
Information and Software Technology 53 (2011) 200–213
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Simplifying effort estimation based on Use Case Points q

M. Ochodek ⇑, J. Nawrocki, K. Kwarciak
Poznan University of Technology, Institute of Computing Science, ul. Piotrowo 2, 60-965 Poznań, Poland
a r t i c l e i n f o

Article history:
Received 7 April 2010
Received in revised form 18 October 2010
Accepted 20 October 2010
Available online 26 October 2010

Keywords:
Use Case Points
Software cost estimation
Use cases
Use-case transactions
TTPoints
0950-5849/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.infsof.2010.10.005

q This research project operated within the Fou
Ventures Programme co-financed by the EU European
⇑ Corresponding author.

E-mail addresses: mochodek@cs.put.poznan.pl (M.
poznan.pl (J. Nawrocki), kkwarciak@cs.put.poznan.pl
a b s t r a c t

Context: The Use Case Points (UCP) method can be used to estimate software development effort based
on a use-case model and two sets of adjustment factors relating to the environmental and technical com-
plexity of a project. The question arises whether all of these components are important from the effort
estimation point of view.
Objective: This paper investigates the construction of UCP in order to find possible ways of simplifying it.
Method: The cross-validation procedure was used to compare the accuracy of the different variants of
UCP (with and without the investigated simplifications). The analysis was based on data derived from
a set of 14 projects for which effort ranged from 277 to 3593 man-hours. In addition, the factor analysis
was performed to investigate the possibility of reducing the number of adjustment factors.
Results: The two variants of UCP – with and without unadjusted actor weights (UAW) provided similar
prediction accuracy. In addition, a minor influence of the adjustment factors on the accuracy of UCP
was observed. The results of the factor analysis indicated that the number of adjustment factors could
be reduced from 21 to 6 (2 environmental factors and 4 technical complexity factors). Another observa-
tion was made that the variants of UCP calculated based on steps were slightly more accurate than the
variants calculated based on transactions. Finally, a recently proposed use-case-based size metric
TTPoints provided better accuracy than any of the investigated variants of UCP.
Conclusion: The observation in this study was that the UCP method could be simplified by rejecting UAW;
calculating UCP based on steps instead of transactions; or just counting the total number of steps in use
cases. Moreover, two recently proposed use-case-based size metrics Transactions and TTPoints could be
used as an alternative to UCP to estimate effort at the early stages of software development.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Software effort estimation is one of the key aspects of successful
project management. If an unrealistic assumption about the devel-
opment cost is made, the project is in danger. Both underestimated
and overestimated effort is harmful. Underestimation leads to a
situation where a project’s commitments cannot be fulfilled be-
cause of a shortage of time and/or funds. Overestimation can result
in the rejection of a project proposal, which otherwise would be ac-
cepted and would create new opportunities for the organization.

Unfortunately, effort estimation at the early stages of software
development is a challenge. Firstly, very little is known about the
project. Secondly, there is a threat that the project will not be ac-
cepted for further development, so limited resources can be spent
on effort estimation. Thus, there is a trade-off between the level of
ll rights reserved.

ndation for Polish Science
Regional Development Fund.

Ochodek), jnawrocki@cs.put.
(K. Kwarciak).
estimation error and the resources assigned to the estimation
activities (typically, the smaller the estimation error the bigger
the estimation cost associated with acquiring knowledge about
the project at hand).

In this context two kinds of research could be useful:

� simplifying effort estimation methods without compromising
their accuracy;
� making effort estimation more accurate without increasing the

time and money spent on effort estimation.

Typical inputs available at early stages of software development
are functional requirements, which describe what a system is ex-
pected to do. These kinds of requirements can be used to measure
the size of a system, and estimate its development effort.

The idea of functional size measurement (FSM) was introduced
by Allan Albrecht [1], who proposed a method called Function
Point Analysis (FPA). Since the introduction of the method, its
construction has been broadly discussed and frequently
questioned (see, e.g., [2–6]). Nevertheless, it still remains one of
the most popular FSM methods, and since 1986, it has been

http://dx.doi.org/10.1016/j.infsof.2010.10.005
mailto:mochodek@cs.put.poznan.pl
mailto:jnawrocki@cs.put.
mailto:kkwarciak@cs.put.poznan.pl
http://dx.doi.org/10.1016/j.infsof.2010.10.005
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

UC1: Submit a paper

Level: User

Main actor: Author

Main Scenario:

1. Author chooses the option to submit a paper.

2. System presents the submission form.

3. Author provides necessary information about the paper.

4. System informs Author that the paper was submitted.

Alternatives, Extensions, Exceptions:

3.A. Not all required data was provided.

 3.A.1. System displays error message.

 3.A.2. Go to step 2.

Fig. 1. An example of a use case presented as a structured text.

M. Ochodek et al. / Information and Software Technology 53 (2011) 200–213 201
maintained by a non-profit organization called the International
Function Point User Group (IFPUG).

Albrecht’s FPA method stimulated evolvement of other FSM
methods, e.g., Mark II Function Points proposed by Symons [7],
COSMIC [8], or Use Case Points1 (UCP) introduced by Karner [9].

The latter method is especially valuable in the context of early
size measurement and effort estimation, because it employs use
cases as an input. Use cases, proposed by Jacobson [10,11], are a
popular form of representing functional requirements (according
to the survey conducted by Neill and Laplante in 2003 [12], 50%
of projects have their functional requirements presented as scenar-
ios or use cases). They are also available in the early stages of soft-
ware development.

The mechanism of the Use Case Points method was inspired by
both Albrecht’s FPA [1] and MK II Function Points [7], and since its
introduction many variants of the method have been proposed,
e.g., Use Case Size Points (USP) and Fuzzy Use Case Size Points
(FUSP) [13]; UCPm [14]; and the adapted version for incremental
large-scale projects [15].

As use cases are gaining popularity also the UCP method (and its
derivatives) are getting more popular. However, some people
pointed out problems concerning the construction of the method
(differences in use case models [16,17], assessment of the use-
case-model complexity [13,17], assessment of adjustment factors
[14,17,18], and involvement of calculations that are based on alge-
braically inadmissible scale-type transformations [18,19]). There-
fore, the question arises whether the method is well designed.
Maybe it could be simplified without loosing much of its accuracy.

This question is even more important in the context of recently
proposed use-case-based size metrics, i.e., Transactions [20], and
TTPoints [21]. These metrics seem simpler than UCP.

Therefore, the goal of this study is to analyze the construction of
the UCP method, investigate the influence of its components on the
accuracy of the method, and propose possible simplifications.

The paper is organized as follows. The next section provides a
brief introduction to use cases and the UCP method. Section 3 pre-
sents a set of projects used in this study as a historical database.
Section 4 describes the research method that was used to evaluate
the estimation accuracy of the different variants of UCP and other
use-case-based size metrics. In the following sections components
of UCP are analyzed: actors complexity – in Section 5; adjustment
factors – in Section 6; use-case complexity – in Sections 7 and 8.
The role of transactions in use-case-based effort estimation is
investigated in Section 9. The threats to validity of this study are
discussed in Section 10. The summary and the list of the most
important findings can be found in Section 11.
2. Use cases and the Use Case Points method

2.1. Use cases

The main aim of use cases is to present interaction between
end-user (called actor) and the described system in terms of
user-valued transactions – using natural language. Such use cases
are called system-level use cases. (There are also business-level
use cases: they describe interaction between people who cooper-
ate to obtain a business goal.)

According to the guidelines for writing use cases [22,23] the
most important parts of a use case are as follows: name/title which
1 It is not clear whether UCP is a size measure or a software estimation method.
Some sub-components of UCP (presented in Section 2.2) such as UUCW, UAW, and
UUCP could be clearly treated as functional size measures. However, when UUCP is
multiplied by TCF and EF, it is no longer clear whether it represents size of the system
or its predicted development effort. (The environmental factors represent commonly
used cost drivers.)
describes the goal, actors participating in the use case (people or
cooperating systems), main scenario which is the most common se-
quence of steps leading to the goal, and extensions to the main sce-
nario describing alternative steps associated with the occurrence of
some events. An example of a use case is presented in Fig. 1.

2.2. The Use Case Points method

In order to obtain UCP for the system one has to start with the
assessment of the complexity of actors and use cases; and then ad-
just it with two kinds of factors characterizing the development
environment and the technical complexity of the system under
development.

2.2.1. Actors complexity
The first step of the UCP method is to assign each actor to one of

three complexity classes:

� simple: an actor representing a system which communicates
with other actors using API;
� average: a system actor which communicates through a proto-

col (e.g. HTTP, FTP), or a person who interacts with a system
through a terminal console;
� complex: a person who uses graphical user interface (GUI) in

order to communicate with a system.

Each actor-complexity class, c, is characterized by two
numbers:

� aWeight(c) = 1 for simple, 2 for average, and 3 for complex;
� aCardinality(c) is the number of actors assigned to class c

(depends on a described system).

For a given system, the unadjusted actor weights (UAW) are com-
puted as a sum of products – the weight of complexity class and
the number of actors assigned to that class, see the following
equation:

UAW ¼
X
c2C

aWeightðcÞ � aCardinalityðcÞ; ð1Þ

C ¼ fsimple; average; complexg
2.2.2. Use-cases complexity
The second step of the UCP method is the assessment of use-

case complexity. This complexity depends on the number of trans-
actions identified in each use case. (Transaction is a set of activities

Table 1
Technical complexity factors and environmental factors.

