
Functional Dependency and Normalization for Relational

Databases

Introduction:

Relational database design ultimately produces a set of relations.

The implicit goals of the design activity are: information

preservation and minimum redundancy.

 Informal Design Guidelines for Relation Schemas

Four informal guidelines that may be used as measures to

determine the quality of relation schema design:

Making sure that the semantics of the attributes is clear in the

schema

Reducing the redundant information in tuples

Reducing the NULL values in tuples

Disallowing the possibility of generating spurious tuples

 Imparting Clear Semantics to Attributes in Relations

The semantics of a relation refers to its meaning resulting from

the interpretation of attribute values in a tuple. The relational

schema design should have a clear meaning.

Guideline 1

1. Design a relation schema so that it is easy to explain.

2. Do not combine attributes from multiple entity types and

relationship types into a single relation.

Redundant Information in Tuples and Update Anomalies

One goal of schema design is to minimize the storage space used

by the base relations (and hence the corresponding files).

Grouping attributes into relation schemas has a significant effect

on storage space

Storing natural joins of base relations leads to an additional

problem referred to as update anomalies. These are: insertion

anomalies, deletion anomalies, and modification anomalies.

Insertion Anomalies happen:

 when insertion of a new tuple is not done properly and will

therefore can make the database become inconsistent.

 When the insertion of a new tuple introduces a NULL value

(for example a department in which no employee works as of

yet). This will violate the integrity constraint of the table since

ESsn is a primary key for the table.

Deletion Anomalies:

The problem of deletion anomalies is related to the second

insertion anomaly situation just discussed.

Example: If we delete from EMP_DEPT an employee tuple that

happens to represent the last employee working for a particular

department, the information concerning that department is lost

from the database.

Modification Anomalies happen if we fail to update all tuples as

a result in the change in a single one.

Example: if the manager changes for a department, all employees

who work for that department must be updated in all the tables.

It is easy to see that these three anomalies are undesirable and

cause difficulties to maintain consistency of data as well as

require unnecessary updates that can be avoided; hence

Guideline 2

Design the base relation schemas so that no insertion, deletion,

or modification anomalies are present in the relations.

 If any anomalies are present, note them clearly and make sure

that the programs that update the database will operate correctly.

The second guideline is consistent with and, in a way, a

restatement of the first guideline.

NULL Values in Tuples

 Fat Relations: A relation in which too many attributes are

grouped. If many of the attributes do not apply to all tuples in the

relation, we end up with many NULLs in those tuples. This can

waste space at the storage level and may also lead to problems

with understanding the meaning of the attributes and with

specifying JOIN operations at the logical level.

Another problem with NULLs is how to account for them when

aggregate operations such as COUNT or SUM are applied.

SELECT and JOIN operations involve comparisons; if NULL

values are present, the results may become unpredictable.

Moreover, NULLs can have multiple interpretations, such as the

following:

The attribute does not apply to this tuple. For example,

Visa_status may not apply to U.S. students.

The attribute value for this tuple is unknown. For example, the

Date_of_birth may be unknown for an employee.

The value is known but absent; that is, it has not been

recorded yet. For example, the Home_Phone_Number for an

employee may exist, but may not be available and recorded yet.

Having the same representation for all NULLs compromises the

different meanings they may have. Therefore, we may state

another guideline.

Guideline 3

As much as possible, avoid placing attributes in a base relation

whose values may frequently be NULL.

If NULLs are unavoidable, make sure that they apply in

exceptional cases only.

For example, if only 15 percent of employees have individual

offices, there is little justification for including an attribute

Office_number in the EMPLOYEE relation; rather, a relation

EMP_OFFICES(Essn, Office_number) can be created

Generation of Spurious Tuples

Often, we may elect to split a “fat” relation into two relations, with

the intention of joining them together if needed. However,

applying a NATURAL JOIN may not yield the desired effect. On

the contrary, it will generate many more tuples and we cannot

recover the original table.

