COMPUTER SCIENCE EDUCATION 7, 109-132, (1996)

Organizing and Managing Software
Engineering Team Projects

Hossein Saiedian
University of Nebraska at Omaha

Industrial software development today requires a fundamental education
in computer science as well as the ability to work productively and col-
laboratively in a team environment. Employers will therefore favor grad-
uates who have mastered computer science and software engineering con-
cepts and can apply them while developing a software system. To produce
computer science graduates possessing the skills necessary to succeed in
the workplace, team-oriented software engineering courses with real proj-
ects (and with real clients) are increasingly emphasized. It is, however, dif-
ficult to successfully present a software engineering course that covers
software engineering concepts and offers opportunities to apply them dur-
ing a project in a team environment. The difficulties lie in project selection,
team formation, team and project organization, process management, and,
finally, grading. The objective of this article is to discuss these difficulties
and provide suggestions for alleviating or avoiding them.

1. INTRODUCTION

There are various approaches to teaching a software engineering course.
Some instructors discuss theoretical concepts and leave it to their stu-

I thank Evans Adams, Donald Gotterbarn, Linda Northrop, and Stuart Zweben for the
valuable insights they provided during a SIGCSE panel [10]. My special thanks go to
Renée McCauley for organizing and moderating the panel, and for commenting on an ear-
lier version of this article. I am also grateful to my software engineering students for their
valuable feedback especially those who participated in the surveys. Comments from
anonymous reviewers have been useful. This work was supported in part by a UCR grant
from the University Committee on Research, and in part by a UCAT grant from the Uni-
versity Committee on the Advancement of Teaching, University of Nebraska at Omaha,
Omaha, Nebraska.

Correspondence and requests for reprints should be sent to Hossein Saiedian, Depart-
ment of Computer Science, University of Nebraska at Omaha, Omaha, NE 68182-0500.
E-mail: hossein@cs.unomaha.edu

109



Organizing and Managing Team Projects 111

Section 5. Criteria for team composition are given in Section 6, while an
explanation of the project deliveries appears in Section 7. Regardless of
how much thought and care is put into selecting a project and forming
the teams, there are still a number of issues and obstacles that surface
during the project development. Section 8 enumerates the most common
problems and offers some suggestions for alleviating or avoiding them.
A difficult task in administering a project-intensive, team-oriented class
is to determine how individual team members are evaluated. Evaluation
and grading issues are presented in Section 9.

2. A PROJECT-INTENSIVE APPROACH IS ESSENTIAL

University teaching is often compared with the way in which industry
works outside the university. While a university career is largely judged
by individual achievement and assessment, a computing career is large-
ly judged by group cooperative activity. Since real-world software devel-
opment is a team-oriented activity, university students should be
exposed to such activity in order to meet the needs and demands of
industry. This can sometimes be achieved through internship, but intern-
ship opportunities are not available to all. However, experience with a
realistic group project in an academic environment can be a valuable
substitute [1-3]. That is why team projects are becoming an essential
part of courses like software engineering, database management sys-
tems, and systems analysis and design [1,3-7]. Early participation in and
exposure to team projects would help students to understand, for exam-
ple, the communication aspects and interpersonal skills vital to being
professionally competent in the real world. A project-oriented course
also highlights some of the practical issues that face software develop-
ment teams in industry.

Team projects have a high positive impact on students and are becom-
ing the preferred method of teaching the computer science courses men-
tioned. The objective is not to merely meet real-world necessities, but
also to enhance teaching in educational institutions. Learning by doing
is essential for software engineering course [5], and a project-intensive
approach gives an opportunity to students to apply the concepts they
have been exposed to in the classroom and readings. Students gain
experience of actually applying methods and techniques for software
requirements definition, design, implementation, and testing presented
in the classroom and gain some practical experience in project manage-
ment and preparing user’s manuals. Thus, students learn how to solicit
requirements, how to design, how to map the design into implementa-
tion, how to test the implementation, how to write user’s manuals, and