Factor Description Weight

Technical complexity factors
T1 Distributed system 2
T2 Performance 1
T3 End-user efficiency 1
T4 Complex processing 1
T5 Reusable code 1
T6 Easy to install 0.5
T7 Easy to use 0.5
T8 Portable 2
T9 Easy to change 1
T10 Concurrent 1
T11 Security features 1
T12 Access for third parties 1
T13 Special training required 1

Environmental factors
F1 Familiarity with the standard process 1.5
F2 Application experience 0.5
F3 Object-oriented experience 1
F4 Lead analyst capability 0.5
F5 Motivation 1
F6 Stable requirements 2

202 M. Ochodek et al. / Information and Software Technology 53 (2011) 200–213
in use-case-scenarios, which is either performed entirely, or not at
all.)

Let #trans(u) denote the number of transactions in a use case u.
Each use case, u, is assigned to complexity class, cmplx, in the fol-
lowing way:

cmplxðuÞ ¼
simple if #transðuÞ < 4;
average if 4 6 #transðuÞ 6 7;
complex if #transðuÞ > 7:

8><
>:

Each use-case-complexity class, c, is characterized by two numbers:

� uWeight(c) = 5 for simple, 10 for average, and 15 for complex;
� uCardinality(c) is the number of use-cases assigned to class c

(depends on a described system).

For a given system, the unadjusted use case weights (UUCW) are cal-
culated according to the following equation:

UUCW ¼
X
i2C

uWeightðcÞ � uCardinalityðcÞ; ð2Þ

C ¼ fsimple; average; complexg

F7 Part-time workers �1
F8 Difficult programming language �1

2 The name ‘‘Productivity Factor’’ can be misleading, because a quotient between
effort and size is usually referred as Project Delivery Rate (PDR) [24]. (Productivity,
however, is more often defined as a quotient between size and effort [25].)
2.2.3. Technical and environmental factors
The UCP method includes 21 adjustment factors, which concern

the technical complexity of the developed system (13 technical
complexity factors), and the environment in which it is developed
(8 environmental factors). All the factors are presented in Table 1.

The influence of technical complexity factors (TCF) are assessed
by assigning a value from 0 to 5 to each of them (the bigger the
number is, the greater the extent a given factor appears with). This
value is multiplied by a weight of a factor and totaled, see the fol-
lowing equation:

TCF ¼ 0:6þ 0:01�
X13

i¼1

TF weighti � valuei

 !
ð3Þ

where

� TF_weighti is the weight of the ith technical complexity factor
(see Table 1);
� valuei is the predicted degree of influence of the ith technical

complexity factor on the project (value between 0 and 5).

The influence of environmental factors (EF) is assessed in a sim-
ilar way as in the case of technical complexity factors, see the fol-
lowing equation:

EF ¼ 1:4þ �0:03�
X8

i¼1

EF weighti � valuei

 !
ð4Þ

where

� EF_weighti is the weight of the ith environmental factor (see
Table 1);
� valuei is the predicted degree of influence of the ith environ-

mental factor on the project (value between 0 and 5).

2.2.4. Calculating Use Case Points
By adding UAW to UUCW, according to Eq. (5), one obtains

Unadjusted Use Case Points (UUCP).

UUCP ¼ UAW þ UUCW ð5Þ

To obtain Use Case Points (UCP) one has to multiply UUCP by TCF
and EF, see the following equation:

UCP ¼ UUCP � TCF � EF ð6Þ
2.2.5. Productivity factor and effort estimation
To obtain effort estimation in man-hours one has to multiply

UCP by the productivity factor (PF).2

The default value for PF proposed by Karner is 20 h per UCP.
Schneider and Winters [26] proposed a method for determining
the initial value of PF. Based on their experience, they suggested
to count the number of environmental factors F1–F6 which influ-
ence is predicted to be less than 3 and factors F7–F8 which influ-
ence is predicted to be greater than 3. If the counted total is
equal to 2 or less, the default value of 20 h/UCP should be used.
If the total is between 3 and 4, they suggested using PF equal to
28 h/UCP. If the calculated number is greater than 4, the value of
36 h/UCP should be used. (However, in this case the project is re-
garded as an extremely risky one.)

2.2.6. Calibrating UCP with historical data
Using default values for PF is a necessity if an organization does

not have historical data concerning productivity. However, if his-
torical data is available, it is reasonable to use such data to deter-
mine PF for the project being estimated. After the completion of a
single project, a post-productivity factor (PostPF) might be calcu-
lated as presented in the following equation:

PostPF ¼ ActualEffort
UCP

ð7Þ
3. Characteristics of the projects

This study is based on an analysis of 14 projects, which actual
effort ranged from 277 to 3593 man-hours. The brief description
of the projects is presented in Table 2. The detailed characteristics
related to the effort estimation with UCP are presented in Table 3.

The projects labeled from A to G were developed by industrial
organizations. The projects H to N were developed at the Poznan
University of Technology (PUT). (All of the projects which origin
was marked as ‘U’ were also budgeted; therefore, they remained
similar to the industrial projects in this aspect.)

Table 2
Application domain and basic description of the projects under study. Origin: I – project developed by a software development company; U – projects developed by university
staff and students for the internal usage at the university; S2B – project developed by students for external organizations. Type: N – application was developed from scratch; C –
application was based on existing solution and was tailored for the customer; E – major enhancement, i.e., strongly simplified version was available (e.g. a prototype).

ID Effort [h] Origin Type Team Technologies Description

Project A 3037 I N 5 ASP.Net, C#, MS SQL DBMS, custom web-
framework

Web-based e-commerce solution

Project B 1917 I N 4 Delphi, Firebird DBMS Integration of two sub-systems within the ERP
scale system

Project C 1173 I N 8 Python, Django, PostgreSQL Web application for collecting and tracking
projects’ metrics

Project D 742 I C 6 Python, Plone, Zope Web application developed based on existing
CMS solution

Project E 614 I N 4 Delphi, Firebird DBMS Bank system integrating payments into virtual
accounts in one real account

Project F 492 I C 3 Python, Plone, Zope Content Management System (CMS)
Project G 277 I N 1 Java, PHP, MySQL DBMS, Eclipse Rich Client

Platform (RCP)
Web-based invoices repository with additional
standalone client application

Project H 3593 U N 8 Java, Oracle DBMS, Hibernate, GWT-based
custom framework, JSON, OSGi

Backend application for the university
admission system (Rich Internet Application)

Project I 1681 U E 8 Java, Oracle DBMS, Apache Struts 1.2, Java
Swing

Web-based frontend for the university
admission system. Some parts were re-used
from the previous prototype version

Project J 1344 S2B N 6 ASP.Net, C#, MS SQL DBMS Web-based Customer Relationship
Management (CRM) system

Project K 1220 U N 6 Java, Oracle DBMS, Hibernate, GWT-based
custom framework, JSON, OSGi

University admission system for foreign
students

Project L 720 S2B N 6 Java, Java Servlets, JSP, Java Swing, SOAP,
MySQL DBMS

Web & standalone application for managing
members of the organization

Project M 524 U N 6 Java, Hibernate, Axis, PHP, C++ Bibliometric Information System. A system for
collecting information regarding publications
and citations

Project N 397 U N 3 Java, Apache Struts 2, Hibernate Web-based system supporting the assignment
of B.Sc and M.Sc. theses projects

Table 3
Projects characteristics (T – transactions, identified using stimuli-verb approach proposed by Robiolo and Orosco [20]; S – steps without reference to other use cases – include and
extend relations; number of use cases before the review of the specifications are placed in brackets).

Project A Project B Project C Project D Project E Project F Project G Project H Project I Project J Project K Project L Project M Project N

Actual effort [h] 3037 1917 1173 742 614 492 277 3593 1681 1344 1220 720 514 397

UCP-T 148 55 76 105 63 44 22 304 80 74 89 50 31 95
UCP-S 276 58 113 161 112 90 36 505 162 157 160 90 59 144
UUCP-T 207 90 81 139 97 59 56 319 97 142 89 82 34 115
UUCP-S 387 95 121 214 172 119 91 529 197 302 159 147 64 175
UUCW-T 195 80 75 130 85 50 50 305 85 130 80 70 30 100
UUCW-S 375 85 115 205 160 110 85 515 185 290 150 135 60 160
UCP-T no UAW 139 49 70 98 55 38 20 291 70 67 80 43 27 82

Steps 224 45 69 123 101 67 36 324 109 152 96 69 38 84
Transactions [20] 86 30 33 62 25 17 12 135 34 49 33 27 10 33
TTPoints [29] 137 70 36 52 35 22 15 156 74 56 39 38 28 35

No. of use cases 31 12* 11 19 15 10 10 42 17 26 13 14 6 18
(35) (16) (12) (20) (21) (12) (12) (47) (19) (37) (20) (17) (8) (20)

Simple – T 23 6 7 13 13 10 10 23 17 26 10 14 6 16
Average – T 8 5 4 5 2 0 0 19 0 0 3 0 0 2
Complex – T 0 0 0 1 0 0 0 0 0 0 0 0 0 0
Simple – S 0 9 3 3 4 3 3 4 0 0 2 1 2 6
Average – S 18 1 4 10 5 2 7 15 14 20 5 13 2 10
Complex – S 13 2 4 6 6 5 0 23 3 6 6 0 2 2

No. of actors 4 4 2 3 4 3 2 5 4 4 3 4 2 5
Simple 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Average 0 2 0 0 0 0 0 1 0 0 0 0 2 0
Complex 4 2 2 3 4 3 2 4 4 4 3 4 0 5

TCF** 0.92 0.75 0.90 0.85 0.82 0.85 0.78 0.94 1.03 0.71 1.05 0.78 0.96 0.90
EF** 0.78 0.81 1.05 0.89 0.79 0.88 0.51 1.02 0.80 0.73 0.95 0.79 0.96 0.91

Post PF
(transactions)

21 35 15 7 10 11 12 12 21 18 14 14 17 4

Post PF (steps) 11 33 10 5 5 5 8 7 10 9 8 8 9 3
Default PF [26] 20 20 20 20 20 20 20 20 20 20 20 20 20 20

* One of use cases did not have stimuli in the sense of [20].
** Results of the surveys conducted within each development team, and aggregated as (Optimistic + 4 � Average + Pessimistic)/6.

