
Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 178!

10 Formal specification languages!

Requirements models with formal syntax and semantics!
The vision!

●  Analyze the problem!
●  Specify requirements formally!
●  Implement by correctness-preserving transformations!
●  Maintain the specification, no longer the code!

Typical languages!
●  “Pure” Automata / Petri nets!
●  Algebraic specification!
●  Temporal logic: LTL, CTL!
●  Set&predicate-based models: Z, OCL, B!

!

179!

What does “formal” mean?!

❍  Formal calculus, i.e., a specification language with !
●  formally defined syntax!
!and!

●  formally defined semantics!

❍  Primarily for specifying functional requirements!

Potential forms!
●  Purely descriptive, e.g., algebraic specification!
●  Purely constructive, e.g., Petri nets!
●  Model-based hybrid forms, e.g. Alloy, B, OCL, VDM, Z!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

180!

10.1 Algebraic specification!

❍  Originally developed for specifying complex data from 1977!
❍  Signatures of operations define the syntax!

❍  Axioms (expressions being always true) define semantics!
❍  Axioms primarily describe properties that are invariant

under execution of operations!

+ !Purely descriptive and mathematically elegant!
– !Hard to read!
– !Over- and underspecification difficult to spot!
– !Has never made it from research into industrial practice!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

181!

Algebraic specification: a simple example!

Specifying a stack (last-in-first-out) data structure!

Let bool be a data type with a range of {false, true} and boolean algebra as
operations. Further, let elem be the data type of the elements to be stored.  
!

TYPE Stack!
FUNCTIONS!
new: !() !→ 	Stack; !-- Create new (empty) stack!
push: !(Stack, elem) !→ 	Stack; !-- add an element!
pop: !Stack !→ 	Stack; !-- remove most recent element from stack!
top: !Stack !→ 	elem; !-- returns most recent element!
empty: !Stack !→ 	bool; !-- true if stack is empty!
full: !Stack !→ 	bool; !-- true if stack is full!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

182!

Algebraic specification: a simple example – 2!

AXIOMS!
∀ s ∈ Stack, e ∈ elem!
(1) !¬ full(s) → pop(push(s,e)) = s !-- !pop reverses the effect of push!
(2) !¬ full(s) → top(push(s,e)) = e !-- !top retrieves the most recently 

! ! !stored element!
(3) !empty(new) = true !-- !a new stack is always empty!
(4) !¬ full(s) → empty(push(s,e)) = false !-- !after push, a stack is not 

! ! !empty!
(5) !full(new) = false !-- !a new stack is not full!
(6) !¬ emtpy(s) → full(pop(s)) = false !-- !after pop, a stack is not full!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

183!

10.2 Model-based formal specification!

❍  Mathematical model of system state and state change!
❍  Based on sets, relations and logic expressions!

❍  Typical language elements!
●  Base sets!
●  Relationships (relations, functions)!
●  Invariants (predicates)!
●  State changes (by relations or functions)!
●  Assertions for states!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

The formal specification language landscape!

❍  VDM – Vienna Development Method (Björner and Jones
1978)!

❍  Z (Spivey 1992)!
❍  OCL (from 1997; OMG 2012)!

❍  Alloy (Jackson 2002)!
❍  B (Abrial 2009)!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 184!

185!

10.3 An overview of Z!

❍  A typical model-based formal language!
❍  Only basic concepts covered here!

❍  More detail in the literature, e.g., Jacky (1997)!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

186!

The basic elements of Z!

❍  Z is set-based!
❍  Specification consists of sets, types, axioms and schemata!
❍  Types are elementary sets: [Name] [Date] IN!
❍  Sets have a type: Person: Name Counter: IN !
❍  Axioms define global variables and their (invariant) properties!

string: seq CHAR!
#string ≤ 64!

Declaration!

Invariant!

IN !Set of natural numbers!
 M !Power set (set of all subsets) of M!

seq !Sequence of elements!
#M !Number of elements of set M!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

187!

The basic elements of Z – 2!

❍  Schemata!
●  organize a Z-specification!
●  constitute a name space!

Value, Limit: IN!
Value ≤ Limit ≤ 65535!

Counter!
Name!

Declaration part:!
Declaration of state variables!

Predicate part:!
• !Restrictions!
• !Invariants!
• !Relationships!
• !State change!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

188!

Relations, functions und operations!