Organizing and Managing Team Projects 113

Interdependence among all is the key to any successful project. It is
practically impossible for an individual to possess all the skills required
for the project at hand. Therefore, higher productivity can be achieved
only through cooperation and when the individual members are con-
scious of the fact that one person “can’t do it all” [4]. Students, by par-
ticipating in team-oriented projects, learn about their personal and pro-
fessional strengths and weaknesses, and recognize the need to help and
appreciate strengths and weaknesses of other individuals in the group.
In addition, students’ talents are balanced by those of others.

3.3 Creative Solutions Are Encouraged

Creativity flows out of individuals when they involve themselves in
active discussions. Team-oriented projects, where students feel comfort-
able with each other and share an informal relationship, help team
members come up with more creative solutions, because of the freedom
to express their ideas and criticize others’ ideas, and it gives them a
wider perception of and a different outlook on a given task, which helps
to analyze problems in a very objective manner. In addition, group proj-
ects tend to have “hidden” requirements which only emerge under dili-
gent probing by team discussions [4].

Brainstorming sessions come up with a variety of possible solutions
to some particular problem or set of closely related problems. The ideas
suggested by one person often inspire ideas in other people; a group
that interacts well together in this way can be much more creative than
any one person in the group. At the end of the brainstorming session,
team members will evaluate all the ideas that came out of it, measuring
all the ideas according to a common set of criteria. Performing this eval-
uation may eliminate several ideas, but may also either suggest modifi-
cations to others or suggest new ones.

3.4 Students Develop Vital Communication Skills

Students must do their part of the project using other students’ work.
This generates a substantial amount of discussion and communication
between students. The volume of communication and natural interac-
tion among team members encourages each member to develop and
sharpen his or her communication and coordination skills.

3.5 Students Share Knowledge

The team-oriented project will also provide the opportunity for a stu-
dent to learn new skills and practice them. In addition to acquiring new



Organizing and Managing Team Projects 115

cation problems grow as the size of the project and teams grow, and
when communication problems predominate the team and the project
will both be in deep trouble. Occasionally, when the team is too large, it
may be possible for one or more team members not to do their share of
the work.

4.2 Single Project and Multiple Teams

Another alternative is to still choose a single large project, but to divide
it into multiple “independent” components. The class is divided into
multiple teams, and each component is assigned to a team. The author
has had a certain degree of success in organizing and managing such an
approach. This alternative is most successful when the problem can
effectively be divided into independent components. A major advantage
of such an approach is that it may encourage healthy discussion among
teams (or those teams whose components depend on each other) and
thus may teach students a lesson or two about cooperation between
teams. Furthermore, the class as a whole may feel a sense of accom-
plishment because they have, as a group, developed a reasonably large
software system.

4.3 Multiple Teams and Single Project

Yet another alternative is to identify a smaller project, divide the class
into a number of teams, and have each team work independently on the
same project. The merit of this approach is that it will cause healthy
competition among teams. Furthermore, it is substantially less demand-
ing on the instructor as he or she has to know only one set of require-
ments for the same small project, and it is certainly easier to manage and
supervise teams that work on a smaller project. The author has had a
great deal of success with such an approach also.

4.4 Multiple Projects and Multiple Teams

A fourth alternative is to obtain multiple projects, divide the class into
multiple teams, and assign each project to a different team. This alter-
native may be quite demanding on the instructor, as he or she must
familiarize himself or herself with the requirements of multiple projects
in order to supervise the students’ work. Furthermore, the instructor
must be careful in selecting projects with the same degree of complexi-
ty in order to fairly balance the work among teams.

There are certainly other alternatives. During a SIGCSE panel on a simi-
lar topic [10], the panelists (including the author) discussed a number of



Organizing and Managing Team Projects 117

Although students working on a real project will gain invaluable com-
munication and interpersonal skills, there are a number of issues relat-
ed to real projects (and real clients) that an instructor (as well as the stu-
dents) must be aware of. We discuss some of these issues here.