Guideline 4

Design relation schemas so that they can be joined with equality

conditions on attributes that are appropriately related (primary

key, foreign key) pairs in a way that guarantees that no spurious

tuples are generated.

Avoid relations that contain matching attributes that are not

(foreign key, primary key) combinations because joining on such

attributes may produce spurious tuples.

Summary and Discussion of Design Guidelines

We proposed informal guidelines for a good relational design.

The problems we pointed out, which can be detected without

additional tools of analysis, are as follows:

Anomalies that cause redundant work to be done during

insertion into and modification of a relation, and that may cause

accidental loss of information during a deletion from a relation

Waste of storage space due to NULLs and the difficulty of

performing selections, aggregation operations, and joins due to

NULL values

Generation of invalid and spurious data during joins on base

relations with matched attributes that may not represent a proper

(foreign key, primary key) relationship

The strategy for achieving a good design is to decompose a badly

designed relation appropriately.

Functional Dependencies

The single most important concept in relational schema design

theory is that of a functional dependency.

Definition of Functional Dependency

A functional dependency is a constraint between two sets of

attributes from the database. Suppose that our relational

database schema has n attributes A1, A2, ..., An.

If we think of the whole database as being described by a single

universal relation schema R = {A1, A2, ... , An}.

A functional dependency, denoted by X Y, between two sets

of attributes X and Y that are subsets of R, such that any two

tuples t1 and t2 in r that have t1[X] = t2[X], they must also have

t1[Y] = t2[Y].

This means that the values of the Y component of a tuple in r

depend on, or are determined by, the values of the X component;

We say that the values of the X component of a tuple uniquely (or

functionally) determine the values of the Y component.

We say that there is a functional dependency from X to Y, or that

Y is functionally dependent on X.

Functional dependency is represented as FD or f.d. The set of

attributes X is called the left-hand side of the FD, and Y is called

the right-hand side.

X functionally determines Y in a relation schema R if, and only if,

whenever two tuples of r(R) agree on their X-value, they must

necessarily agree on their Y-value.

If a constraint on R states that there cannot be more than one

tuple with a given X-value in any relation instance r(R)—that is, X

is a candidate key of R— this implies that X Y for any subset

of attributes Y of R.

If X is a candidate key of R, then XR.



If XY in R, this does not imply that YX in R.

A functional dependency is a property of the semantics or

meaning of the attributes.

Whenever the semantics of two sets of attributes in R indicate

that a functional dependency should hold, we specify the

dependency as a constraint.

Legal Relation States:

Relation extensions r(R) that satisfy the functional dependency

constraints are called legal relation states (or legal extensions)

of R.

Functional dependencies are used to describe further a relation

schema R by specifying constraints on its attributes that must

hold at all times.

Certain FDs can be specified without referring to a specific

relation, but as a property of those attributes given their

commonly understood meaning.

For example, {State, Driver_license_number} Ssn should hold

for any adult in the United States and hence should hold

whenever these attributes appear in a relation.

Consider the relation schema EMP_PROJ from the semantics of

the attributes and the relation, we know that the following

functional dependencies should hold:

a. SsnEname

b. Pnumber {Pname, Plocation}

c. {Ssn, Pnumber}Hours

A functional dependency is a property of the relation schema R,

not of a particular legal relation state r of R. Therefore, an FD

cannot be inferred automatically from a given relation extension r

but must be defined explicitly by someone who knows the

semantics of the attributes of R.

Teacher Course Text

Smith Data Structures Bartram

Smith Data Management Martin

Hall Compilers Hoffman

Brown Data Structures Horowitz

Example:

A B C D

a1 b1 c1 d1

a1 b2 c2 d2

a2 b2 c2 d3

a3 b3 c4 d3

 The following FDs may hold because the four tuples in the

current extension have no violation of these constraints:

B C; C B; {A, B} C; {A, B} D; and {C, D} B

However, the following do not hold because we already have

violations of them in the given extension:

A B (tuples 1 and 2 violate this constraint);

B A (tuples 2 and 3 violate this constraint);

DC (tuples 3 and 4 violate it).