M. Ochodek et al. / Information and Software Technology 53 (2011) 200–213 203

Table 4
The subsets of the main data set considered in this study.

ID Description Projects

All All projects A-N (14)
Ind Industrial projects A-G (7)
Uni Projects developed at the university H-N (7)
Web Web applications A, C, D, F-N (12)
Java Projects developed in Java G-N (8)
ADM Students’ admission system at PUT H, I, K (3)
EF1 Projects with similar EFs D, F, N (3)
EF2 Projects with similar EFs H, I, K, M (4)
TCF1 Projects with similar TCFs H, I, M (3)

204 M. Ochodek et al. / Information and Software Technology 53 (2011) 200–213
Because the main data set was heterogeneous we decided to
perform the analysis based on the whole data set and the number
of its subsets that seemed homogeneous in some aspects.

The first criterion for choosing candidates for subsets was the
origin of a project (subsets Ind and Uni). The next criteria were
the type of application and the main programming language (sub-
sets Web and Java). We also defined a small, but highly homoge-
neous subset ADM. It contained three projects that were
conducted at PUT to develop the students’ admission system in
years 2006–2010. Finally, we decided to perform a hierarchical
clustering analysis3 to find the most similar projects in respect to
their TCFs and EFs. As a result three small subsets were defined
EF1, EF2, and TCF1.

The summary of the data sets considered in this study is pre-
sented in Table 4.

4. Framework for analysis of estimation accuracy

The accuracy of effort estimation based on each of the consid-
ered size metrics was analyzed according to the procedure pre-
sented in this section.

4.1. Calculation of Use Case Points

The process of calculating UCP (and other size metrics) for the
projects, consisted of the following steps:

1. Reviewing use cases. All business-level use cases were rejected
(they create a context for user-level use cases); included and
extended use cases were rejected (as suggested in UCP [9]),
but only if they described the same transaction as the invoking
use case, but at lower level of abstraction. Use cases that were
not implemented or duplicated were also rejected.

2. Counting transactions and steps. Use-case transactions for UCP
were identified by a single person, with the use of the method
proposed by Robiolo and Orosco [20] (which seems to be com-
pliant with the Karner’s definition of use-case transaction [9]).
In addition, semantic transaction types were identified [29]
for the purpose of the TTPoints method discussed in Section 9.
We also asked an experienced person, not co-authoring this
paper, to review the transaction-counts for the sample of 50
use cases (20%). Then, the results were discussed. Although
the final transaction-counts and UUCW were not the same for
both persons, they seemed to be convergent.4
3 The goal of hierarchical clustering is to organize a set of observations into a
hierarchy of subsets (hierarchy of clusters) so that observations in the same cluster
are similar to each other. In this study we used Ward’s algorithm [27] and Euclidean
distance. (They can be used to cluster ordinal data [28].)

4 The normalized root mean squared deviation (NRMSD), calculated asffi
1
n

Pn
i¼1ðx1;i � x2;iÞ2

h ir
=ðxmax � xminÞ, between the number of transactions identified

by two raters ranged from 0.10 to 0.15. The inter-rater agreement in assignment of
use cases to complexity classes, measured as weighted Cohen’s kappa coefficient (j)
[30,31], could be interpreted as ‘‘almost perfect’’ [31] (j ranged from 0.83 to 0.85).
3. Obtaining TCF and EF. The values of the adjustment factors were
obtained by surveying participants of the projects. The final val-
ues of TCF and EF for the project were calculated as (Optimis-
tic + 4 � Average + Pessimistic)/6.

4. Calculating UCP. It was done according to the procedure pre-
sented in Section 2.2.

4.2. Evaluation of prediction accuracy

Each metric should be evaluated in respect to its purpose. In
this study we investigated the usefulness of use-case-based size
metrics in the context of software cost estimation. Therefore, the
main criterion for comparing the size metrics was the accuracy
of effort estimation calculated based on them.

In order to determine the accuracy of effort estimation based
on each size metric we followed a cross-validation procedure
[32]. It is a statistical method for validating a predictive model.
The considered set of observations is divided into two subsets.
One of them, called a training set, is used to construct a prediction
model. The remaining one is used to validate the model. In this
study we used a form of cross-validation called ‘‘leave-one-out’’
which leaves out a single observation for the validation purpose
at a time.

In the study two following effort predictions models5 were used
to estimate effort: single linear regression and multiple regression.

4.2.1. Ordinary least squares regression (OLS)
Ordinary least squares regression (OLS) is used to linearly

approximate the relationship between a single dependent variable
(e.g., development effort) and one (or more) independent variables
(e.g., size of the system). It minimizes the sum of squared distances
between the observed values of the dependent variable, and the
values predicted by the linear approximation. (For further details
refer to [33].)

A single linear regression model for predicting effort based on
the value of the size metric which was used in this study has a form
presented in Eq. (8). (The linear regression equation was con-
structed in each step of the cross-validation procedure based on
the projects constituting a training set.)

Effortpi
¼ bSize � SizeðpiÞ þ b0 ð8Þ

where

� pi is the project for which effort is estimated;
� bSize is the slope for Size;
� b0 is the constant or intercept (set to 0);
� Size (pi) is the value of the size metric calculated for the

project pi.

4.2.2. Multiple regression
The purpose of multiple regression is to learn about the rela-

tionship between several independent (or predictor) variables
and dependent variable.

In the already presented linear regression model we considered
only one independent variable – the size metric. The question is
whether any additional variables could be added to the model to
improve its effort prediction capabilities. Therefore, we decided
to use the best subset regression procedure [34] to look for other
candidate-variables that could be incorporated to the model
5 We did not use the default value of PF equal to 20 h/UCP, because it can be
different for each variant of UCP (it has to be obtained by calculating the PostPFs for a
set of projects). In addition, it can differ between organizations – at the end Karner
proposed the value based on the projects developed at Objectory. (The observed
PostPF for the projects considered in this study ranged from 3 to 35 – see Table 3.)

M. Ochodek et al. / Information and Software Technology 53 (2011) 200–213 205
(among all environment factors, technical complexity factors, and
a factor called team size). This procedure was performed for each
size metric and data set. The coefficients of the regression model
were, then, calibrated in each step of the cross-validation proce-
dure based on the projects belonging to a training set (the factors
chosen for each subset of projects are presented in Table 5).

There are some issues regarding applying multiple regression
that are important for this study. First of all, one has to be careful
to not ‘‘overfit’’ the model to the data. (It is observed if the model
has to many degrees of freedom, in relation to the amount of data
available.) Therefore, we decided to include only one additional
independent variable at a time, and apply the multiple regression
model only to the sets that contained more than 4 observations.
We also did not apply the multiple regression to the original UCP
measure as it already included technical and environmental
factors.
Table 5
The accuracy of the effort estimation based on the different variants of UCP, Steps, Transa

Size metric Set OLS regression Multiple regress

MMRE Mean RE Pred(0.25) MMRE Mea

UCP-S All 0.40 �0.15 0.50 – –
UCP-T 0.45 �0.15 0.43 – –
UCP-T no UAW 0.44 �0.10 0.36 – –
UUCP-S 0.58 �0.30 0.29 0.54 �0.3
UUCP-T 0.59 �0.33 0.29 0.54 �0.2
UUCW-S 0.56 �0.27 0.29 0.45 �0.2
UUCW-T 0.56 �0.28 0.43 0.47 �0.2
Steps 0.46 �0.20 0.36 0.50 �0.3
Transactions 0.41 �0.11 0.64 0.53 �0.2
TTPoints 0.25 �0.13 0.64 0.23 �0.0

UCP-S Ind 0.60 �0.28 0.29 – –
UCP-T 0.61 �0.34 0.14 – –
UCP-T no UAW 0.58 �0.31 0.14 – –
UUCP-S 0.78 �0.41 0.00 0.79 0.1
UUCP-T 0.78 �0.48 0.14 0.76 0.1
UUCW-S 0.75 �0.38 0.00 0.79 0.1
UUCW-T 0.74 �0.45 0.14 0.75 0.1
Steps 0.68 �0.30 0.00 0.83 �0.2
Transactions 0.53 �0.23 0.43 0.86 0.0
TTPoints 0.25 �0.10 0.57 0.30 0.0

UCP-S Uni 0.37 �0.15 0.71 – –
UCP-T 0.50 �0.13 0.43 – –
UCP-T no UAW 0.51 �0.07 0.43 – –
UUCP-S 0.51 �0.24 0.43 0.35 �0.1
UUCP-T 0.54 �0.24 0.57 0.28 �0.0
UUCW-S 0.48 �0.20 0.57 0.24 0.0
UUCW-T 0.49 �0.18 0.43 0.22 �0.0
Steps 0.34 �0.14 0.57 0.14 �0.0
Transactions 0.39 �0.05 0.43 0.14 �0.0
TTPoints 0.27 �0.16 0.71 0.18 �0.0

