
Swansea University

Computer Science Department

CS 339
Supervisors: Dr. M. Roggenbach, Prof. Holger Schlingloff

Equivalence Class Testing

Garreth Davies

12/01/07

Equivalence Class Testing Garreth Davies

 2

Abstract

This document describes techniques used by testers to test computer software.
It primarily focuses on the concept of Equivalence Class testing, but also gives
an insight into boundary-value testing and decision-based table testing. A brief
overview of functional testing is also mentioned.

Equivalence Class Testing Garreth Davies

 3

1 INTRODUCTION ... 4

2 BACKGROUND.. 5

2.1 WHAT IS EQUIVALENCE CLASS TESTING? .. 5

3 APPLICATIONS OF EQUIVALENCE CLASS TESTING ... 6

3.1 WEAK NORMAL EQUIVALENCE CLASS TESTING... 6
3.2 STRONG NORMAL EQUIVALENCE CLASS TESTING.. 7
3.3 WEAK ROBUST EQUIVALENCE CLASS TESTING.. 7
3.4 STRONG ROBUST EQUIVALENCE CLASS TESTING ... 8

4 THE EQUIVALENCE RELATION.. 9

4.1 AN EXAMPLE - THE NEXTDATE FUNCTION .. 9
4.1.1 First Attempt .. 9
4.1.2 Second Attempt... 11

5 FUNCTIONAL TESTING OVERVIEW .. 13

6 CONCLUSION.. 14

6.1 FURTHER WORK ... 14

7 REFERENCES .. 15

Equivalence Class Testing Garreth Davies

 4

1 Introduction

One of if not the most important steps in producing good-rate software is testing.
Testing is often overlooked as an almost unnecessary step in the software
process. However software developers are now realizing the vital role that
testing plays in securing successful software. More time and money is being
spent on testing software. It is cheaper for a company to test their software
thoroughly than to spend less time on testing and find out they must recall their
software and re-design it because of faulty code. The U.S. Commerce
Department has estimated that buggy software costs nearly $60 billion annually,
and that at least $22.2 billion worth of those bugs could have been prevented
with more thorough testing [1].

Testing however can be split up into two key areas

1. Functional Testing (Black Box) and
2. Structural Testing (White Box).

Structural testing focuses on what a system is composed of and how it is
structured. However this paper will focus on aspects of functional testing and will
not delve any further into structural testing.

The principal aim behind functional testing is to assess how well a system
executes the functions it is suppose to. This could be anything from how well a
GUI application works to how a particular search performs. Functional Testing
takes an external perspective of the system and carries out tests based on input
into a function and output out of that function. Comparing an expected output
with the output produced by the function will determine whether the test was
successful.

Within functional testing are three different kinds of testing

• Boundary-Value testing,
• Equivalence Class testing and

• Decision Table-Based testing.

The focus of this paper will be on Equivalence Class testing, which is a step
beyond Boundary-value testing and a step behind decision based table testing in
terms of sophistication. Equivalence Class testing is a powerful method of
testing since it cuts down the number of test cases required to test a system
reasonably with regards to Boundary-Value testing.

Equivalence Class Testing Garreth Davies

 5

2 Background

2.1 What is Equivalence Class Testing?

Equivalence class testing is the next logical step in our model of functional
testing. This technique improves the quality of test cases by removing the vast
amounts of redundancy and gaps that appeared in boundary-value testing. The
fundamental principal behind this method is the formation of Equivalence classes.

Input or output data is grouped or partitioned into sets of data that we expect to
behave similarly using an Equivalence relation. An equivalence relation
describes how data is going to be processed when it enters a function. It is here
where most of the time and effort is required in equivalence class testing.
Creating a strong equivalence relation will result in optimal and useful test cases,
on the contrary a poorly designed equivalence relation will often result in surplus
test cases with inadequate results.

This diagram (Figure 2.1) represents our set of data (input or output) that we
wish to use to produce test cases. The data is split up into subsets, each subset
containing some of the original data. The two points to note here would be the
facts that the whole set is being included ensuring notion of completeness and
the disjoint ness between subsets ensures non redundancy. The way in which
these subsets are created depends on the type of equivalence relation used.
Now that we have split our data up into groups we can carry out our test cases.

