice)
endprogram

The program (or control flow) graph for this program is shown in figure 1.
Each node in the graph corresponds to a statement in the program®; however,
lines 1 and 2 do not correspond to any node. This is because these lines are
not used in the actual code of the program: they are used by the compiler
to indicate the start of the program and to assign space in memory for the
variables respectively. Similarly, lines consisting entirely of comments would
not be included in the graph.

The while and if-then-else code blocks in the program are represented on
the graphs in a clear way. Nodes 6 to 9 correspond to the while loop, and
nodes 11 to 15 correspond to the if-then-else block. The iteration of the while
look is represented by a loop from 6 to 9; when the price variable equals -1,
the flow of control goes from node 6 to 10.

The program graph shows that there is no loop within the if-then-else
block: the flow of control can go from node 11 to either node 12 or node
14. This corresponds to the different paths that could be followed within the
if-then-else block: either the condition evaluates to true, at which point line
12 is executed, or the condition evaluates to false, so line 14 is executed.

Program graphs allow the tester to view the structure of the program vi-
sually. The structure of programs with many control-flow statements (if state-
ments, while loops, etc.), particularly when nested, can be difficult to deci-
pher when viewed in source code form. Generating program graphs allows
the tester to make use of certain data flow testing techniques. These will be
covered in the next section.

3Strictly, the node corresponds to a statement fragment — for instance, in a language such
as C, multiple actions can be combined into one statement, using a semi-colon as a delimiter.
For example: function1(); function2(); ¢ = function3();. In addition, multiple
conditions can be used in a control-flow statement. For example: if(x == 2 || y == 3).

5

3 Define/Use Testing

Define/Use testing uses paths of the program graph, linked to particular nodes
of the graph that relate to variables, to generate test cases. The term “De-
fine/Use” refers to the two main aspects of a variable: it is either defined (a
value is assigned to it) or used (the value assigned to the variable is used else-
where — maybe when defining another variable). Define/use testing was first
formalised by Sandra Rapps and Elaine Weyuker in the early 1980s [2].

Define/use testing is meant for use with structured programs. The pro-
gram is referred to as B and its graph as G(P). The program graph has single
entry and exit nodes, and there are no edges from a node to itself. The set of
variables within the program is called V, and the set of all the paths within the
program graph P(G) is PATHS(P).

Within the context of define/use testing, with respect to variables there are
two types of nodes: defining nodes and usage nodes. The nodes are defined
as follows:

Defining nodes, referred to as DEF(v, n): Node n in the program
graph of P is a defining node of a variable v in the set V if and
only if at n, v is defined. For example, with respect to a variable X,
nodes containing statements such as “input x” and “x = 2” would
both be defining nodes.

Usage nodes, referred to as USE(v, n): Node n in the program
graph of P is a usage node of a variable v in the set V if and only
if at n, v is used. For example, with respect to a variable x, nodes
containing statements such as “print x” and “a = 2 + x” would
both be usage nodes.

Usage nodes can be split into a number of types, depending on how the
variable is used. For instance, a variable may be used when assigning a value
to another variable, or it may be used when making a decision that will affect
the flow of control of the program.

The two major types of usage node are:

e P-use: predicate use — the variable is used when making a decision (e.g.
if b> 6).

e C-use: computation use — the variable is used in a computation (for
example, b = 3 + d — with respect to the variable d).

There are also three other types of usage node, which are all, in effect,
subclasses of the C-use type:

a. @

Figure 2: An example of a DU-path

e O-use: output use — the value of the variable is output to the external
environment (for instance, the screen or a printer).

e L-use: location use — the value of the variable is used, for instance, to
determine which position of an array is used (e.g. a[b]).

e I-use: iteration use — the value of the variable is used to control the
number of iterations made by a loop (for example: for (int i = 0;
i <= 10; i++)).

Looking at the example covered in section 2, for the variable totalPrice
table 1 lists the defining and usage nodes (the particular instance of the vari-
able being referred to is highlighted in bold text).