Diagrammatic notation for displaying FDs:

Each FD is displayed as a horizontal line. The left-hand-side

attributes of the FD are connected by vertical lines to the line

representing the FD, while the right-hand-side attributes are

connected by the lines with arrows pointing toward the attributes.

Normal Forms Based on Primary Keys

Normalization of data is a process of analyzing the given

relation schemas based on their FDs and primary keys to achieve

the desirable properties of

(1) minimizing redundancy and

(2) minimizing the insertion, deletion, and update anomalies.

It can be considered as a “filtering” or “purification” process to

make the design have successively better quality.

We assume that a set of functional dependencies is given for

each relation, and that each relation has a designated primary

key.

Each relation is then evaluated for adequacy and decomposed

further as needed to achieve higher normal forms, using the

normalization theory.

We focus on the first three normal forms for relation schemas and

the intuition behind them, and discuss how they were developed

historically.

More general definitions of these normal forms, which take into

account all candidate keys of a relation rather than just the

primary key.

Normalization of Relations

The normalization process, as first proposed by Codd (1972a),

takes a relation schema through a series of tests to certify

whether it satisfies a certain normal form.

 The process, which proceeds in a top-down fashion by evaluating

each relation against the criteria for normal forms and

decomposing relations as necessary, can thus be considered as

relational design by analysis.

 Initially, Codd proposed three normal forms, which he called first,

second, and third normal form.

A stronger definition of 3NF—called Boyce-Codd normal form

(BCNF)—was proposed later by Boyce and Codd. All these

normal forms are based on a single analytical tool: the

functional dependencies among the attributes of a relation.

 The normalization procedure provides database designers with:

A formal framework for analyzing relation schemas based on their

keys and on the functional dependencies among their attributes.

 A series of normal form tests that can be carried out on individual

relation schemas so that the relational database can be

normalized to any desired degree

Definition.

The normal form of a relation refers to the highest normal form

condition that it meets, and hence indicates the degree to which it

has been normalized.

Normal forms, when considered in isolation from other factors, do

not guarantee a good database design. It is generally not

sufficient to check separately that each relation schema in the

database is in a given normal form.

Rather, the process of normalization through decomposition must

also confirm the existence of additional properties that the

relational schemas, taken together, should possess. These would

include two properties:

The nonadditive join or lossless join property, which

guarantees that the spurious tuple generation problem does not

occur with respect to the relation schemas created after

decomposition.

The dependency preservation property, which ensures that

each functional dependency is represented in some individual

relation resulting after decomposition.

The nonadditive join property is extremely critical and must be

achieved at any cost.

Practical Use of Normal Forms

Most practical design projects acquire existing designs of

databases from previous designs, designs in legacy models, or

from existing files.

Normalization is carried out in practice so that the resulting

designs are of high quality and meet the desirable properties

stated previously.

Although several higher normal forms have been defined,

database design as practiced in industry today pays particular

attention to normalization only up to 3NF, BCNF, or at most 4NF.

Another point worth noting is that the database designers need

not normalize to the highest possible normal form. Relations may

be left in a lower normalization status, such as 2NF, for

performance reason.

Denormalization is the process of storing the join of higher

normal form relations as a base relation, which is in a lower

normal form.

Definitions of Keys and Attributes

Participating in Keys

Definition: A superkey of a relation schema R = {A1, A2, ... , An}

is a set of attributes S R with the property that no two tuples t1

and t2 in any legal relation state r of R will have t1[S] = t2[S].

A key K is a superkey with the additional property that removal of

any attribute from K will cause K not to be a superkey anymore.