Since we have used an equivalence relation to split the data we can safely make
the assumption that all data within a subset will behave similarly. Thus instead of
testing the whole subset we can just take one point, p and say that:

Figure 2.1

Equivalence Class Testing Garreth Davies

 6

If we produce a test case using point p then the result will be the same as
all the points x1 to xn within the subset.

From this property of equivalence class testing we can see that redundancy is
greatly reduced, since only one point from each subset needs to be “checked”. It
is this property that produces Equivalence Class Testings biggest advantage.
We are able to greatly reduce redundancy and improve our test cases by
eliminating gaps.

3 Applications of Equivalence Class Testing

There are two main properties that underpin the methods used in functional
testing. The single fault assumption and the multiple fault assumption. These
two properties lead to two different types of equivalence class testing, weak and
strong. However if we decide to test for invalid input/output as well as valid
input/output we can produce another two different types of Equivalence Class
Testing, normal and robust. Robust Equivalence Class testing takes into
consideration the testing of invalid values, whereas normal does not. Therefore
we now have four different types of Equivalence Class Testing, namely weak
normal, strong normal, weak robust and strong robust.

3.1 Weak Normal Equivalence Class Testing

Weak equivalence class testing is based on the single fault assumption, stating
that rarely is an error caused as a result of two or more faults occurring
simultaneously. Therefore weak equivalence class testing only takes one
variable from each equivalence class (figure 3.1).

x1

x2

e

g

f

a b c d
Figure 3.1

Equivalence Class Testing Garreth Davies

 7

3.2 Strong Normal Equivalence Class Testing

Conversely Strong Equivalence Class testing is based on the multiple
assumption which states that errors will result in a combination of faults.
Therefore strong equivalence class testing tests every combination of elements
formed as a result of the Cartesian product of the Equivalence relation
(figure 3.2).

3.3 Weak Robust Equivalence Class Testing

As with weak normal Equivalence Class testing we only test for one variable from
each Equivalence Class. However we now also test for invalid values as well.
Since weak Equivalence Class Testing is based on the single fault assumption a
test case will have one invalid value and the remaining values will all be valid.

x1

x2

e

g

f

a b c d

x1

x2

e

g

f

a b c d

Figure 3.2

Figure 3.3

Equivalence Class Testing Garreth Davies

 8

3.4 Strong Robust Equivalence Class Testing

This form of Equivalence Class testing produces test cases for all valid and
invalid elements of the Cartesian product of all the equivalence classes.

As seen from the diagrams above there are problems when moving from weak
Equivalence Class testing to strong. The main problem being that we encounter
massive redundancy, especially during strong robust equivalence class testing.
This takes us a step backwards towards boundary-value testing, the whole
concept behind equivalence class testing is to produce useful test cases while
reducing redundancy. During strong robust equivalence class testing the first is
usually achieved while the latter is not.

There are other problems with robust equivalence class testing that hinder the
overall progress of testing. Testers use a specification which tells them what the
expected outputs should be when entering test cases into a system. More often
than not the specification will not identify expected outputs for invalid test cases.
This means that testers have to spend excessive time defining expected outputs
for invalid test cases, slowing the overall progress of the testing process down.

Another vital problem of robust equivalence class testing is that it might in effect
be a waste of time. The birth of strongly typed languages has discarded the
need to test for invalid inputs.

x1

x2

e

g

f

a b c d
Figure 3.4

Equivalence Class Testing Garreth Davies

 9

4 The Equivalence Relation

The equivalence relation as stated earlier is a vital aspect to equivalence class
testing. The whole process of producing optimal and useful test cases is pivoted
around creating a meaningful equivalence relation. To understand this view we
will look at the NextDate Function as illustrated in the book, A Craftsman’s
Approach [2].

4.1 An Example - The NextDate Function

The NextDate function is a function which will take in a date as input and
produces as output the next date in the Georgian calendar. It uses three
variables (day, month and year) which each have valid and invalid intervals.

4.1.1 First Attempt

A first attempt at creating an equivalence relation might produce intervals such
as these:

Valid Intervals

M1 = { month : 1 ≤ month ≤ 12 }
D1 = { day : 1 ≤ day ≤ 31 }
Y1 = { year : 1812 ≤ year ≤ 2012 }

Invalid Intervals

M2 = { month : month < 1 }
M3 = { month : month > 12 }
D2 = { day : day < 1 }
D3 = { day : day > 31 }
Y2 = { year : year < 1812 }
Y3 = { year : year > 2012 }

At a first glance it seems that everything has been taken into account and our
day, month and year intervals have been defined well. Using these intervals we
produce test cases using the four different types of Equivalence Class testing.