UCP-S Web 0.37 �0.18 0.50 – –
UCP-T 0.44 �0.17 0.58 – –
UCP-T no UAW 0.43 �0.12 0.42 – –
UUCP-S 0.55 �0.32 0.33 0.37 �0.0
UUCP-T 0.58 �0.34 0.33 0.50 �0.0
UUCW-S 0.52 �0.29 0.42 0.35 �0.0
UUCW-T 0.54 �0.29 0.50 0.46 �0.0
Steps 0.41 �0.21 0.42 0.35 �0.0
Transactions 0.41 �0.12 0.50 0.59 �0.1
TTPoints 0.25 �0.12 0.67 0.22 �0.0

UCP-S Java 0.33 � 0.12 0.75 – –
UCP-T 0.44 �0.11 0.50 – –
UCP-T no UAW 0.46 �0.05 0.50 – –
UUCP-S 0.57 �0.32 0.38 0.28 �0.0
UUCP-T 0.61 �0.35 0.50 0.60 0.1
UUCW-S 0.54 �0.29 0.38 0.26 �0.1
UUCW-T 0.56 �0.29 0.38 0.55 0.1
Steps 0.35 �0.17 0.50 0.20 �0.0
Transactions 0.37 �0.07 0.50 0.52 0.1
TTPoints 0.26 �0.17 0.75 0.18 �0.0
The multiple regression model considered in this study is pre-
sented in the following equation:

Effortpi
¼ bSize � SizeðpiÞ þ bFactor � FactorðpiÞ þ b0 ð9Þ

where

� pi is the project for which effort is estimated;
� Factor (pi) is the value of the additional factor included in the

regression model (chosen among the EFs, TCFs, and team size)
for the project pi;
� bSize is the slope for Size;
� bFactor is the slope for Factor;
� b0 is the constant or intercept;
� Size (pi) is the value of the size metric calculated for the project pi.
ctions, and TTPoints.

ion Set OLS regression

n RE Pred(0.25) Factor MMRE Mean RE Pred(0.25)

– – ADM 0.20 0.02 0.33
– – 0.32 0.03 0.33
– – 0.39 0.03 0.33

1 0.57 T11 0.16 0.03 1.00
3 0.50 T5 0.29 0.03 0.33
0 0.43 T4 0.19 0.03 1.00
2 0.43 T4 0.36 0.03 0.33
0 0.57 T11 0.22 0.03 0.33
1 0.57 T5 0.44 0.02 0.33
6 0.64 T1 0.12 0.05 0.67

– – EF1 0.43 �0.07 0.33
– – 0.52 �0.04 0.33
– – 0.46 �0.01 0.33

6 0.14 T5 0.35 �0.05 0.33
2 0.14 T5 0.43 �0.02 0.33
6 0.14 T5 0.32 �0.04 0.33
1 0.14 T5 0.39 0.00 0.33
6 0.14 T3 0.21 �0.02 0.67
7 0.14 T5 0.33 0.06 0.33
0 0.57 T1 0.26 0.01 0.33

– – EF2 0.19 0.05 0.50
– – 0.30 0.08 0.50
– – 0.37 0.10 0.25

1 0.71 F3 0.15 0.05 1.00
9 0.71 Team 0.27 0.08 0.50
0 0.57 Team 0.18 0.06 1.00
9 0.71 Team 0.34 0.09 0.25
2 1.00 Team 0.20 0.06 0.50
7 0.86 Team 0.44 0.12 0.25
4 0.71 F5 0.15 �0.02 0.50

– – TCF1 0.30 0.01 0.33
– – 0.47 �0.01 0.00
– – 0.57 �0.03 0.00

7 0.50 T1 0.19 0.03 1.00
8 0.42 Team 0.36 0.02 0.33
7 0.50 T1 0.23 0.03 0.67
8 0.58 Team 0.45 0.01 0.00
7 0.50 T1 0.27 0.02 0.33
2 0.58 T5 0.59 0.02 0.00
4 0.58 T1 0.10 �0.07 0.67

– –
– –
– –

9 0.88 T13
5 0.50 Team
0 0.75 T13
4 0.62 Team
3 0.75 T1
4 0.62 Team
9 0.62 F5

206 M. Ochodek et al. / Information and Software Technology 53 (2011) 200–213
4.2.3. The evaluation criteria
The next step of the analysis is the evaluation of the prediction

accuracy, which is performed based on the following criteria [35–
37]:

� MRE – which stands for the magnitude of relative error. The
MRE is calculated for each project in the data set according to
Eq. (10). It indicates the difference between the estimated and
the actual effort in respect to the actual effort. The mean MRE
(MMRE) is used to aggregate the multiple observations of
MRE in the whole data set.
MRE ¼ jActEffort � EstEffortj
ActEffort

ð10Þ
� Mean RE – which stands for the mean relative error. It is calcu-
lated for a set of projects according to the following equation:
MeanRE ¼ 1
n

X
i

ðActEfforti � EstEffortiÞ
ActEfforti

ð11Þ
� Pred(e) = k/n – prediction quality is calculated on a set of n pro-
jects, where k is the number of projects for which estimation
error (MRE) is less than or equal to e. In this study e was set
to 0.25. Conte et al. [37] suggested that for acceptable estima-
tion model, the value of Pred(0.25) should exceed 0.75.

The interpretation of MRE and Pred criteria is that the accuracy
of an estimation technique is proportional to the Pred and inver-
sely proportional to the MRE.

The Mean RE helps to investigate the bias of the estimates. If the
estimation model is unbiased the value of the Mean RE should be
close to zero (equal number of over-estimates and under-estimates
cancel each other).

For testing the statistical significance of differences in accuracy
between paired samples we used the two-tailed Wilcoxon signed-
rank test with the significance level a set to 0.05. (However, the re-
sults of these tests should be taken with caution due to their low
statistical power – the issue is discussed later on in Section 10.)
5. Actors complexity in Use Case Points

Karner included information concerning actors in the UCP
method (UAW, see Section 2.2.1), however the impact of the
UAW on the accuracy of the method has not been investigated
empirically.

Moreover, there are at least two problems related to the calcu-
lation of UAW:

� Generalization of actors. A generalization/specialization relation
can be used to show that one or more actors are a special case
of another actor (e.g., Senior Analyst can be a specialization of
the Analyst actor). The number of actors in the use-case model
impacts the calculated UCP. Therefore, generalized actors
should be counted once only [17].
� Additional actors. Analyst can introduce additional actors, which

is often dictated by the properties of a particular project [14].
For instance, analyst can introduce a goal-oriented actor, if the
same goal is meaningful for many actors. (E.g., in the system
supporting reviews of scientific papers, actors like Editor,
Reviewer, and Author can be interested in obtaining the goal
‘‘read a paper’’. To enable this, a new actor called Reader can
be introduced and associated with the ‘‘Read a paper’’ use case.)

If the UAW was rejected without decreasing accuracy of UCP it
would simplify the method and would eliminate the problems pre-
sented above, related to the analysis of actors’ complexity.
5.1. Thesis

UAW is negligible from the point of view of the effort estima-
tion with UCP.

5.2. Investigation

In order to investigate the impact of UAW on the accuracy of ef-
fort estimation based on UCP, we performed the analysis described
in Section 4 on the base variant of UCP (UCP-T) and the variant of
UCP with UAW omitted (UCP-T no UAW). The values of both met-
rics are presented in Table 3. The results of the cross-validation
analysis are presented in Table 5.

The observed values of MMRE were nearly the same for both
variants of UCP and all of the data sets. The average MMRE was
lower by 0.02 for UCP-T, however, the lower variability was ob-
served for the UCP with UAW omitted. None of the null hypotheses
about the equality of median values of MRE could be rejected.

The similar observation was made for the prediction quality. The
average Pred(0.25) was higher by 0.05 in the case of UCP-T, but lower
variability was observed for the variant of the UCP without UAW.

A minor tendency for overestimation was observed for both
variants of UCP.

5.3. Summary

Based on the performed analysis, we observed that UAW had
only minor impact on the accuracy of the effort estimation based
on UCP.
6. Adjustment factors in Use Case Points

As presented in Section 2.2.3, there are 13 technical complexity
factors and 8 environmental factors in the UCP method. Their role
is to adjust UUCP to UCP.

There are at least two problems concerning assessment of these
factors:

� Lack of standardized (agreed) scale. In the original UCP method
the influence of each adjustment factor is assessed with the
use of 0–5 ordinal scale (see Section 2.2.3). Although some rules
for interpreting this scale have been proposed [18,38], none of
them have become an agreed standard (i.e., was reported to
be used or validated in other studies).
� Not verified weights of factors. Each factor has its weight that

reflects its general impact on the project’s complexity. Values
of the weights in the original method were proposed by Karner
and his colleagues based on their experience. Little has been
done so far to empirically evaluate their correctness.

It has already been reported that different people can provide
different assessments of TCF and EF when they use the 0–5 ordinal
scale [18,38]. The same problem was observed for the projects pre-
sented in Section 3 (inner-team variability in assessment of TCF
and EF for the projects is presented in Fig. 2). Subjectivity in assess-
ment of the adjustment factors can have a negative impact on the
consistency of a historical projects database.

Taking into account problems with standardization of TCF and
EF, a more general question arises – what is the impact of the
adjustment factors on the accuracy of effort estimation with UCP?

6.1. Thesis

TCF and EF are negligible from the point of view of the effort
estimation with UCP.

TCF

Pr
oj

ec
ts

EF

Pr
oj

ec
ts

A
B

C
D

E
F

K
M

N

0.6 0.8 1.0 1.2 1.4

A
B

C
D

E
F

K
M

N

0.6 0.8 1.0 1.2 1.4

A
B

C
D

E
F

H
I

H
I

H
I

K
M

N

0.6 0.8 1.0 1.2 1.4

TCFxEF

Pr
oj

ec
ts

Fig. 2. Box plots presenting differences in assessments of TCF and EF (and their cumulative value TCF � EF) based on the conducted surveys within the project teams (projects
with only one response were not included to the plot).