The difference between a key and a superkey is that a key has to

be minimal; that is, if we have a key

 K = {A1, A2, ..., Ak} of R, then K – {Ai} is not a key of R for any

Ai, 1 ≤ i ≤k

 {Ssn} is a key for EMPLOYEE, whereas {Ssn}, {Ssn, Ename},

{Ssn, Ename, Bdate}, and any set of attributes that includes Ssn

are all superkeys.

If a relation schema has more than one key, each is called a

candidate key.

One of the candidate keys is arbitrarily designated to be the

primary key, and the others are called secondary keys.

 In a practical relational database, each relation schema must

have a primary key. If no candidate key is known for a relation,

the entire relation can be treated as a default superkey. In the

Table EMPLOYEE, {Ssn} is the only candidate key for

EMPLOYEE, so it is also the primary key.

Definition:

 An attribute of relation schema R is called a prime attribute of R

if it is a member of some candidate key of R.

An attribute is called nonprime if it is not a prime attribute—that

is, if it is not a member of any candidate key, both Ssn and

Pnumber are prime attributes of WORKS_ON, whereas other

attributes of WORKS_ON are nonprime.

We now present the first three normal forms: 1NF, 2NF, and 3NF.

As we shall see, 2NF and 3NF attack different problems.

First Normal Form

First normal form (1NF) is now considered to be part of the

formal definition of a relation in the basic (flat) relational model.

It states that:

1. the domain of an attribute must include only atomic (simple,

indivisible) values and

2. that the value of any attribute in a tuple must be a single

value from the domain of that attribute.

 Hence, 1NF disallows having a set of values, a tuple of values, or

a combination of both as an attribute value for a single tuple. In

other words, 1NF disallows relations within relations or relations

as attribute values within tuples.

The only attribute values permitted by 1NF are single atomic (or

indivisible) values.

Consider the DEPARTMENT relation schema, whose primary key

is Dnumber, and suppose that we extend it by including the

Dlocations attribute.

We assume that each department can have a number of

locations.

As we can see, this is not in 1NF because Dlocations is not an

atomic attribute. There are two ways we look at the Dlocations

attribute:

The domain of Dlocations contains atomic values, but some

tuples can have a set of these values. In this case, Dlocations is

not functionally dependent on the primary key Dnum.

First normal form also disallows multi-valued attributes that are

themselves composite. These are called nested relations

because each tuple can have a relation within it.

This procedure can be applied recursively to a relation with

multiple-level nesting to unnest the relation into a set of 1NF

relations. This is useful in converting an unnormalized relation

schema with many levels of nesting into 1NF relations.

Second Normal Form

Second normal form (2NF) is based on the concept of full

functional dependency.
Functional Dependency:

The attribute B is fully functionally dependent on the attribute A if

each value of A determines one and only one value of B.

Example: PROJ_NUM PROJ_NAME

In this case, the attribute PROJ_NUM is known as the

determinant attribute and the attribute PROJ_NAME is known as

the dependent attribute.

Generalized Definition:

Attribute A determines attribute B (that is B is functionally

dependent on A) if all of the rows in the table that agree in value

for attribute A also agree in value for attribute B.

Fully functional dependency (composite key)

If attribute B is functionally dependent on a composite key A but

not on any subset of that composite key, the attribute B is fully

functionally dependent on A.

Partial Dependency:

When there is a functional dependence in which the determinant

is only part of the primary key, then there is a partial dependency.

For example if (A, B)  (C, D) and B C and (A, B) is the

primary key, then the functional dependence B C is a partial

dependency.

{Ssn, Pnumber} Hours is a full dependency

(neither Ssn Hours nor PnumberHours holds).

However, the dependency {Ssn, Pnumber}Ename is partial

because SsnEname holds.

Transitive Dependency:

When there are the following functional dependencies such that
XY, Y Z and X is the primary key, then X Z is a transitive
dependency because X determines the value of Z via Y.
Whenever a functional dependency is detected amongst non-
prime, there is a transitive dependency.

Definition. A relation schema R is in 2NF if every nonprime

attribute A in R is fully functionally dependent on the primary key

of R.