Weak and Strong Normal

 Day Month Year Expected Output

15 6 1912 16/6/1912

Figure 4.1

Equivalence Class Testing Garreth Davies

 10

Since the number of variables is equal to the number of valid classes, only one
weak normal equivalence class test case occurs, which is the same as the strong
normal equivalence class test case (figure 4.1).

Weak Robust

Here (figure 4.2) we can see that weak robust equivalence class testing will just
test the ranges of the input domain once on each class. Since we are testing
weak and not normal, there will only be at most one fault per test case (single
fault assumption) unlike Strong Robust Equivalence class testing.

Strong Robust

This is a table showing one corner of the cube in 3d-space (the three other
corners would include a different combination of variables) since the complete
table would be too large to show.

Day Month Year Expected Output

15 -1 1912 Value of month not in the range 1..12

-1 6 1912 Value of day not in the range 1..31

15 6 1811 Value of year not in the range 1812..2012

-1 -1 1912 Value of month not in the range 1..12

 Value of day not in the range 1..31

-1 6 1811 Value of day not in the range 1..31

 Value of year not in the range 1812..2012

15 -1 1811 Value of month not in the range 1..12

 Value of year not in the range 1812..2012

-1 -1 1811 Value of month not in the range 1..12

 Value of day not in the range 1..31

 Value of year not in the range 1812..2012

Day Month Year Expected Output

15 6 1912 16/6/1912

-1 6 1912 day not in range

32 6 1912 day not in range

15 -1 1912 month not in range

15 13 1912 month not in range

15 6 1811 year not in range

15 6 2013 year not in range

Figure 4.2

Figure 4.3

Equivalence Class Testing Garreth Davies

 11

The multiple fault assumption is clearly visible in these test cases produced by
strong robust equivalence class testing (figure 4.3). Not only can one fault be
responsible for producing an invalid input, it can also be a combination of two
and finally all three variables.

The previous test cases produced by our original equivalence relation are
inadequate. They do not address the NextDate function problem satisfactorily.
We get information from the test cases such to the limits of a year, month and
day, but there is no information specific to a Georgian style calendar. This is due
to poor design when we created our equivalence relation. In our new design we
must think about questions such as:

• What happens when a month only has 30 days?
• What happens if the month is February?
• What happens if we have a leap year and the month is February?

4.1.2 Second Attempt

As said before the equivalence relation is vital in producing useful test cases and
more time must be spent on designing it. If we focus more on the equivalence
relation and consider more greatly what must happen to an input date we might
produce the following equivalence classes:

M1 = { month : month has 30 days }
M2 = { month : month has 31 days }
M3 = { month : month is February }

Here month has been split up into 30 days (April, June, September and
November), 31 days (January, March, April, May, July, August, October and
December) and February.

D1 = { day : 1 ≤ day ≤ 28 }
D2 = { day : day = 29 }
D3 = { day : day = 30 }
D4 = { day : day = 31 }

Day has been split up into intervals to allow months to have a different number of
days, we also have the special case of a leap year (February 29 days).

Y1 = { year : year = 2000 }
Y2 = { year : year is a leap year }
Y3 = { year : year is a common year }

Year has been split up into common years, leap years and the special case the
year 2000 so we can determine the date in the month of February.

Equivalence Class Testing Garreth Davies

 12

Here are the test cases for the new equivalence relation using the four types of
Equivalence Class testing.

Weak Normal

Strong Normal

Looking at our test cases here we can see that we have impossible dates as
output. This is because Equivalence class testing uses automatic test generation,
meaning values are selected automatically, roughly from the middle of each class.
Due to values being automatically selected we can see how this process has no
knowledge of a Georgian calendar. Dates that would be interesting and useful to
a tester would be on leap years in February where the date is the 28th or 29th.
Other useful dates would be at the end of months to test whether the months
have the correct number of days in them. Automatic test generation does not
take these kinds of details into consideration and so this will always be a problem.

As noted previously the move from weak to normal testing produces vast
amounts of redundancy. If we were to show the Strong robust equivalence class
test cases then we would have 150 test cases!