M. Ochodek et al. / Information and Software Technology 53 (2011) 200–213 207
6.2. Investigation

To investigate the impact of adjustment factors on the accuracy
of UCP, we compared the accuracy of the effort estimation based on
the original UCP (UCP-T); unadjusted UCP (UUCP-T); and unad-
justed use case weights (UUCW-T). The values of all metrics are
presented in Table 3. The results of the cross-validation analysis
are presented in Table 5.

The differences observed between the average values of MMRE
for the original UCP and two variants that do not take into account
the adjustment factors were minor. (They were in both cases equal
to 0.04 in favour of UCP-T.) Lower variability was also observed for
the original variant of UCP. However, we were not able to reject the
null hypotheses about the equality of median values of MRE.

The prediction quality was also similar for all the compared
variants of UCP. The highest average value of Pred(0.25) was ob-
served for UUCP-T (the value for UCP-T was lower by 0.01 and
for UUCW-T by 0.06).

The UCP-T performed slightly better for more heterogeneous
subsets of projects. However, the observed improvement in the
accuracy of effort estimation was still not impressive. Therefore,
the question is whether all 21 factors are really necessary?

The previously discussed observations did not include the re-
sults obtained when the multiple regression model was used to
estimate the effort, which could be treated as an extremely simpli-
fied version of the adjustment factors. When it was applied to
UUCW-T and UUCP-T the prediction quality visibly increased.
The average values of Pred(0.25) were higher for UUCW-T and
UUCP-T than the value for UCP-T (by 0.03 and 0.08). Therefore in
most cases, a single additional predictor added to the model was
sufficient to obtain a similar accuracy of effort estimation as in
the case of UCP incorporating 21 adjustment factors.

To further investigate the possibility of reducing the number of
adjustment factors, we performed the factor analysis.6 The goal of
the analysis was to find groups of potentially overlapping factors
within TCFs and EFs that could be substituted for more general
factors.

The outcome of the analysis was that the initial adjustment-fac-
tors model including 21 factors could be substituted by a simpler
model incorporating 4 technical complexity factors and 2 environ-
mental factors.

In the case of technical complexity 4 factors that should be re-
tained in the model accounted for 84% of the total variation in TCFs.
6 Factor analysis is a technique used to reduce the number of dimensions in the
data. It assumes that the observed dependant variables are linear combinations of
some underlying (hypothetical or unobservable) independent variables – called
‘‘factors’’ [39].
The following ‘‘new’’ technical factors could be defined (we used
the terminology defined in ISO 9126 [40]):

� Efficiency – this factor relates to the capability of the software
product to provide appropriate performance, relative to the
amount of resources used, under stated conditions. The main
associated TCFs are ‘‘performance’’ (T2), ‘‘end-user efficiency’’
(T3), ‘‘complex processing’’ (T4), and ‘‘easy to use’’ (T7).
� Operability – this factor defines how easy it is to operate and

control the system. The associated factors are ‘‘easy to install’’
(T6), ‘‘portable’’ (T8), ‘‘security features’’ (T11), and ‘‘special
training required’’ (T13). The difficulties in the installation and
configuration of the system are reflected by factors T6 and T8
(requirements related to portability could imply that the sys-
tem will have to be installed in different environments). The
second aspect relates to the difficulties in operating and con-
trolling the system (i.e., cumbersome security procedures or
special training required).
� Maintainability – it is the capability of the software product to

be modified. The main associated factors are ‘‘reusable code’’
(T5), and ‘‘easy to change’’ (T9).
� Interoperability – it is defined as the capability of the software

product to interact with one or more specified systems. The
associated factors are ‘‘concurrent’’ (T10), and ‘‘access to third
parties’’ (T12).

A similar analysis was performed by Lokan [3] for general system
characteristics (GSC) in FPA. The initial GSC model containing 14
factors was reduced to 5 factors in that study. Although the techni-
cal adjustment factors are slightly different than GSC (TCFs were
adapted from MK II FPA), three of the identified factors were com-
mon for both studies (efficiency, operability, and interoperability).

The second set of adjustment factors is specific to UCP. Based on
the results of the factor analysis we observed that the initial model
including 8 factors could be substituted by a simpler model con-
taining only 2 more general factors (these factors accounted for
52% of the total variation in the EFs):

� Team experience – it relates to the knowledge and skills of the
development team. The associated factors are ‘‘familiarity with
the standard process’’ (F1), ‘‘application experience’’ (F2),
‘‘object-oriented experience’’ (F3), ‘‘lead analyst capability’’
(F4)’’, and ‘‘difficult programming language’’ (F8). A minor cor-
relation was also observed for the environmental factor ‘‘moti-
vation’’ (F5).
� Team cohesion – it accounts for the level of collaboration

between the project’s stakeholders. The associated factors are
‘‘motivation’’ (F5), ‘‘stable requirements’’ (F6), and ‘‘part-time
workers’’ (F7). The last factor F7 is negatively correlated – the

100 200 300 400 500

0
10

0
20

0
30

0
40

0

UCP−S

U
C

P−
T

y= 0.584 x − 0.214

Fig. 3. Scatter plot with linear regression presenting dependency between UCP-S
and UCP-T for the projects introduced in Section 3 (dashed lines – 95% confidence
interval; dotted lines – 95% prediction interval).

208 M. Ochodek et al. / Information and Software Technology 53 (2011) 200–213
more part-time workers there are, the less team cohesion is
observed (this factor has also a negative weight in the original
EFs model). The ‘‘team cohesion’’ is also a scale factor in the
COCOMO II effort estimation method [41].

The high correlation between the factors F1–F4 is unsurprising.
For instance, if the team is experienced in software development
(F3) it seems also highly probable that its members are experi-
enced designers (F4). (The factor F4 is, however, irrelevant if the
team does not use object-oriented programming languages.)

6.3. Summary

Adjustment factors have been broadly discussed and criticized
in the context of FPA [3,4,6,42]. (The main reported problems re-
lated to the inadmissible operations on scales and the minor im-
pact of the adjustment factors on the accuracy of the effort
estimation based on FPA.)

In this study we observed a similar phenomenon related to
adjustment factors in UCP. We observed the minor influence of
these factors on the accuracy of the effort estimation based on
UCP. The second observation was that some of the adjustment fac-
tors are clearly overlapping. (The total number of 21 adjustment
factors considered in UCP could be limited to 4 technical complex-
ity factors and 2 environmental factors.)
7. Use Case Points – steps vs. transactions

As a use-case transaction is a set of activities in use-case-sce-
narios, which is either performed entirely, or not at all [9], a single
transaction might be a part of a use-case scenario, a step, or even a
single phrase.

Some authors suggested that counting transactions is equiva-
lent to counting steps [18,43], which in our experience is not al-
ways true. However, if steps could be counted instead of
transactions, it would simplify the UCP method (as identification
of transactions can be a difficult task [21]7).

7.1. Thesis

The value of UCP calculated based on steps is the same as if cal-
culated based on transactions.

7.2. Investigation

The exact values of UCP calculated based on steps and transac-
tions differed significantly.8

One of the reasons for such discrepancy is that steps are ele-
ments of use-case syntax (and not necessary semantics). Therefore,
a single use case can be easily written using a different number of
steps, without changing its abstraction level, or even phrases [23].

For instance, in the considered set of projects, the ratio between
the number of steps and the number of transactions ranged from
1.50 to 4.04 (mean = 2.83, and SD = 0.75). This is because, some
authors may follow the Jacobson’s suggestion that each step of a
use case should constitute a transaction [11,23]; other authors
may express most of transactions with the use of two steps (actor’s
request, and system response). Unfortunately, many other ap-
proaches are also possible (or a mixture of different approaches
depending on the functionality being described).
7 Six experts counted transactions in 30 use cases. The highest obtained total
number of transactions was nearly 2 times greater than the smallest one.

8 Two-tailed Wilcoxon signed-rank test with significance level a set to 0.05 (p-
value = 0.001); calculated effect size: d = 0.65; retrospective power: (1 � b) = 0.55.
The difference between the number of steps and the number of
transactions impacts the value of UCP. The observed ratio between
UCP-S and UCP-T for the considered projects ranged from 1.05 to
2.12 (mean = 1.73, and SD = 0.28).

Although, the values of UCP-S and UCP-T differed significantly, a
strong correlation between them was observed (Pearson’s product-
moment coefficient r = 0.99, p-value < 0.001). Therefore, one can
try to predict the value of UCP-T based on the value of UCP-S
(e.g., by constructing a linear regression model as presented in
Fig. 3). The accuracy of such predictions depends on similarities
(or differences) in use-case writing style between the projects.
For instance, projects B and E were developed by the same enter-
prise, however, the ratios between UCP-S and UCP-T were 1.1
and 1.8. More convergent writing styles were observed in projects
H, I, and K, which were also developed by a single organization (the
ratios were 1.7, 2.0, and 1.8).

7.3. Summary

The values of UCP calculated based on steps and transactions
might not be the same, therefore, it is recommended to not mix
them together within a single historical database.

However, if an organization is forced to use historical data con-
cerning UCP coming from different sources (without the access to
the requirements specifications, e.g., data published in scientific
papers), where UCP is calculated based on steps, for some of the
projects, and based on transactions, for the rest of them, it may
consider using regression model to predict the values of UCP, and
unify the measurements within the data set (e.g., multiply the val-
ues of UCP-S by 0.584 according to the model presented in Fig. 3 to
obtain the approximated values of UCP-T). Unfortunately, such
conversion will introduce an error, which value depends on the le-
vel of differences between the writing style of use cases (which
cannot be assessed without the access to the requirements specifi-
cation documents).