Node | Type Code
4 DEF totalPrice = 0
7 DEF totalPrice = totalPrice + price
7 USE totalPrice = totalPrice + price
10 | USE print("Total price: " + totalPrice)
11 USE if(totalPrice > 15.00) then
12 USE | discount = (staffDiscount * totalPrice) + 0.50
14 | USE discount = staffDiscount * totalPrice
17 | USE finalPrice = totalPrice - discount

Table 1: The defining and usage nodes for the variable totalPrice

With these nodes, some useful paths can be generated.

Definition-use (du) paths: A path in the set of all paths in P(G)
is a du-path for some variable v (in the set V of all variables in the
program) if and only if there exist DEF (v, m) and USE(v, n) nodes
such that m is the first node of the path, and n is the last node.

a. Q@

Figure 3: An example of a DU-path that is also definition-clear

Definition-clear (dc) paths: A path in the set of all paths in P(G)
is a dc-path for some variable v (in the set V of all variables in the
program) if and only if it is a du-path and the initial node of the
path is the only defining node of v in the path.

Figure 2 shows an example of a du-path for a variable x in a hypotheti-
cal program. However, this path is not definition-clear, as there is a second
defining node within the path. Figure 3, on the other hand, is definition-clear.

Looking at the example in section 2, for the price variable there are two
defining nodes and two usage nodes, as listed below:

e Defining nodes:

— DEF(price, 5)
— DEF(price, 8)

e Usage nodes:
— USE(price, 6)
— USE(price, 7)
Therefore, there are four du-paths:
o <5, 6>
e <5,6,7>
e <8,9, 6>
e <8,9 6, 7>

All of these paths are definition-clear, so they are all dc-paths.

A naive method of generating du-paths would be to use the Cartesian prod-
uct of the set of defining nodes with the set of usage nodes. This is because
this will often result in a number of infeasible paths: that is, paths that cannot
be followed.

Rapps-Weyuker Metrics

Associated with the concepts discussed in the previous section are a set of test
coverage metrics, also defined by Sandra Rapps and Elaine Weyuker in the
early 1980s [2]. The metrics — a set of criteria, essentially — allow the tester to
select sets of paths through the program, where “the number of paths selected
is always finite, and chosen in a systematic and intelligent manner in order to
help us uncover errors”.

Paths through the program are selected, and test data — to be input into
the program — is also selected to cover these paths (the percentage of coverage
according to the set of paths selected). Having the set of paths contain all
possible paths of the program (known as the All-Paths criterion, according to
the Rapps/Weyuker nomenclature) is often infeasible, as the number of loops
possible through the program — and therefore the number of potential paths
to test — can often be infinite.

Nine criteria have been defined in the literature. Three correspond to the
metrics used in path testing, where the paths selected are not chosen according
to their variables and their attributes, but rather by an analysis of the structure
of the program. These metrics are known as All-Paths (which has already been
mentioned above), All-Edges and All-Nodes. All-Paths, which corresponds to
the concept of ‘path coverage’, is satisfied if every path of the program graph
is covered in the set. All-Edges, which corresponds to ‘branch coverage’, is
satisfied if every edge (branch) of the program graph is covered. All-Nodes,
which corresponds to ‘statement coverage’, is satisfied if every node is covered
by the set of paths. In addition to these metrics, six new metrics were defined:
All-DU-Paths, All-Uses, All-C-Uses/Some-P-Uses, All-P-Uses/Some-C-Uses, All-
Defs and All-P-Uses. Definitions (adapted from the definitions in [2, 1]) of
these metrics are provided below:

e The set of paths satisfies All-Defs for P if and only if, within the set of
paths chosen, every defining node for each variable in the program has
a definition-clear path to a usage node for the same variable, within the
set of paths chosen.

e The set of paths satisfies All-P-Uses for P if and only if, within the set of
paths chosen, every defining node for each variable in the program has
a definition-clear path to every P-use node for the same variable.

e The set of paths satisfies All P-Uses/Some C-Uses for P if and only if]
within the set of paths chosen, every defining node for each variable in
the program has a definition-clear path to every P-use node for the same

variable: however, if there are no reachable P-uses, the definition-clear
path leads to at least one C-use of the variable.

e The set of paths satisfies All C-Uses/Some P-Uses for P if and only if]
within the set of paths chosen, every defining node for each variable in
the program has a definition-clear path to every C-use node for the same
variable: however, if there are no reachable C-uses, the definition-clear
path leads to at least one P-use of the variable.

e The set of paths satisfies All-Uses for P if and only if, within the set of
paths chosen, every defining node for each variable in the program has
a definition-clear path to every usage node for the same variable.

e The set of paths satisfies All-DU-Paths for P if and only if, the set of paths
chosen contains every feasible DU-path for the program.