Day Month Year Expected Output

14 6 2000 15/6/2000

29 7 1996 30/7/1996

30 2 2002 impossible date

31 6 2000 impossible input date

Day Month Year Expected Output

14 6 2000 15/6/2000

14 6 1996 15/6/1996

14 6 2002 14/6/2002

29 6 2000 30/6/2000

29 6 1996 30/6/1996

29 6 2002 30/6/2002

30 6 2000 1/6/1996

30 6 1996 1/6/1992

… … … …

30 2 2002 impossible date

31 2 2000 impossible date

31 2 1996 impossible date

31 6 2002 impossible date

Figure 4.4

Figure 4.5

Equivalence Class Testing Garreth Davies

 13

Although this equivalence relation is not perfect it is a significant improvement on
our first attempt, we can now relate our Nextdate function to the Georgian
calendar. This simple example illustrates how crucial it can be to produce a high
quality Equivalence Relation.

5 Functional Testing Overview

As mentioned earlier within functional testing there are three different types of
testing, each with their own advantages and disadvantages. These can be
illustrated by the diagrams below.

Figure 5.1 shows the relationship between the numbers of test cases produced
by a testing type against the level of sophistication of that testing type.
Sophistication describes how useful the test cases produced by the testing type
are in testing a particular function. A high level of sophistication in a testing type
would result in test cases which prove very useful to the tester.

Equivalence Class testing produces a relatively low number of test cases while
maintaining a sufficient level of sophistication. Equivalence class testing
improves greatly on Boundary-Value testing by reducing the number of test
cases. Although Equivalence class testing is not as sophisticated as Decision-
Based table it does have some advantages over it, as illustrate in the figure 5.2.

Figure 5.2 shows the relationship between the effort needed to identify test cases
and the level of sophistication for a particular testing type. Boundary Value
testing requires the least effort to identify and produce test cases, which is
advantageous if the tester wishes to spend little time on testing. However as
noted earlier the test cases produced will be inadequate and large in number.

Equivalence Class testing requires a relatively large amount of effort to identify
test cases. This is due to the time and effort that must be spent on creating a
good equivalence relation. So while Equivalence Class testing is not as

Sophistication

Boundary
Value

Equivalence
class

Decision
Table

Number of Tests
Cases

 high

low
Sophistication

Effort to Identify Test Cases

Boundary
Value

Equivalence
class

Decision
Table

 high

low

Figure 5.1 Figure 5.2

Equivalence Class Testing Garreth Davies

 14

sophisticated as Decision-based table testing, it does require less effort to
implement.

6 Conclusion

Testing proves to be a vital role in the development of any software and is
becoming increasingly popular with software developers. Mistakes made by
companies teach us that if software is going to be successful it must be
extensively tested before its release.

A large portion of testing falls under functional testing which focuses on the input
and output of a system and how they are related. Usually named black box
testing, functional testing does not put its focus on the implementation of a
system but rather on the actions it executes.

Equivalence class testing along with boundary-value testing and decision-table
based testing make up the basis of functional testing. Equivalence class testing
partitions the input/output of a system. Contained within these subsets will be
elements, within each subset all elements will be “treated the same” by the
system. Using this assumption Equivalence Class testing need only test one
element from each subset to prove that all elements within the set are correct. It
is this property of Equivalence class testing that makes it so appealing. However
in order to implement Equivalence class testing to its full potential some time
must be spent on designing a strong equivalence relation.

6.1 Further Work

The knowledge gained during the length of the course will become extremely
valuable when it comes to developing future software. I plan use this knowledge
to test my prototype software that I am developing for my CS-344 course. The
software that I am developing for this course will benefit from the kind of
functional testing that I have been studying. I believe Equivalence Class testing
will prove a very useful tool in terms of strengthening my software.

Parts of my software will require input from a user to produce results in the form
of tables and charts. Equivalence class testing could be used to test this kind of
input. Some time would have to be spent on determining a good equivalence
relation but this would be time well spent as the program would benefit greatly.

Equivalence Class Testing Garreth Davies

 15

7 References

[1] – Software QA 101: The Basics of Testing > Functional Testing
 http://www.awprofessional.com/articles/article.asp?p=333473&rl=1
 Hildreth, Sue – 03/09/04
 Last accessed on 30/12/06

[2] – Software Testing: A Craftsman’s Approach, 2nd Edition
 Jogensen, Paul C – CRC Press July 2002

[3] – The Art of Software Testing, 2nd Edition
 John Wiley & Sons Canada, Ltd – June 2004