In addition, it is important to provide information whether UCP
was calculated based on steps or transactions when reporting any
study concerning UCP (which is a seldom observed practice).

Although, the values of UCP calculated based on steps and
transactions are not equivalent, the question arises about the
equivalence of the accuracy of effort estimation based on UCP-S
and UCP-T.

7.4. Thesis

The accuracy of UCP calculated based on steps is not worse than
if calculated based on transactions.

M. Ochodek et al. / Information and Software Technology 53 (2011) 200–213 209
7.5. Investigation

In order to investigate whether the choice of steps or transac-
tions to calculate UCP impacts the accuracy of effort estimation,
we compared the accuracy of effort prediction based on the corre-
sponding variants of UCP (also UUCP and UUCW) calculated based
on steps and transactions.

The observed differences in the accuracy of effort estimation be-
tween the corresponding variants of UCP (e.g., UCP-S vs. UCP-T)
were not significant. However, all variants of UCP calculated based
on steps provided on-average more accurate predictions. The dif-
ferences between the average values of MMRE were 0.06 (UUCW),
0.07 (UUCP), and 0.10 (UCP) – all in favour of the variants calcu-
lated based on the number of steps. However, lower variability of
MMRE between the data sets was observed for the variants of
UCP calculated based on the number of transactions.

The similar observation was made for the prediction quality.
The differences between the average values of Pred(0.25) were
0.11 (UCP), 0.12 (UUCW), and 0.14 (UUCP) – in favour of variants
based on steps. Again, lower variability was observed for UUCP
and UUCW calculated based on transactions (in the case of UCP
the variability was slightly lower for UCP-S). We also observed that
UCP-S provided systematically more accurate estimates than
UCP-T. (It was not observed, however, in the case of UUCP and
UUCW.)

The main reason for such visible on-average differences in the
accuracy between the step-based and the transaction-based vari-
ants of UCP was that the variants based on steps performed visibly
better for more homogeneous data sets (i.e., ADM, EF1, EF2, and
TCF1).

All the variants of UCP (no matter if calculated based on steps or
transactions) had a minor tendency to overestimate the effort,
however, in the case of more homogeneous sets the mean RE
was usually close to zero.

7.6. Summary

The observation made in this study was that the variants of UCP
calculated based on steps provided not worse (or even slightly bet-
ter) accuracy of effort estimation than the corresponding variants
calculated based on transactions.

Therefore, it seems that if an organization has a standardized
style of writing use cases for all the projects, it may consider sim-
plifying UCP by calculating its value based on steps in use cases.
8. Counting steps instead of UCP

It seems that UCP can be simplified by using steps to calculate
UUCW instead of transactions. The question arises, whether it
can be further simplified to count just the total number of steps
in all use cases?

8.1. Thesis

The Steps metric, which is the total number of steps in all use
cases describing the system, can be used to estimate effort with
similar accuracy to UCP.

8.2. Investigation

To investigate the thesis, we compared the accuracy of estima-
tion based on UCP calculated based on steps (UCP-S, UUCP-S, and
UUCW-S) with the Steps metric.

The observed accuracy of effort estimation for UCP-S and Steps
were on-average similar (no significant differences were observed).
The average values of MMRE were the same for both metrics,
however, a slightly lower variability was observed for UCP-S. In
addition, UCP-S provided better on-average prediction quality than
Steps (by 0.06). The Steps metric performed slightly better for
more homogeneous subsets and when the multiple regression
model was used instead of the single regression model.

In comparison between Steps and two other step-based metrics
UUCP-S and UUCW-S, lower on-average MMRE was observed for
Steps (the differences between the average MMREs were 0.05
and 0.07). The null hypotheses about the equality of median values
of MRE could be rejected for Uni, Web, and Java sets. However,
both UUCP-S and UUCW-S provided slightly higher on-average val-
ues of Pred(0.25), mainly because they performed visibly better
than Steps in the case of more homogeneous subsets.
8.3. Summary

Counting the total number of steps instead of UCP could
simplify the effort estimation procedure. However, one should
be aware that this technique could be exposed to the problems
related to the differences in use-case writing style and the
differences in abstraction levels of use cases (see Sections 7
and 9).
9. Long live transactions!

If the variants of UCP calculated based on the number
of steps and the Steps metric itself could provide effort estimates
with the similar accuracy to the UCP calculated based on the
number of transactions, then, are transactions still worth
considering?
9.1. Thesis

Use-case transactions can be used to provide effort estimation
with better accuracy than UCP calculated based on steps.
9.2. Investigation

Use-case transactions are supposed to express the semantics of
interaction between actors. Therefore, they should be less prone to
different author writing styles (or different levels of abstraction in
use cases).

In this study, we were not able to assess the scale of influence
of use-case writing style on the accuracy of the effort estimation
based on step-based size metrics. However, to present the poten-
tial problems of using steps instead of transactions, we compared
two projects that have visible differences in writing style of use
cases, but their actual effort was similar (projects B and I). If the
post-productivity factors of these projects were cross-used be-
tween them to estimate the effort, the ratios between the MRE
for UCP-S and UCP-T would be 1.72 (B based on I) and 3.31 (I
based on B). Therefore, UCP-T would be a better choice than
UCP-S if there is a threat that use cases stored in the historical
database differ in respect to the level of abstraction or writing
style.

Recently two new functional size measures that are based on
the concept of use-case transactions were proposed, i.e., Transac-
tions [20], and TTPoints [29].

The Transactions metric is defined as the total number of trans-
actions that can be identified in all use cases describing the system
under development.

The TTPoints metric is also based on the number of transactions,
but it includes additional information about the semantics of

210 M. Ochodek et al. / Information and Software Technology 53 (2011) 200–213
transactions (twelve semantic transaction types have been identi-
fied so far9).

The value of TTPoints is calculated according to Eq. (12). The
main difference between the Transactions and TTPoints is concern-
ing the way they assess complexity of a single transaction. In the
case of Transactions metric, all transactions are treated as equally
complex. However, in TTPoints the complexity of a single transac-
tion is calculated by multiplying together the weight assigned to
its semantic type, the number of actors interacting with the system
under development (within the transaction), and the number of
objects being processed within the transaction.

TTPoints ¼
Xn

i¼1

TT Weighti � Objectsi � Actorsi ð12Þ

where

� n is the number of semantic transactions identified in the
requirements specification;
� TT_Weighti is the weight assigned to the type of the ith transac-

tion, which corresponds to the number of core actions (actions
that are necessary to preserve the semantic sense of a given
type of transaction, e.g., a ‘‘provision of data’’ is a core action
for the ‘‘create’’ type of transaction);
� Objectsi is the number of domain objects processed by the ith

transaction;
� Actorsi is the number of collaborating actors in the ith

transaction (other than actor representing the system under
development).

The effort estimation capabilities of Transactions and TTPoints
metrics were preliminary verified [29,44]. The observations were
made that they can be effectively used to estimate effort at the
early stages of projects.

In order to investigate the differences between the accuracy of
transactions-based and step-based size metrics, we compared pre-
diction accuracy of Transactions and TTPoints with the accuracy of
other size metrics calculated based on the number of steps.

In the performed comparison, the Transactions metric provided
on-average a slightly worse prediction accuracy than the measures
based on the number of steps. The differences between the average
values of MMRE and average Pred(0.25) ranged from 0.03 to 0.10 –
all in favour of step-based measures. However, lower variability of
MMRE was observed for Transactions in all cases. (The variability
of Pred(0.25) was not lower for Transactions only in the compari-
son with UCP-S.)

The observed differences in favour of step-based measures were
mainly due to extremely poor accuracy of Transactions in the case
of the sets ADM, EF2, and TCF1. If only the bigger sets of projects
were considered (i.e., All, Ind, Uni, Web, and Java) Transactions
would be on-average more accurate than UUCW- S and UUCP-S,
and equally accurate to UCP-S and Steps (however, still providing
estimates with lower variability of prediction error).

The second considered size metric – TTPoints provided esti-
mates with better prediction accuracy than the size metrics calcu-
lated based on the number of steps. The differences observed
between the average values of MMRE ranged from 0.14 to 0.22 –
all in favour of TTPoints. A similar observation was made for the
differences between the values of Pred(0.25), which ranged from
0.08 to 0.15.

The differences in the median values of MREs between TTPoints
and three other step-based size measures UUCP-S, UUCW-S, and
9 The semantic transaction types defined in [29]: Create, Retrieve, Update, Delete,
Link, Delete Link, Asynchronous Retrieve, Dynamic Retrieve, Transfer, Check Object,
Complex Internal Activity, and Change State.
Steps were significant for the sets: All, Ind, and Web (in the case
of comparison with UUCW a significant difference was also ob-
served for the Java set). The differences in median values of MREs
between TTPoints and UCP-S were significant only for the Ind set.

There are few potential reasons that could explain why TTPoints
performed better than measures based on counting the number of
steps.

First of all, the semantic transaction types that are used in
TTPoints are based on another definition of use-case transaction
provided by Diev [14], which is similar to the definition of elemen-
tary process in FPA. It states that a use-case transaction is the
smallest unit of activity that is meaningful from the actor’s point
of view, which is self-contained and leaves the business of the
application being sized in a consistent state. Therefore, this defini-
tion of transaction is oriented towards achieving goals meaningful
for actors. The semantic transaction types define a catalogue of
such meaningful goals that can be found in use cases.