Different criteria are supplied so that the tester can make what is described
by Rapps and Weyuker as a “tradeoff” [2]. Although, in an ideal world, a pro-
gram would be tested as thoroughly and ‘completely’ as possible — for exam-
ple, with respect to structural testing, each and every possible combinations of
nodes, branches, conditions, etc. would be tested thoroughly with every feasi-
ble combination of test data — in reality, a number of factor impede on this. For
instance: time constraints; financial constraints; a situation where all ‘major’
areas of the system under test have been deemed to have been tested satisfac-
torily; or even the level of criticality — is the program’s stability and reliability
a critical factor (for instance, would lives be threatened if an error occurred
in the program? Yes, if the program is controlling an aeroplane; no, if the
program is controlling the in-flight games system for passengers!). Rapps and
Weyuker have defined their “strongest” criterion to be All-DU-Paths; Jorgensen
states that “the generally accepted minimum [is] All-Edges” [1].

Rapps and Weyuker noted that there was a relationship between the differ-
ent metrics: certain metrics expanded upon other metrics — that is, if a set of
paths satisfied a certain metric, then it also satisfied all the other metrics below
it (for example, if All-Paths is satisfied, then so are All-DU-Paths and All-Uses).
A diagram, created by Rapps and Weuyker, showing the relationship between
metrics is shown in figure 4. This relationship was later described by Clarke et
al. [3] as “subsumption”.

In the diagram (figure 4), the arrows show the relationship between met-
rics. For example, All-Paths subsumes (or is stronger than) All-DU-Paths. How-
ever, Rapps and Weyuker describe that, during the development of the metrics,
they had found that All-Defs is “not necessarily” stronger than All-Edges and

10

All-DU-Paths

All-Edges

All-Nodes

Figure 4: The Rapps-Weyuker Metrics [2]

All-Nodes: “in fact, the criteria are “incomparable” in the sense that it is pos-
sible for a given def-use graph G and sets of complete paths P1 and P2, that
P1 satisfies all-edges, but not all-defs for G, while P2 satisfies all-defs, but not
all-edges. Similarly, all-nodes and all-defs are shown to be incomparable.” [2].

This ‘incomparability’ meant that different criteria had to be found: at
this point, Rapps and Weyuker established that there were two types of us-
age node — computational use (C-use) and predicate use (P-use). Therefore
the three criteria All-P-Uses, All-P-Uses/Some-C-Uses, All-C-Uses/Some-P-Uses
were defined. According to Rapps and Weyuker, All-P-Uses/Some-C-Uses pro-
vided “a way to satisfy our goal which includes All-Defs and All-Edges, but
requires fewer test cases, in general, than ...All-Uses”. All-C-Uses/Some-P-
Uses was defined to allow tests to be defined where the “emphasis [is[on the
flow of data rather than the flow of control (as in the case of all-p-uses/some-
c-uses)” [2].

Tool support

This aspect of data flow testing is particularly suited to a level of automation
using a software tool: indeed, Rapps and Weyuker state in their paper that
“determining whether or not the criteria have been fulfilled can be checked

11

for mechanically. That is, we can write a program which can determine for a
given program, test set, and selection criterion, whether or not the paths that
would be traversed by the test set satisfy the criterion” [2]. However, outside
the academic world, the proliferation of these tools does not seem to have
taken off.

A search of academic journals has found two software tools that can auto-
mate (to a degree) the data flow testing process. The first, written by, amongst
others, Elaine Weyuker and Phyllis Frankl, is called ASSET. ASSET works with
programs written in the Pascal programming language [4]. Another data flow
coverage tool, for the C programming language, was written by J. R. Horgan
and S. London at Bellcore [5].