If the client is an enterprise from the business community, students
working on the project may have to make off-campus trips during the
development process in order to interact with the client and the poten-
tial users of the system. Real projects also tend to be large, and the
client is only interested in the practical value of the project and most
likely will not understand (or care) about the pedagogical objectives.
Thus, it becomes a responsibility of the instructor not to allow the
client to exert direct or indirect pressure on the students. As observed
in [11], the instructor must ensure that the customer understands that
the project may not be completed on time, and that if the project is
completed, students are no longer obligated to maintain the software.
Furthermore, to control the entire development process, it is essential
to establish firm requirements early in the semester and not allow the
customer (or the students) to change the requirements. In fact, “frozen
requirements” and firm milestones are important preconditions for a
successful project. It is equally important for students (and sometimes,
the client) to know what the students’ obligations are with respect to
the course as a whole (e.g., the students also have to study and take
exams),

5.2 Nonrealistic Projects

As an alternative to a real project with a real client, the instructor may
choose to provide students with a definition of a software problem
describing the desired functionality of a system (typical examples may
include a registrar system or an airline reservation system). The project
description would require students to consider developing a system that
would address the needs of some “imaginary” client (although the
instructor may serve as the system procurer). The requirements are usu-
ally rather artificial.

The primary advantage of such projects is that students will no longer
have to make off-campus trips and no longer have to face issues dis-
cussed earlier. However, students very often may need to make assump-
tions about the problem, expected operations, and those requirements of
the “imaginary” enterprise that are not specified in the project descrip-
tion. Depending on the assumptions made, the development process
may be either oversimplified or unnecessarily complicated. In addition,
if the instructor requires a special feature or mandates a specific
approach to the construction of the software, students may feel that



Organizing and Managing Team Projects 121

presentation and ask all team members in a team to participate and con-
tribute to their own team’s presentation.

7. PROJECT DELIVERIES

The project is organized in a way similar to that described by Kant [14]
and Tomayko [15]. A phased approached is used and each team is
required to achieve four milestones at approximately three-week inter-
vals. In general, each team must produce a document (e.g., requirements
specification, test plan, or user’s manual) for each major phase of the
software life cycle, and at the end of the semester do a presentation
highlighting the features of the system, and a demonstration showing its
functionality. The development phases that we emphasize include:

1. Requirements definition and specification
2. Architectural design

3. Detailed design

4. Implementation and testing.

Typical projects whose final software product contains around 3,000 to
4,000 lines of code are selected. Our projects are usually developed for
real clients.! A short description of the documents that are normally pro-
duced for each of the software development phases is given below.

7.1 Requirements Definition and Specification

The purpose of this phase of software development is for the students
to explain what they will be doing do for the project, as opposed to how
they will accomplish it. They will discuss what their system will look
like and produce examples of its behavior. Each function of the pro-
posed system is specified along with legal values or ranges that the
function accepts for input and the corresponding output value. Students
are asked to follow the guidelines given in the textbook, but normally, a
requirements definition and specification includes a title page, an intro-

'Examples of real projects our students have developed include a course, classroom, and
time scheduling system for our computer science department, a large, 14,000 + line-of-code
system for a mathematics lab that provides a friendly facility for numerous kinds of record
keeping and report generation for introductory mathematics students. The mathematics
lab project was divided into five independent components, each team working on a dif-
ferent component.