❍  Relations and functions are ordered set of tuples:!
!Order: (Part x Supplier x Date)!
! ! ! ! ! ! ! ! ! ! !Birthday: Person → Date!

!
!

State change through operations:!

Δ Counter!
Value < Limit!
Value' = Value + 1!
Limit' = Limit!

Increment counter! Δ S !The sets defined in schema S
will be changed!

M' !State of set M after executing
the operation!

Mathematical equality, no assignment!!

A subset of all ordered triples 
(p, s, d) with p ∈ Part, 
s ∈ supplier, and d ∈ Date!

A function assigning a date to a person,
representing the person’s birthday!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

189!

Example: specification of a library system!

The library has a stock of books and a set of persons who are
library users.!

Books in stock may be borrowed.!

Stock: Book!
User: Person!
lent: Book → Person!

dom lent ⊆ Stock!
ran lent ⊆ User!

Library!

→  Partial function!
dom !Domain ...!
ran !Range...!

!...of a relation!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

190!

Example: specification of a library system – 2!

Books in stock which currently are not lent to somebody may
be borrowed!

Δ Library!
BookToBeBorrowed?: Book!
Borrower?: Person!
BookToBeBorrowed? ∈ Stock\ dom lent!
Borrower? ∈ User!
lent' = lent ∪ {(BookToBeBorrowed?, Borrower?)}!
Stock' = Stock!
User' = User!

Borrow!

x? !x is an input variable!
a ∈ X !a is an element of set X!
\ !Set difference operator!
∪ !Set union operator!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

191!

Example: specification of a library system – 3!

It shall be possible to inquire whether a given book is
available!

Ξ Library!
InquiredBook?: Book!
isAvailable!: {yes, no}!
InquiredBook? ∈ Stock!
isAvailable! = if InquiredBook? ∉ dom lent!

! !then yes else no!
!

InquireAvailability!

Ξ S !The sets defined in schema S can
be referenced, but not changed!

x! !x is an output variable!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

192!

Mini-Exercise: Specifying in Z!

Specify a system for granting and managing authorizations
for a set of individual documents.!

The following sets are given:!
!

!
!

!
Specify an operation for granting an employee access to a
document as long as access to this document is not
prohibited. Use a Z-schema.!
.!

Stock Document!
Employee: Person!
authorized: (Document x Person)!
prohibited: (Document x Date)!

Authorization!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

193!

10.4 OCL (Object Constraint Language)!

❍  What is OCL?!
●  A textual formal language!
●  Serves for making UML models more precise!
●  Every OCL expression is attached to an UML model

element, giving the context for that expression!
●  Originally developed by IBM as a formal language for

expressing integrity constraints (called ICL)!
●  In 1997 integrated into UML 1.1!
●  Current standardized version is Version 2.3.1!
●  Also published as an ISO standard: ISO/IEC 19507:2012!
!

Requirements Engineering I – Part II: RE Practices !© 2016 Martin Glinz!

194!

Why OCL?!

❍  Making UML models more precise!
●  Specification of Invariants (i.e., additional restrictions) on

UML models!
●  Specification of the semantics of operations in UML models!

❍  Also usable as a language to query UML models !

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

195!

HR_management!

OCL expressions: invariants!

❍  OCL expression may
be part of a UML
model element!

❍  Context for OCL
expression is given
implicitly!

❍  OCL expression may
be written separately !

❍  Context must be
specified explicitly!

Employee!

personId: Integer {personID > 0} !
name: String!
firstName: String [1..3]!
dateOfBirth: Date!
/age: Integer!
jobFunction: String!
...!
...!

context HR_manangement::Employee inv:!
self.jobFunction = “driver” implies self.age ≥ 18!

...!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

196!

OCL expressions: Semantics of operations!

Employee! Document!
...!
clearanceLevel: 
!Integer!

noOfDocs: 
!Integer!

...!

docID: Integer!
securityLevel: 
!Integer!

...!

authorize (doc: !
!Document)!

context Employee::authorize (doc: Document)!
!pre: !self.clearanceLevel ≥ doc.securityLevel!
!post: noOfDocs = noOfDocs@pre + 1!
! !and!
! !self.has->exists (a: Authorization | a.concerns = doc)!

has!
0..*!

concerns!
1!Authorization!

grantedOn: Date!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

197!