12

4 Program Slices

The concept of program slicing was first proposed by Mark Weiser in the early
1980s [6, 7]. According to Weiser, “slicing is a source code transformation
of a program” [6], which allows a subset of a program, corresponding to a
particular behaviour, to be looked at individually. This gives the benefit that a
“programmer maintaining a large, unfamiliar program” does not have to un-
derstand “an entire system to change only a small piece” [6]. The concept
of program slicing was extended to cover software maintenance by Keith Gal-
lagher and James Lyle in 1991 [8], extending slices to become “independent
of line numbers”. Amended definitions of the program slice concept are given
in Paul Jorgensen’s book [1].

A program slice with respect to a variable at a certain point in the program,
is the set of program statements from which the value of the variable at that
point of the program is calculated. This definition can be amended to encom-
pass the program graph concept: by replacing the set of program statements
with nodes of the program graph. This allows the tester to find the list of
usage nodes from the graph, and then generate slices with them.

Program slices use the notation S(V, n), where S indicates that it is a pro-
gram slice, V is the set of variables of the slice and n refers to the statement
number (i.e. the node number with respect to the program graph) of the slice.

So, for example, with respect to the price variable given in the example
in section 2, the following are slices for each use of the variable:

e S(price, 5) = {5}

e S(price, 6) = {5, 6, 8, 9}

e S(price, 7) = {5, 6, 8, 9}

e S(price, 8) = {8}

To generate the slice S(price, 7), the following steps were taken:

e Lines 1 to 4 have no bearing on the value of the variable at line 7 (and,
for that matter, for no other variable at any point), so they are not added
to the slice.

e Line 5 contains a defining node of the variable price that can affect the
value at line 7, so 5 is added to the slice.

e Line 6 can affect the value of the variable as it can affect the flow of
control of the program. Therefore, 6 is added to the slice.

13

e Line 7 is not added to the slice, as it cannot affect the value of the vari-
able at line 7 in any way.

e Line 8 is added to the slice — even though it comes after line 7 in the
program listing. This is because of the loop: after the first iteration of
the loop, line 8 will be executed before the next execution of line 7. The
program graph in figure 1 shows this in a clear way.

e Line 9 signifies the end of the loop structure. This affects the flow of
control (as shown in figure 1, the flow of control goes back to node 6).
This indirectly affects the value of price at line 7, as the value stored in
the variable will have almost certainly been changed at line 8. Therefore,
9 is added to the slice.

e No other line of the program can be executed before line 7, and so cannot
affect the value of the variable at that point. Therefore, no other line is
added to the slice.

The program slice, as already mentioned, allows the programmer to focus
specifically on the code that is relevant to a particular variable at a certain
point. However, the program slice concept also allows the programmer to
generate a lattice of slices: that is, a graph showing the subset relationship
between the different slices. For instance, looking at the previous example for
the variable price, the slices S(price, 5) and S(price, 8) are subsets of S(price,
7).

With respect to a program as a whole, certain variables may be related to
the values of other variables: for instance, a variable that contains a value
that is to be returned at the end of the execution may use the values of other
variables in the program. For instance, in the main example in this document,
the finalPrice variable uses the totalPrice variable, which itself uses
the price variable. The finalPrice variable also uses the discount vari-
able, which uses the staffDiscount and totalPrice variables — and so on.
Therefore, the slices of the totalPrice and discount variables are a subset of the
slice of the finalPrice variable at lines 17 and 18, as they both contribute to the
value. This subset relationship ‘ripples down’ to the other variables, according
to the use-relationship described.

This is shown visually in the following example:

e S(staffDiscount, 3) = {3}
e S(totalPrice, 4) = {4}
e S(totalPrice, 7) = {4, 5, 6, 7, 8}

14

S(staffDiscount, 3)

S(totalPrice, 17)

et 1)
A \

S(discount, 14)

S(finalPrice, 17)

Figure 5: The Program Slice Lattice

S(totalPrice, 11) = {4, 5, 6, 7, 8}

S(discount, 12) = {3, 4, 5,6, 7, 8, 11, 12}

S(discount, 14) = {3, 4, 5, 6, 7, 8, 13, 14}

S(finalPrice, 17) = {3,4,5,6, 7,8, 11, 12, 13, 14, 17}

Therefore, the lattice of slices for the finalPrice variable is as shown in
figure 5. This relationship, as shown in the lattice diagram, can feasibly help
during testing, particularly if there’s a fault. For instance, if there is an error in
the slice of finalPrice, then, by testing the different subset slices, you can
eliminate them from the possible sources of the error (for instance, the error
may be generated from an incorrect calculation of the discount, for instance).
If there is no error in the subset slices, then the error must be found in the
remaining lines of code. As it is a set of statement fragments, this means that
the remaining lines of code are the relative complement of the slice. In other
words, the error is likely to be in:

Fullslice — SubsetSlices

If there is an error, then there could be errors in either the subsets, the
code or both.