For example, in use case presented in Fig. 1 one can identify a
single transaction which semantic type is called ‘‘create’’. If the
stimulus-response transaction definition was used, two transac-
tions would be identified in the same use case (or even three if
one considers an alternative ending of the same transaction as a
new one).

Therefore the question arises what is the advantage of using the
semantic-types approach to transaction-identification? For in-
stance, if in the same use case (presented in Fig. 1) the action of
submitting the ‘‘paper submission form’’ was divided into two
sub-actions – providing general information about the paper and
separately its content, then, one more transaction would be identi-
fied if the stimulus-response definition is followed. For semantic
transaction types, such use cases would still contain a single ‘‘cre-
ate’’ transaction.

The weights of semantic transaction types in the TTPoints
method are based on the number of so-called ‘‘core actions’’ (ac-
tions that are crucial for preserving the meaning of a transaction
type). This weight could be understood also as the minimum num-
ber of actions that have to be performed for a given type of
transaction.

TTPoints also includes information about domain objects that
appear in use-case-scenarios. In previous studies [20,29], it was
observed that the size metric defined as the total number of objects
found in use-case-scenarios does not provide an accurate predic-
tion when it is used for effort estimation.

Another observation was that domain objects differ in impor-
tance [29] (e.g., some of them are the subjects of many use cases).
Therefore, the total number of domain objects is not a good candi-
date for being a standalone size measure. In TTPoints the number
of domain objects is counted for each transaction (not for the
whole requirements specification). In most cases, a single domain
object is processed per transaction, however, a complex transac-
tion can process more objects. The same relates to actors. It is sel-
dom observed that there is more than one actor interacting with
the system within a single transaction. However if it happens,
the transaction is assumed to be more complex in TTPoints (e.g.,
some additional systems are taking part in the transaction).
9.3. Summary

The first observation that was made based on the results of the
analysis was that the accuracy of the effort estimation based on
Transactions was comparable to the accuracy observed for UCP-S
or Steps. However, the main advantage of Transactions was lower
variability of prediction error. In addition, both Steps and Transac-
tions are simple measures that are mathematically valid, in con-
trast to UCP.

UCP−T no UAW
UCP−T
UCP−S

UUCP−T
UUCP−S

UUCW−T
UUCW−S

Steps
Transactions

TTPoints

0.0 0.5 1.0 1.5 2.0 2.5 3.0

MMRE

Fig. 4. Box plots presenting distributions of the MMRE calculated for the subsets of the main data set (16278 combinations of the main set that contained from 3 to 14
projects).

M. Ochodek et al. / Information and Software Technology 53 (2011) 200–213 211
The second investigated size measure was TTPoints, which
seemed to outperform all step-based metrics considered in this
study. However, the procedure for calculating TTPoints seems to
be slightly more complex than counting the total number of trans-
actions or steps.
11 We performed the retrospective power analysis, however, this technique is often
criticized because it is based on the questionable assumption that the sample effect
size is identical to the effect size in the population from which it was drawn [47].

12 Some of the largest data sets that were published (together with basic information
about the projects, i.e., UCP, actual effort, context): Frohnhoff and Engles [38] – 15
industrial projects (728–136 320h), Ribu [18] – 12 projects (2 industrial 10 043–13
10. Threats to validity

There are several threats to the validity of this study. Some of
them regard internal or conclusion validities, which in this study re-
lates to the quality and relevance of the collected data and applica-
tion of statistical techniques. Other threats refer to external validity,
which describes problems with generalization of observations
made based on the considered data set for other projects.

10.1. Internal validity

The projects analyzed in this study were developed by different
organizations. Therefore, the maturity of development processes
could affect the recorded effort. Moreover, in the case of some pro-
jects we did not have access to the detailed data regarding the
types of activities included in the recorded effort.

Additional problems relate to the objectiveness of transaction-
identification in use cases. In order to preserve consistency of this
process, the same person identified all transactions. To investigate
the potential problems related to reliability of transaction-identifi-
cation, we asked an external expert to review the transaction-
counts for the random sample containing 20% of all use cases.
However, there still might be some inconsistencies in the results
of transaction-identification process due to the different styles of
writing use cases between the projects.

10.2. Conclusion validity

There are also several threats to validity that relate to the signif-
icance of observation that were made. Although we performed sta-
tistical testing of hypotheses, one should treat the obtained results
with caution.

First of all, due to the large number of direct comparisons a mul-
tiple testing procedure should be used – which could be done, e.g.,
by applying the Bonferroni correction (i.e., dividing the initial value
of a by the total number of direct comparisons). However, the
more important issue in the context of this study relates to statis-
tical power10 of the performed tests (1 � b). It is important because
10 The power of a statistical test (1 � b) is the probability that the statistical test will
reject a false null hypothesis.
whenever we investigated a potential way of simplifying UCP, it was
sufficient for the simplified variant of the method to perform at least
as good as the original one. Therefore, if the null hypothesis about
the equality of median MREs between two compared variants of
UCP was really true, it would also support the thesis that UCP can
be simplified, without limiting its prediction accuracy.

To investigate this issue, we performed a sensitivity analysis [45]
in order to find out what is the minimal effect size that could be de-
tected with the assumed power of 1 � b = 0.80, for the size of sam-
ples ranging from 3 to 14, and significance level a = 0.05. The
minimal effect size that could be detected for a sample of 14 pro-
jects would be 0.83, which is a ‘‘large’’ effect size according to Co-
hen [46]. For the smallest subsets containing 3 projects such effect
size could be detected if assumed statistical power of the test was
reduced to 0.13. The observed effect size11 was on-average ‘‘med-
ium’’ ð�d ¼ 0:48Þ; the ‘‘small’’ effect size was observed for 34% of
the comparisons (d 6 0.2); the effect size between ‘‘small’’ and
‘‘large’’ was observed for 47% of the comparisons (0.2 < d < 0.8);
and ‘‘large’’ effect size was observed for the remaining 19% of the
comparisons (d P 0.8).

Therefore, whenever we were not able to reject the null hypoth-
esis, it could mean that either the null hypothesis was really true or
the effect size was too small to be detected in this study.
10.3. External validity

The main external threat to validity relates to the size of the
data set which limits the strength of conclusions that can be made.
However, the considered data set is still one of the largest data sets
that have been published and used to analyze the UCP method.12

Another threat to validity could be the heterogeneity of the ana-
lyzed set of projects. In order to mitigate that problem we decided
to perform the analysis on the main set and its subsets that seemed
to be homogeneous in some sense. In addition, we performed the
same cross-validation procedure for all combinations of the main
set containing from 3 to 14 projects. The observation that was
made based on the analysis of the distributions of MMRE for
the considered size metrics (see Fig. 4) is that the different
933h, and 10 students’ 232–595h). Larger data sets were also reported to be used as a
basis for the analysis of UCP (however without providing in-depth information about
the projects): Arnold and Pedross [16] – 23 projects, Carrol [48] – more than 200
projects, Diev [49] – 30 projects.

212 M. Ochodek et al. / Information and Software Technology 53 (2011) 200–213
compositions of the main data set did not influenced visibly the
findings of this study.

Another limitation related to external validity of this study is
that the data set contained mainly data from the projects aimed
to develop data-intensive systems (probably the most outlying
project, in that context, was the project B). Therefore, the observa-
tions made in this study could be generalized mainly to this kind of
systems. (However, the relation between the structure of use cases
and the complexity of the system for different types of applications
still remains unknown.)
11. Conclusions

In this study the construction of the Use Case Points method
was investigated based on the data collected from 14 software pro-
jects. The aim was to search for potential ways to simplify the ef-
fort estimation based on use cases.

The first potential approach to simplify UCP is to reject UAW.
We observed that in the case of the considered data set it had only
minor impact on the accuracy of effort estimation based on UCP.

The next observation was that the adjustment factors used in
UCP did not provide a significant improvement in the accuracy of
effort estimation. In addition, the model of 21 adjustment factors
seemed to be superfluous. In most cases, a single additional predic-
tor added to the regression model was sufficient to provide esti-
mates with similar accuracy as when TCF and EF were used.
Finally, according to the results of the performed factor analysis
the number of adjustment factors might be reduced to 2 environ-
mental factors and 4 technical complexity factors.

Another way of simplifying the UCP-based effort estimation is
to calculate the value of UCP based on the number of steps instead
of transactions. We observed that the step-based variant of UCP
provided not worse effort prediction than calculated based on
the number of transactions in use cases. However, the exact values
of both variants of UCP were not the same. In addition, the extre-
mely simplified variant of UCP which is counting the total number
of steps in all use cases provided similar prediction accuracy to
other variants of UCP calculated based on steps.

We also investigated the accuracy of two recently proposed size
metrics Transactions [20] and TTPoints [29].

The observation was made that the Transactions metric pro-
vided a similar effort prediction as the different variants of
UCP calculated based on the number of transactions. (The step-
based size metrics provided slightly better on-average accuracy
than Transactions, however, with higher variability.) The
TTPoints metric [29] (which extends the idea of Transactions)
provided slightly better prediction accuracy than all considered
variants of UCP. In addition, the measures based on steps
seemed to be more sensitive to the differences in use-case writ-
ing style than transactions.

The main limitations of the observations made in this study are
related to the small size of the considered set of projects and its
heterogeneity.
Acknowledgements

We would like to thank Jakub Jurkiewicz for performing the re-
view of transaction-counts in use cases, and Sylwia Kopczyńska for
her valuable remarks.

We also thank the anonymous reviewers for their comments,
which resulted in substantial improvements to this work.

This research project operated within the Foundation for Polish
Science Ventures Programme co-financed by the EU European
Regional Development Fund.
References

[1] A. Albrecht, Measuring application development productivity, in: Proceedings
of the Joint SHARE/GUIDE/IBM Application Development Symposium, 1979,
pp. 83–92.