Application of a function to
a set of objects!

Navigation from current object to a
set of associated objects!

Navigation, statements about sets in OCL!

❍  Persons having Clearance level 0 can’t be authorized for
any document:!

!context Employee inv: !self.clearanceLevel = 0 implies  
!self.has->isEmpty()!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

198!

Navigation, statements about sets in OCL – 2!

More examples:!
❍  The number of documents listed for an employee must be

equal to the number of associated authorizations:!
context Employee inv: self.has->size() = self.noOfDocs!

❍  The documents authorized for an employee are different
from each other!
context Employee inv: self.has->forAll (a1, a2: Authorization |  

a1 <> a2 implies a1.concerns.docID <> a2.concerns.docID)!

❍  There are no more than 1000 documents:!
context Document inv: Document.allInstances()->size() ≤ 1000!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

199!

Summary of important OCL constructs!

❍  Kind and context: context, inv, pre, post!
❍  Boolean logic expressions: and, or, not, implies!
❍  Predicates: exists, forAll!
❍  Alternative: if then else!
❍  Set operations: size(), isEmpty(), notEmpty(), sum(), ...!
❍  Model reflection, e.g., self.oclIsTypeOf (Employee) is true in

the context of Employee!
❍  Statements about all instances of a class: allInstances()!
❍  Navigation: dot notation !self.has.date = ...!
❍  Operations on sets: arrow notation !self.has->size()!
❍  State change: @pre notation !noOfDocs =

 noOfDocs@pre + 1
Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

200!

10.5 Proving properties!

With formal specifications, we can prove if a model has some
required properties (e.g., safety-critical invariants)!
❍  Classic proofs (usually supported by theorem proving

software) establish that a property can be inferred from a
set of given logical statements!

❍  Model checking explores the full state space of a model,
demonstrating that a property holds in every possible state!

– !Classic proofs are still hard and labor-intensive!
+ !Model checking is fully automatic and produces counter-

examples in case of failure!
– !Exploring the full state state space is frequently infeasible!
+ !Exploring feasible subsets is a systematic, automated test!

!!Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

201!

Example: Proving a safety property!

A (strongly simplified) elevator control system has been
modeled with a Petri net as follows:!

!
!
!
!
!
The property that an elevator never moves with doors open
shall be proved!

Door
open!

Door
closed!

Elevator stopped!

Elevator
moving!

Ready to move!
Floor button
pressed!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

Open
door!

Close
door!

Move!

Stop!

202!

Example: Proving a safety property – 2!

The property to be proven can be restated as:!
 (P) !The places Door open and Elevator moving never hold

tokens at the same time!
Due to the definition of elementary Petri Nets we have!
●  The transition Move can only fire if Ready to move has a  

token ! !(1)!
●  There is at most one token in the cycle Ready to move –  

Elevator moving – Elevator stopped – Door open !(2)!
●  (2) ⇒ If Ready to move has a token, Door open hasn’t one !(3)!
●  (2) ⇒ If Elevator moving has a token, Door open hasn’t one !(4)!
●  If Door open has no token, Door closed must have one !(5) !
●  (1) & (3) & (4) & (5)⇒ (P)!

!Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

203!

Mini-Exercise: A circular metro line!

A circular metro line with 10 track segments has been modeled
in UML and OCL as follows:!

!
!

!

In a circle, every track segment must be reachable from every
other track segment (including itself). So we must have:!
context TrackSegment inv !(1)!
 TrackSegment.allInstances->forAll (x, y | x.reachable (y))!

a)!Falsify this invariant by finding a counter-example!
Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

Context TrackSegment:: 
 reachable (a: TrackSegment): Boolean  
 post: 
 result = (self.to = a) or (self.to.reachable (a))!

context TrackSegment inv: 
 TrackSegment.allInstances->size = 10!

TrackSegment!

Occupied: Boolean!

reachable (a:TrackSegment)!

from!
1!

to 1!
connected!

204!

Mini-Exercise: A circular metro line – 2!

Only the following trivial invariant can be proved:!
!context TrackSegment inv: 
! TrackSegment.allInstances->forAll (x | x.reachable (x))!

b)!Prove this invariant using the definition of reachable!

Obviously, this model of a circular metro line is wrong. The
property of being circular is not mapped correctly to the model.!

c) !How can you modify the model such that the original
invariant (1) holds?!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 205!