Organizing and Managing Team Projects 123

Table 1
Grades and Approximate Schedules for Developing the Project
Project Phase Approximate Duration Points
Requirements definition/specification 3 weeks 100
Architectural design 2 weeks 100
Detailed design 3 weeks 100
Implementation and testing 3 weeks 100
Presentation and demonstration during the last week 100

Note. Projects count toward 50% of students’ final grade.

guidelines very carefully and are asked to gear their overall implemen-
tation toward modularity and expandability rather than speed. Individ-
ual modules are first tested. Each team must carefully plan and docu-
ment the order in which modules are to be integrated. Functional
testing, performance testing, and acceptance testing are scheduled. Each
team prepares a test plan that includes a statement of objectives and suc-
cess criteria, integration plans, testing methodologies, and schedules.
Some team members use CASE tools at this stage to produce partial Ada
code for Ada packages.

Each team is also responsible for developing a user’s manual. The
user’s manual should have a structure that is evident both to someone
reading it straight through and someone who will look for a particular
topic. The user’s manual is organized as follows: a table of contents, an
introduction that concisely describes the system, an overall description
of the style of user interaction, detailed systems operations, a list of
known features and deficiencies, and an index.

CASE tools are used primarily during the first three phases of devel-
opment. (The integration of CASE tools into an introductory software
engineering course is discussed by Saiedian [17].) The instructor gives
introductory lectures and materials on using the CASE tools prior to a
particular phase of the project. Table 1 gives an approximate timing
schedule for each of these phases during a 15-week semester as well as
the points for each part of the project, plus the project weight in a stu-
dent’s overall grade. Each part of the project (including presentation and
demonstration) is worth 100 points for a total of 500 points, and account
for 50% of a student’s grade. The other 50% of a student’s grade is deter-
mined by classroom exams and quizes.

Students will be graded on the quality of the work they produce, not
on how many hours a week they spend on it. However, they are request-
ed to create professional-looking documents, not only for “clients,” but
also for communication among themselves. Portfolios, labeled theme
binders, and the like, are recommended. Each part of the project is grad-



Organizing and Managing Team Projects 125

dents have difficulty in expressing their ideas such that the other team
members can understand. The problem may be compounded by the fact
that some team members may have a “foreign” language or accent.

8.1.2 Lack of Leadership Quality. Assertiveness is an important
quality in a team leader, but it should not negatively intervene with his
or her decisions regarding the team. When the team leader tends to be
unreasonably authoritarian, the outcome can be disastrous. Teammates
might have a rebellious attitude which hinders the productivity to a
great extent. At times the leader may become prejudiced to certain indi-
viduals, which is also a disadvantage to team work.

8.1.3 Conflicts in Members’ Schedules. Conflict in schedules is
another major problem students have during team projects. Each stu-
dent’s schedule varies from other members in the team because of
course and work schedules. It sometimes becomes an impossible task to
coordinate a team meeting where the presence of each member is vital.
That is why sometimes team meetings are postponed to the weekends,
which slows down the process.

8.1.4 Lack of Confidence. In the initial stages of the project, some
members undergo a confidence crisis. The fact that there may be two
different types of students (i.e., traditional and nontraditional students)
in a classroom makes for greater diversity. For example, it may be very
overwhelming to a 22-year-old student who has never worked in the
“real world” to be suddenly exposed to a large project and have to work
with those students who may have been professionals for many years.
The professionals are also facing a new kind of challenge in dealing with
a problem in a new way. Both situations could lead to a lack of confi-
dence about one’s abilities, and students may become flabbergasted and
frustrated with the magnitude of the project. When team members are
faced with a new and overwhelming task, confidence tends to falter
even in the most confident person.

8.1.5 Limited Time. Usually the project assigned to a team is of mod-
erate size. In spite of that, trying to achieve the project goal within the
semester time can be cumbersome. Because unexpected difficulties arise
during the project and last-minute efforts, there can be lot of pressure on
students, especially at the end of the semester. Lack of cooperation can
lead to uneven distribution of work, and the common goal may not be
achieved if cooperation is not exhibited by every member of the team.
Sometimes a student cannot devote enough time to the project because of
other obligations. Personal problems may make a student drop the course,
and this can lead to unexpected extra project work for others.