[2] C. Lokan, An empirical study of the correlations between function point
elements, in: Software Metrics Symposium, 1999. Proceedings: Sixth
International, IEEE, 2002, pp. 200–206.

[3] C. Lokan, An empirical analysis of function point adjustment factors,
Information and Software Technology 42 (9) (2000) 649–659.

[4] R. Jeffery, J. Stathis, Function point sizing: structure, validity and applicability,
Empirical Software Engineering 1 (1) (1996) 11–30.

[5] B. Kitchenham, K. Kansala, Inter-item correlations among function points, in:
Software Metrics Symposium, 1993. Proceedings: First International, IEEE,
2002, pp. 11–14.

[6] B. Kitchenham, The problem with function points, IEEE Software 14 (2) (1997)
29–31.

[7] C.R. Symons, Software Sizing and Estimating: Mk II FPA (Function Point
Analysis), John Wiley & Sons, Inc., New York, NY, USA, 1991.

[8] A. Abran, J. Desharnais, S. Oligny, D. St-Pierre, C. Symons, The COSMIC
Functional Size Measurement Method v3.0.1, Measurement Manual, May
2009.

[9] G. Karner, Metrics for objectory, Master’s thesis, University of Linköping,
Sweden, 1993.

[10] I. Jacobson, Object-oriented development in an industrial environment, ACM
SIGPLAN Notices 22 (12) (1987) 183–191.

[11] I. Jacobson, M. Christerson, P. Jonsson, G. Övergaard, Object-Oriented Software
Engineering: A Use Case Driven Approach, Addison-Wesley Longman, Inc.,
1992.

[12] C. Neill, P. Laplante, Requirements engineering: the state of the practice,
Software, IEEE 20 (6) (2003) 40–45.

[13] M. Braz, S. Vergilio, Software effort estimation based on use cases, in:
Proceedings of the 30th Annual International Computer Software and
Applications Conference (COMPSAC’06), vol. 01, 2006, pp. 221–228.

[14] S. Diev, Use cases modeling and software estimation: applying use case points,
ACM SIGSOFT Software Engineering Notes 31 (6) (2006) 1–4.

[15] P. Mohagheghi, B. Anda, R. Conradi, Effort estimation of use cases for
incremental large-scale software development, in: Proceedings of the 27th
International Conference on Software Engineering, 2005, pp. 303–311.

[16] M. Arnold, P. Pedross, Software size measurement and productivity rating in a
large-scale software development department, in: Proceedings of the 20th
ICSE, 1998, pp. 490–493.

[17] B. Anda, H. Dreiem, D. Sjøberg, M. Jørgensen, Estimating software development
effort based on use cases-experiences from industry, in: Fourth International
Conference on the UML, 2001, pp. 487–504.

[18] K. Ribu, Estimating object-oriented software projects with use cases, Master’s
thesis, University of Oslo, Department of Informatics, 2001.

[19] J. Ouwerkerk, A. Abran, An evaluation of the design of use case points (UCP), in:
A. Abran, R. Dumke, M. Ruiz (Eds.), Proceedings of the International Conference
on Software Process and Product Measurement MENSURA 2006, Publish
Service of the University of Cádiz, 2006, pp. 83–97. <www.uca.es/
publicaciones>.

[20] G. Robiolo, R. Orosco, Employing use cases to early estimate effort with simpler
metrics, Innovations in Systems and Software Engineering 4 (1) (2008) 31–43.

[21] M. Ochodek, J. Nawrocki, Automatic transactions identification in use cases, in:
Balancing Agility and Formalism in Software Engineering: 2nd IFIP Central and
East European Conference on Software Engineering Techniques CEE-SET 2007,
LNCS, vol. 5082, Springer-Verlag, 2008, pp. 55–68.

[22] S. Adolph, P. Bramble, A. Cockburn, A. Pols, Patterns for Effective Use Cases,
Addison-Wesley, 2002.

[23] A. Cockburn, Writing Effective Use Cases, Addison-Wesley, Boston, 2001.
[24] M. Bundschuh, C. Dekkers, The IT Measurement Compendium: Estimating and

Benchmarking Success with Functional Size Measurement, Springer-Verlag
New York, Inc., 2008.

[25] N.E. Fenton, S.L. Pfleeger, Software Metrics: A Rigorous and Practical Approach,
PWS Publishing Co., Boston, MA, USA, 1998.

[26] G. Schneider, J. Winters, Applying Use Cases: A Practical Guide, Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1998.

[27] J. Ward Jr., Hierarchical grouping to optimize an objective function, Journal of
the American Statistical Association 58 (301) (1963) 236–244.

[28] A. Žiberna, N. Kejžar, P. Golob, A comparison of different approaches to
hierarchical clustering of ordinal data, Metodološki zvezki 1 (1) (2004) 57–73.

[29] M. Ochodek, J. Nawrocki, Enhancing use-case-based effort estimation with
transaction types, Foundations of Computing and Decision Sciences 35 (2)
(2010) 91–106.

[30] J. Cohen, Weighted kappa: Nominal scale agreement provision for scaled
disagreement or partial credit, Psychological Bulletin 70 (4) (1968) 213–220.

[31] J. Landis, G. Koch, The measurement of observer agreement for categorical
data, Biometrics 33 (1) (1977) 159–174.

[32] E. Alpaydin, Introduction to Machine Learning (Adaptive Computation and
Machine Learning), The MIT Press, 2004.

[33] J. Miles, M. Shevlin, Applying Regression & Correlation: A Guide for Students
and Researchers, Sage Publications Ltd., 2001.

[34] D. Wright, K. London, Modern Regression Techniques Using R: A Practical
Guide for Students and Researchers, Sage Publications Ltd., 2009.

http://www.uca.es/publicaciones
http://www.uca.es/publicaciones

M. Ochodek et al. / Information and Software Technology 53 (2011) 200–213 213
[35] R. Jeffery, M. Ruhe, I. Wieczorek, A comparative study of two software
development cost modeling techniques using multi-organizational and
company-specific data, Information and Software Technology 42 (14) (2000)
1009–1016.

[36] M. Jørgensen, K. Moløkken-Østvold, Reasons for software effort estimation
error: Impact of respondent role, information collection approach, and data
analysis method, IEEE Transactions on Software Engineering 30 (12) (2004)
993–1007.

[37] S.D. Conte, H.E. Dunsmore, V.Y. Shen, Software Engineering Metrics and
Models, Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA,
1986.

[38] S. Frohnhoff, G. Engels, Revised use case point method-effort estimation in
development projects for business applications, in: Proceedings of the
CONQUEST 2008, 2008.

[39] J. Kim, C. Mueller, Factor Analysis: Statistical Methods and Practical Issues,
Sage Publications, Inc., 1978.

[40] ISO/IEC, ISO/IEC 9126-1: software engineering – product quality – Part 1:
quality model, 2001.

[41] B.W. Boehm, B.K. Clark, E. Horowitz, A. Brown, D. Reifer, S. Chulani, R.
Madachy, B. Steece, Software Cost Estimation with COCOMO, vol. II, Prentice
Hall, Upper Saddle River, NJ, USA, 2000.
[42] D. Jeffery, G. Low, M. Barnes, A comparison of function point counting
techniques, IEEE Transactions on Software Engineering 19 (5) (1993) 529–532.

[43] R. Clemmons, Project estimation with use case points, CrossTalk–The Journal
of Defense Software Engineering 19 (2) (2006) 18–22.

[44] G. Robiolo, C. Badano, R. Orosco, Transactions and paths: two use case based
metrics which improve the early effort estimation, in: Third International
Symposium on Empirical Software Engineering and Measurement, 2009, pp.
422–425.

[45] F. Faul, E. Erdfelder, A. Lang, A. Buchner, G*Power 3: a flexible statistical power
analysis program for the social, behavioral, and biomedical sciences, Behavior
Research Methods 39 (2) (2007) 175–191.

[46] J. Cohen, Statistical power analysis, Current Directions in Psychological Science
1 (3) (1992) 98–101.

[47] B. Zumbo, A. Hubley, A note on misconceptions concerning prospective and
retrospective power, Journal of the Royal Statistical Society – Series D: The
Statistician 47 (2) (1998) 385–388.

[48] E. Carroll, Estimating software based on use case points, in: Conference on
Object Oriented Programming Systems Languages and Applications, 2005, pp.
257–265.

[49] S. Diev, Software estimation in the maintenance context, ACM SIGSOFT
Software Engineering Notes 31 (2) (2006) 1–8.

	Simplifying effort estimation based on Use Case Points
	Introduction
	Use cases and the Use Case Points method
	Use cases
	The Use Case Points method
	Actors complexity
	Use-cases complexity
	Technical and environmental factors
	Calculating Use Case Points
	Productivity factor and effort estimation
	Calibrating UCP with historical data

	Characteristics of the projects
	Framework for analysis of estimation accuracy
	Calculation of Use Case Points
	Evaluation of prediction accuracy
	Ordinary least squares regression (OLS)
	Multiple regression
	The evaluation criteria

	Actors complexity in Use Case Points
	Thesis
	Investigation
	Summary

	Adjustment factors in Use Case Points
	Thesis
	Investigation
	Summary

	Use Case Points – steps vs. transactions
	Thesis
	Investigation
	Summary
	Thesis
	Investigation
	Summary

	Counting steps instead of UCP
	Thesis
	Investigation
	Summary

	Long live transactions!
	Thesis
	Investigation
	Summary

	Threats to validity
	Internal validity
	Conclusion validity
	External validity

	Conclusions
	Acknowledgements
	References