10.6 Benefits and limitations, practical use!

Benefits!
●  Unambiguous by definition!
●  Fully verifiable!
●  Important properties can be!

•  proven!
•  or tested automatically (model checking)!

Limitations / problems!
●  Cost vs. value!
●  Stakeholders can’t read the specification: how to validate?!
●  Primarily for functional requirements!

206!

Role of formal specifications in practice!

❍  Marginally used in practice!
●  Despite its advantages!
●  Despite intensive research (research on algebraic

specifications dates back to 1977)!

❍  Actual situation today!
●  Punctual use possible and reasonable!
●  In particular for safety-critical components!
●  However, broad usage!

•  not possible (due to validation problems)!
•  not reasonable (cost exceeds benefit)!

❍  Another option: semi-formal models where critical parts are
fully formalized!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz!

11 Validating requirements!

❍  Every requirement needs to be validated  
(see Principle 6 in Chapter 2)!

❍  Validate content, form of documentation and agreement!
❍  Establish short feedback cycles!

❍  Use appropriate techniques!
❍  Exemplify and disambiguate with acceptance test cases!

Requirements Engineering I – Part II: RE Practices !© 2016 Martin Glinz! 207!

Validation of content!

Identify requirements that are!
●  Inadequate!
●  Incomplete or missing!
●  Inconsistent !
●  Wrong!

Also look for requirements with these quality defects:!
●  Not verifiable!
●  Unnecessary!
●  Not traceable!
●  Premature design decisions!

!
!Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 208!

Validation of documentation!

Scope: checking the requirements documentation (e.g., a
systems requirements specification) for formal problems!

Identify requirements that are !
●  Ambiguous!
●  Incomprehensible !
●  Non-conforming to documentation rules, structure or format!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 209!

Validation of agreement!

❍  Requirements elicitation involves achieving consensus
among stakeholders having divergent needs!

❍  When validating requirements, we have to check whether
agreement has actually been achieved!
●  All known conflicts resolved?!
●  For all requirements: have all relevant stakeholders for a

requirement agreed to this requirement in its documented
form?!

●  For every changed requirement, have all relevant
stakeholders agreed to this change?!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 210!

Some validation principles!

General principles!
●  Work with the right people (i.e., stakeholders for requirements)!
●  Separate the processes of problem finding and correction!
●  Validate from different views and perspectives!
●  Validate repeatedly / continuously!

Additional principles for requirements [Pohl and Rupp 2011]!
●  Validate by change of documentation type  

e.g., identify problems in a natural language specification by
constructing a model!

●  Validate by construction of artifacts 
e.g., identify problems in requirements by writing the user
manual, test cases or other development artifacts!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 211!

Requirements validation techniques!

Review!
●  Main means for requirements validation!
●  Walkthrough: author guides experts through the specification!
●  Inspection: Experts check the specification!
●  Author-reviewer-cycle: Requirements engineer continuously

feeds back requirements to stakeholder(s) for review and
receives feedback!

Requirements Engineering tools!
●  Help find gaps and contradictions!

Acceptance test cases!
●  Help disambiguate / clarify requirements!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 212!

Requirements validation techniques – 2!

Simulation/Animation!
●  Means for investigating dynamic system behavior!
●  Simulator executes specification and may visualize it by

animated models!

Prototyping!
●  Lets stakeholders judge the practical usefulness of the

specified system in its real application context!
●  Prototype constitutes a sample model for the system-to-be!
●  Most powerful, but also most expensive means of

requirements validation!

Formal Verification / Model Checking!
●  ! Formal proof of critical properties!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 213!

Reviewing practices!

❍  Paraphrasing!
●  Explaining the requirements in the reviewer’s own words!

❍  Perspective-based reading!
●  Analyzing requirements from different perspectives,  

e.g., end-user, tester, architect, maintainer,...!

❍  Playing and executing!
●  Playing scenarios!
●  Mentally executing acceptance test cases!

❍  Checklists!
●  Using checklists for guiding and structuring the review

process!
Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 214!

Requirements negotiation!

❍  Requirements negotiation implies!
●  Identification of conflicts!
●  Conflict analysis!
●  Conflict resolution!
●  Documentation of resolution!

❍  Requirements negotiation can happen!
●  While eliciting requirements!
●  When validating requirements!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 215!

Conflict analysis!