Organizing and Managing Team Projects 127

Traditionally, a male member with a senior academic standing was con-
sidered to be the most appropriate leader. However, a leader must have
earned the title. Communication skills, background knowledge, fairness,
positive attitude, and coordination skills should be considered as pri-
mary factors. Many times a woman or a minority member would be the
most effective team leader. If one has already some practical project
management experience, he or she should be the most logical candidate.
A democratic approach should be chosen by the team in which all indi-
viduals contribute to decision making. The team leader (or any individ-
uals in the team for that matter) should avoid investing personal egos,
but compromise and cooperate with the other team members. Addition-
al materials on team leadership are in [19].

The team leader must be able to take proper disciplinary action when
necessary. Instead of feeling responsible for doing a disproportionate
amount of work, the leader must accept reprimanding as a real-work
team leader would do in the same situation. The work should be divid-
ed and assigned among the members depending on individual abilities.2
If someone is not actively participating in the meeting discussions or is
not expressing an opinion, the team leader should casually ask him or
her for input.

It may occasionally be productive to rotate the role of leadership
among the teammembers to promote flexibility. One alternative is to
have a different leader for each phase of the development to ensure that
each member experiences the challenges of team leadership.

8.2.3. Scheduling Conflicts. To avoid or minimize scheduling con-
flicts during the semester, it is essential to establish a tentative meeting
schedule and deadlines early in the semester. Established dates and
deadlines are important to overall team success and alleviate many of
the conflicts in the future. An initial meeting between each team and the
instructor may be useful. The instructor may help the team in delegat-
ing responsibilities, in supervising the development of a timetable for
the project, and in reminding the students about the significance of
attending the meetings and doing their share of the work.

8.2.4 Confidence Crisis. To increase members’ confidence, the team
leader should continuously put the project into perspective and help quell
the feelings of being buried by the project. Once the team members real-

‘Note that some members are admittedly more productive than others (because of prior
experience related to the project). However, that is not necessarily a detriment, as there are
varying levels of experience and skills on any software development team, academic or
otherwise. The experiences of others promote growth for the inexperienced.



Organizing and Managing Team Projects 129

promise,” “procrastination,” “lack of cooperation,” and “personal prob-
lems,” and offers his suggestions for alleviating or possibly avoiding
these problems. In an excellent article in Communications of the ACM,
Rettig and Simons [21] presented many development and management
ideas for small teams in the real workplace from which a software engi-
neering instructor can greatly benefit. In fact, the entire issue of Com-
munications is devoted to orchestrating project organization, teams, and
management. General issues in software engineering education are cov-
ered by a number of excellent articles that appeared in a special issue of
the IEEE Transactions on Software Engineering (Volume 13, Number 11,
November 1987). Allen Parrish and his colleagues [22] discussed a soft-
ware engineering course in which equal weight and emphasis is given
to management concepts. They stress general managerial principles
applied to organizational problems arising specifically from technical
circumstances such as software development and programming. an
undergraduate software engineering program and its mechanisms for
leadership skill development is reported in [23]; the program is unique
in that it attempts to prepare undergraduate students to become effec-
tive leaders in industry.

9. EVALUATING STUDENTS’ PROJECTS

Each part of the project is graded based on functionality, accuracy, and
completeness of its content as well as its organization(e.g., appropriate
title, section, and paragraph names) and appearance (e.g., consistent
page numbers). Each graded part is given back to the students who then
make the necessary corrections and modifications. At the end of the
semester, all project parts are assembled and resubmitted as the final
version of the project. The final project is once again graded for com-
pleteness and consistency.