The test for 2NF involves testing for functional dependencies

whose left-hand side attributes are part of the primary key.

If the primary key contains a single attribute, the test need not be

applied at all.

If a relation schema is not in 2NF, it can be second normalized or

2NF normalized into a number of 2NF relations in which nonprime

attributes are associated only with the part of the primary key on

which they are fully functionally dependent.

Third Normal Form

Third normal form (3NF) is based on the concept of transitive

dependency.

A functional dependency XY in a relation schema R is a

transitive dependency if there exists a set of attributes Z in R

that is neither a candidate key nor a subset of any key of R, and

both XZ and ZY hold.

Definition. According to Codd’s original definition, a relation

schema R is in 3NF if it satisfies 2NF and no nonprime attribute of

R is transitively dependent on the primary key.

General Definitions of Second and Third Normal Forms

In general, we want to design our relation schemas so that they

have neither partial nor transitive dependencies because these

types of dependencies cause the update anomalies seen

previously.

The steps for normalization into 3NF relations that we have

discussed so far disallow partial and transitive dependencies on

the primary key. The normalization procedure described so far is

useful for analysis in practical situations for a given database

where primary keys have already been defined.

Summary of Normal Forms Based on Primary Keys and
Corresponding Normalization

Normal Form Test Remedy (Normalization)

First (1NF) Relation should have no
multivalued attributes or nested
relations

Form new relations for each
multivalued attribute or nested
relation.

Second (2NF) For relations where primary key
contains multiple attributes, no
nonkey attribute should be
functionally dependent on a part
of the primary key.

Decompose and set up a new
relation for each partial key
with its dependent attribute(s).
Make sure to keep a relation
with the original primary key
and any attributes that are fully
functionally dependent on it.

Third (3NF) Relation should not have a
nonkey attribute functionally
determined by another nonkey
attribute (or by a set of nonkey
attributes). That is, there should
be no transitive dependency of a
nonkey attribute on the primary
key

Decompose and setup a

relation that includes the

nonkey attribute(s) that

functionally determine(s) other

nonkey attribute(s).

As a general definition of prime attribute, an attribute that is part

of any candidate key will be considered as prime. Partial and full

functional dependencies and transitive dependencies will now be

considered with respect to all candidate keys of a relation.

Prime attributes are part of any candidate key

Non-prime attribute are not.

General Definition of Second Normal Form

 A relation schema R is in second normal form (2NF) if every

nonprime attribute A in R is not partially dependent on any key of

R.

The test for 2NF involves testing for functional dependencies

whose left-hand side attributes are part of the primary key. If the

primary key contains a single attribute, the test need not be

applied at all.

General Definition of Third Normal Form

A relation schema R is in third normal form (3NF) if, whenever a

nontrivial functional dependency XA holds in R, either

 (a) X is a superkey of R, or

(b) A is a prime attribute of R.

Interpreting the General Definition of Third Normal Form

A relation schema R violates the general definition of 3NF if a

functional dependency X A holds in R that does not meet either

condition—meaning that it violates both conditions (a) and (b) of

3NF. This can occur due to two types of problematic functional

dependencies:

A nonprime attribute determines another nonprime attribute. Here

we typically have a transitive dependency that violates 3NF.

A proper subset of a key of R functionally determines a nonprime

attribute. Here we have a partial dependency that violates 3NF

(and also 2NF).

Therefore, we can state a general alternative definition of 3NF

as follows:

Alternative Definition. A relation schema R is in 3NF if every

nonprime attribute of R meets both of the following conditions:

It is fully functionally dependent on every key of R.

It is nontransitively dependent on every key of R.

Boyce-Codd Normal Form

Boyce-Codd normal form (BCNF) was proposed as a simpler

form of 3NF, but it was found to be stricter than 3NF.

Definition: A relation schema R is in BCNF if whenever a

nontrivial functional dependency X A holds in R, then X is a

superkey of R. In practice, most relation schemas that are in 3NF

are also in BCNF.