Identifying the underlying reasons of a conflict helps select
appropriate resolution techniques!

Typical underlying reasons are!
●  Subject matter conflict (divergent factual needs)!
●  Conflict of interest (divergent interests, e.g. cost vs. function)!
●  Conflict of value (divergent values and preferences)!
●  Relationship conflict (emotional problems in personal

relationships between stakeholders)!
●  Organizational conflict (between stakeholders on different

hierarchy and decision power levels in an organization)!
!

!
Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 216!

Conflict resolution!

❍  Various strategies / techniques!
❍  Conflicting stakeholders must be involved in resolution!

❍  Win-win techniques!
●  Agreement!
●  Compromise!
●  Build variants!

❍  Win-lose techniques!
●  Overruling!
●  Voting!
●  Prioritizing stakeholders (important stakeholders override

less important ones)!
Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 217!

Conflict resolution – 2!

❍  Decision support techniques!
●  PMI (Plus-Minus-Interesting) categorization of potential

conflict resolution decisions!
●  Decision matrix (Matrix with a row per interesting criterion

and a column per potential resolution alternative. The cells
contain relative weights which can be summarized per
column and then compared)!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 218!

Acceptance testing!

DEFINITION. Acceptance – The process of assessing whether
a system satisfies all its requirements.!

DEFINITION. Acceptance test – A test that assesses whether a
system satisfies all its requirements.!

!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 219!

Requirements and acceptance testing!

Requirements engineering and acceptance testing are
naturally intertwined!

❍  For every requirement, there should be at least one
acceptance test case!

❍  Requirements must be written such that acceptance tests
can be written to validate them!

❍  Acceptance test cases can serve!
●  for disambiguating requirements!
●  as detailed specifications by example!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 220!

Choosing acceptance test cases!

Potential coverage criteria:!
❍  Requirements coverage: At least one case per requirement!

❍  Function coverage: At least one case per function!
❍  Scenario coverage: For every type scenario / use case!

●  All actions covered!
●  All branches covered!

❍  Consider the usage profile: not all functions/scenarios are
equally frequent / important!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 221!

Requirements Engineering I – Part II: RE Practices !© 2016 Martin Glinz! 222!

12 Innovative requirements!

Satisfying stakeholders is not enough  
(see Principle 8 in Chapter 2)!

❍  Kano’s model helps identify...!
●  what is implicitly expected  

(dissatisfiers)!
●  what is explicitly required 

(satisfiers)!
●  what the stakeholders 

don’t know, but would  
delight them if they get it: 
innovative requirements!

!

[Kano et al. 1984] !

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 223!

How to create innovative requirements?!

Encourage out-of-the-box thinking!
❍  Stimulate the stakeholders’ creativity!

●  Imagine/ make up scenarios for possible futures!
●  Imagine a world without constraints and regulators!
●  Find and explore metaphors!
●  Study other domains!

❍  Involve solution experts and explore what’s possible with
available and future technology!

❍  Involve smart people without domain knowledge!
[Maiden, Gitzikis and Robertson 2004]!
[Maiden and Robertson 2005]	

13 Requirements management!

❍  Organize!
●  Store and retrieve!
●  Record metadata (author, status,...)!

❍  Prioritize!
❍  Keep track: dependencies, traceability!
❍  Manage change!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 224!

13.1 Organizing requirements!

Every requirement needs!
❍  a unique identifier as a reference in acceptance tests,

review findings, change requests, traces to other artifacts,
etc.!

❍  some metadata, e.g.!
●  Author!
●  Date created!
●  Date last modified!
●  Source (stakeholder(s), document, minutes, observation...)!
●  Status (created, ready, released, rejected, postponed...)!
●  Necessity (critical, major, minor)!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 225!

Storing, retrieving and querying!

Storage!
●  Paper and folders!
●  Files and electronic folders!
●  A requirements management tool!

Retrieving support!
●  Keywords!
●  Cross referencing!
●  Search machine technology!

Querying!
●  Selective views (all requirements matching the query)!
●  Condensed views (for example, statistics)!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 226!

13.2 Prioritizing requirements!

❍  Requirements may be prioritized with respect to various
criteria, for example!
●  Necessity!
●  Cost of implementation!
●  Time to implement!
●  Risk!
●  Volatility!

❍  Prioritization is done by the stakeholders!
❍  Only a subset of all requirements may be prioritized!
❍  Requirements to be prioritized should be on the same level

of abstraction!
Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 227!