A major issue in offering team-oriented project courses is in establishing
a fair system for grading the final product of a successful (or failed) proj-
ect and in determining the grades for individual members of a team. The
grading process requires a lot of thought and care, particularly when judg-
ing whether a team member has done his or her share of the work. The
instructor must determine whether students be evaluated individually or
as a team. For example, if the final project earns n points, should each team
member receive n points? Should some members who contributed less
earn fewer points? What would be the criteria for determining who con-
tributed less? Should contributions be viewed in terms of technical, time,
or leadership contributions? The instructor has to find ways to evaluate the
performance and contribution of each individual student. A useful method



Organizing and Managing Team Projects 131

ly outweigh the difficulties in offering the course, especially when we
hear our employed students express their appreciation for the useful
experience they gained. The course has been a real learning experience,
and we hope that this article proves useful to those who are or will be
teaching such a course in the future.

REFERENCES

[1] B. Bruegge, “Teaching an industry-oriented software engineering course,” Software
Engineering Education (LNCS 640) C. Sledge, ed. New York: Springer-Verlag,
pp. 65-87.

[2] J. Burnes and E. Robertson, “Two complementary course sequences on the design and
implementation of software produces,” IEEE Transactions on Software Engineering,
vol. SE-13, no. 11, pp. 1170-1175, 1987.

[3] H. Saiedian, Guidelines for a practical approach to the database management system course,”
Journal of Information Systems Education, vol. 4, no. 1, pp. 23-29, 1992.

[4] H. Etlinger, “A retrospective on an early software projects course,” ACM SIGCSE Bul-
letin, vol. 22, no. 1, pp. 72-77, 1990.

[5] M. Moore and C. Potts, “Learning by doing: Goals and experiences of two software
engineering project courses,” in Software Engineering Education (LNCS 750), ]. Diaz-
Herrera, ed. New York: Springer-Verlag, 1994, pp. 151-164.

[6] L. Northrop, “Success with the project-intensive model for an undergraduate software
engineering course,” SIGCSE Bulletin, vol. 21, no. 1, pp. 151-155, 1989.

[7] M. Shaw and ]. Tomayko, “Models for undergraduate project courses in software
engineering,” Software Engineering Education (LNCS 536), J. Tomayko, ed. New York:
Springer-Verlag, 1991, pp. 33-71.

[8] K. Bosworth and S. Hamilton, Collaborative Learning: Underlying Processes and Effective
Technigues. San Francisco: Jossey-Bass, 1994.

[9] N. Wirth, “A plea for lean software,” IEEE Computer, vol. 28, no. 2, pp. 64-68, 1995.

[10] E. Adams, D. Gotternbarn, L. Northrop, H. Saiedian, and S. Zweben, “A 1994 SIGCSE
panel on organizational issues in teaching project-oriented software engineering
courses,” held during the 25th ACM SIGCSE Technical Symposium on Computers,
Phoenix, AZ, 1994.

[11] J. Comer, T. Nute, and D. Rodjak, “Some observations on teaching a software project
course,” Issues in Software Engineering Education, R, Fairly and P. Freeman, eds., New
York: Springer-Verlag, pp. 115-130, 1989.

[12] T. Scott and ]. C. II, “Team selection methods for student programming projects,” Soft-
ware Engineering Education (LNCS 895), Edited by R. Ibrahim, ed. New York:
Springer-Verlag, 1995, pp. 295-303.

[13] T. Scott, L. Tichenor, J. R. Bisland, and J. C. II, “Team dynamics in student program-
ming projects,” SIGCSE Bulletin, vol. 26, no. 1, pp. 111-115, 1994.

[14] E. Kant, “A semester course in software engineering,” ACM SIGSOFT Notes, vol. 6,
no. 4, pp. 52-76, 1981.

[15] J. Tomayko, “Teaching a project-intensive introduction to software engineering,” Tech.
Rep. CMU/SEI-87-TR-20, Software Engineering Institute, Sept. 1987.

[16] A. Diller, Z: An Introduction to Formal Methods, 2nd ed. Chichester, UK: Wiley, 1994.

[17] H. Saiedian, “Integrating CASE technology into the software engineering education,”
Computer Science Education, vol. 5, no. 2, pp. 189-210, 1994.