The relationship between slices also shows the interactions between vari-
ables in the code: if a slice for a variable x is a subset of a slice for a variable
y, then the value of x must be needed by y. By generating the lattice, the
tester can hopefully discover any unnecessary or undesired interactions be-
tween variables.

15

5 Conclusion

The concepts of define/use testing and slice a program by its variables allow
the tester to examine the program in a different way. Since an overwhelming
majority of programs are written using variables, and therefore rely on the
patterns of variable definition and use being correct (as well as the values
assigned to the variable), data flow testing can be viewed as a useful addition
to the tester’s toolbox.

However, there are real constraints on the amount of testing that can be
achieved. Much of the software in use everyday — be it in the most obvious
location, on a computer, to the less obvious, such as a modern automatic wash-
ing machine with variable programme, spin cycle and temperature controls,
to the control and auto-pilot systems in a modern commercial airliner (as used
on trans-Atlantic flights, say) — is created, programmed and tested by commer-
cial enterprises. These companies will often have very tight time and budget
constraints, which will limit the amount of testing that can be achieved. There-
fore, compromises have to be made. The temptation may be to focus more on
the functional (black box) aspects of testing, without focussing as much on the
structural (white box) testing. This may produce some results; however, it can
be argued that, without a detailed knowledge of the structure of the software
system, faults may be missed that can’t be accounted for by merely testing the
accessible interface of the system.

It is possible to focus on the physical structure (loops and branches, for
instance) of the program, using path testing. However, there may still be
faults that are missed with this, and the ‘strongest’ metric, path coverage, can
often be impossible to achieve. The next strongest metric, branch coverage,
is described as “the generally accepted minimum” metric by Jorgensen [1],
when considered alongside data flow testing metrics and methods. Therefore,
some degree (different metrics have been provided by Rapps and Weyuker
to establish minimum achievable standards) of data flow testing should be
considered as part of an overall testing strategy, along with program slicing
techniques which, especially on larger projects with large teams of developers
can help with understanding the workings of the code (for both the tester and
developer), and hopefully increase the number of faults that are detected in
the system during testing. Whilst adopting a data testing metric and program
slicing techniques may not detect all faults, the fact that it can help to detect
faults that may not be obvious during functional testing (or even other forms
of structural testing) means that at least some level of data flow testing should
be seriously considered during the testing process.

16

References

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

P C. Jorgensen, Software Testing: A Craftsman’s Approach. CRC Press,
2nd ed., 2002.

S. Rapps and E. J. Weyuker, “Selecting software test data using data flow
information.,” IEEE Trans. Software Eng., vol. 11, no. 4, pp. 367-375,
1985.

L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil, “A formal
evaluation of data flow path selection criteria.,” IEEE Trans. Software Eng.,
vol. 15, no. 11, pp. 1318-1332, 1989.

P G. Frankl and E. J. Weyuker, “An applicable family of data flow testing
criteria.,” IEEE Trans. Software Eng., vol. 14, no. 10, pp. 1483-1498, 1988.

J. R. Horgan and S. London, “Data flow coverage and the C language.,” in
Symposium on Testing, Analysis, and Verification, pp. 87-97, 1991.

M. Weiser, “Program slicing.,” in ICSE, pp. 439-449, 1981.

M. Weiser, “Program slicing.,” IEEE Trans. Software Eng., vol. 10, no. 4,
pp. 352-357, 1984.

K. B. Gallagher and J. R. Lyle, “Using program slicing in software mainte-
nance.,” IEEE Trans. Software Eng., vol. 17, no. 8, pp. 751-761, 1991.

17