Simple prioritization (by necessity)!

Ranks all requirements in three categories with respect to
necessity, i.e., their importance for the success of the system!

❍  Critical (also called essential, or mandatory)!
The system will not be accepted if such a requirement is not met!

❍  Major (also called conditional, desirable, important, or
optional)!
The system should meet these requirements, but not meeting
them is no showstopper!

❍  Minor (also called nice-to-have, or optional)!
Implementing these requirements is nice, but not needed!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 228!

Selected prioritization techniques!

Single criterion prioritization!
❍  Simple ranking!

Stakeholders rank a set of requirements according to a given
criterion!

❍  Assigning points!
Stakeholders receive a total of n points that they distribute
among m requirements!

❍  Prioritization by multiple stakeholders may be consolidated
using weighted averages. The weight of a stakeholder
depends on his/her importance!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 229!

Selected prioritization techniques – 2!

Multiple criterion prioritization!
❍  Wiegers’ matrix [Wiegers 1999]!

●  Estimates relative benefit, detriment, cost, and risk for each
requirement!

●  Uses these values to calculate a weighted priority!
●  Ranks according to calculated priority values!

❍  AHP (Analytic Hierarchy Process) [Saaty 1980]!
●  An algorithmic multi-criterion decision making process!
●  Applicable for prioritization by a group of stakeholders!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 230!

13.3 Traceability!

DEFINITION. Traceability – The ability to trace a requirement!
(1) back to its origins,!
(2) forward to its implementation in design and code,!
(3) to requirements it depends on (and vice-versa).!
Origins may be stakeholders, documents, rationale, etc.!

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 231!

[Gotel and Finkelstein 1994]!

Stakeholders!
Documents!

Sources!
Requirements!
specification!

Solution!
Modules!

Requirements!
...!

Pre-!
traceability!

Post-!
traceability!

Rationale!

Test cases!
...!

Establishing and maintaining traces!

❍  Manually!
●  Requirements engineers explicitly create traces when

creating artifacts to be traced!
●  Tool support required for maintaining and exploring traces!
●  Every requirements change requires updating the traces!
●  High manual effort; cost and benefit need to be balanced!

❍  Automatic!
●  Automatically create candidate trace links between two

artifacts (for example, a requirements specification and a set
of acceptance test cases)!

●  Uses information retrieval technology!
●  Requires manual post processing of candidate links !

Requirements Engineering I – Part II: RE Practices !© 2015 Martin Glinz! 232!

13.4 Requirements evolution!

The problem (see Principle 7 in Chapter 2):!
Keeping requirements stable...!
... while permitting requirements to change!
!

Potential solutions!
●  ! Agile / iterative development with short development cycles

(1-6 weeks)!
●  ! Explicit requirements change management!

!
Every solution to this problem further needs requirements
configuration management!
Requirements Engineering I – Part II: RE Practices !© 2016 Martin Glinz! 233!

Requirements configuration management!

Keeping track of changed requirements!
❍  Versioning of requirements!

❍  Ability to create requirements configurations, baselines and
releases!

❍  Tracing the reasons for a change, 
for example!
●  Stakeholder demand!
●  Bug reports / improvement suggestions!
●  Market demand!
●  Changed regulations!

Requirements Engineering I – Part II: RE Practices !© 2016 Martin Glinz! 234!

Requirements change management!

Adhering to a strict change process!
(1) Submit change request!
(2) Triage. Result: [OK | NO | Later (add to backlog)]!
(3) If OK: Perform impact analysis!
(4) Submit result and recommendation to Change Control Board!
(4) Decision by Change Control Board !
(5) If positive: make the change, create new baseline/release,!
 (maybe) adapt the contract between client and supplier!
!

Change control board – A committee of client and supplier
representatives that decides on change requests.!

Requirements Engineering I – Part II: RE Practices !© 2016 Martin Glinz! 235!

Requirements change in agile development!

In agile and iterative development processes, a requirements
change request ...!

●  ... never affects the current sprint / iteration, thus ensuring
stability!

●  ... is added to the product backlog!

Decisions about change requests are made when prioritizing
and selecting the requirements for the subsequent sprints /
iterations!

Requirements Engineering I – Part II: RE Practices !© 2016 Martin Glinz! 236!