Only if XA holds in a relation schema R with X not being a

superkey and A being a prime attribute will R be in 3NF but not in

BCNF. Ideally, relational database design should strive to achieve

BCNF or 3NF for every relation schema.

Conversion to First Normal Form:

A relational table must not contain repeating groups. A repeating

group derives its name from the fact that a group of multiple

entries of the same type can exist for any single key attribute

occurrence.

If repeating groups do exist, they must be eliminated by making

sure that each row defines a single entity.

Normalization starts with a simple three-step procedure:

Step 1: Eliminate the Repeating Groups:

1. Represent the data in a tabular format, where each cell has

a single value and there are no repeating groups.

2. To eliminate repeating groups: eliminate the nulls by making

sure that each repeating group contains appropriate data

value.

Step 2: Identify the Primary Key:

To have a proper Primary Key, it should uniquely identify any

attribute value.

In our example, we can see that PROJ_NUM value 15,

identifies any one of 5 employees.

EMP_NUM can also identify multiple rows, since one employee

can work in more than one project.

In this case, the only primary key possible is a combination of

PROJ_NUM and EMP_NUM.

Step 3:

Identify all dependencies:

PROJ_NUM and EMP_NUM PROJ_NAME, EMP_NAME,

JOB_CLASS, CHG_HOUR, HOURS.

Additional dependencies:

PROJ_NUM PROJ_NAME

EMP_NUM EMP_NAME, JOB_CLASS, CHG_HOUR

JOB_CLASS CHG_HOUR

This dependency exists between two nonprime attributes, which

signals a transitive dependency.

Conversion to Second Normal Form:

Conversion to 2NF only occurs when the 1NF has a composite

primary key. If the 1NF has a single-attribute primary key, then

the table is automatically 2NF.

Step 1: Make new tables to Eliminate Partial Dependencies

For each component of the primary key that acts as a determinant

in a partial dependency, create a new table with a copy of that

component as the primary key. It is also important that the

determinant attribute remains in the original table because they

will be the foreign keys that will relate the new tables to the

original one.

Step 2: Reassign Corresponding Dependent Attributes

Determine all attributes that are dependent in the partial

dependencies. These are removed from the original table and

placed in the new table with their determinant.

Any attributes that are dependent in a partial dependency will

remain in the original table.

Now, we have 3 tables:

PROJECT(PROJ_NUM, PROJ_NAME)

EMPLOYEE(EMP_NUM, EMP_NAME, JOB_CLASS,

CHG_HOURS)

ASSIGNMENT(PROJ_NUM, EMP_NUM, ASSIGN_HOURS)

Conversion to third Normal Form:

Step 1: Make new tables to eliminate transitive dependencies.

For every transitive dependency, write a copy if its determinant as

a primary key for a new table. It is also important that the

determinant remains in the original table to serve as a foreign key.

Step 2:

Identify the attributes that are dependent on each determinant

and place them in the new tables with their determinant and

remove them from their original table.

In our example, remove CHG_HOUR from EMPLOYEE

EMP_NUMEMP_NAME, JOB_CLASS

So now our design becomes:

PROJECT(PROJ_NUM, PROJ_NAME)

EMPLOYEE(EMP_NUM, EMP_NAME, JOB_ID)

JOB(JOB_ID, JOB_CLASS, CHG_HOUR)

ASSIGNMENT(PROJ_NUM, EMP_NUM, ASSIGN_HOURS)

Consider the table below, describing a badly designed database.

Follow the steps defined above and seen in class to make the

design 3NF compliant.

StdNo StdCity StdClass OfferNo OffTerm OffYear EnrGrade CourseNo CrsDescr

S1 Seattle JUN 01 FALL 2013 3.5 C1 DB

 02 FALL 2013 3.3 C2 VB

S2 Bothell JUN 03 SPRING 2014 3.1 C3 OO

 02 FALL 2013 3.4 C2 VB

