COMPUTER SCIENCE EDUCATION 5, 1-13, (1994)

Planning for Software Maintenance
Education Within a Computer
Science Framework

Hossein Saiedian

James Henderson
University of Nebraska at Omaha

This article proposes that software maintainers would benefit from spe-
cialized education and training with regard to software maintenance. A
clear distinction is drawn between the tasks involved in software devel-
opment and those involved in software maintenance. It is shown that
neither the average computer science undergraduate degree program, nor
experience in software development fully prepare a programmer for the
particular challenges faced in software maintenance. The traditional and
evolving coverage of software maintenance in U.S. graduate and under-
graduate computer science and software engineering degree programs is
discussed. A set of proposals is given for introducing undergraduate
computer science students to the field of software maintenance. An al-
ternate approach is recommended for introducing experienced develop-
ment programmers to software maintenance.

1. INTRODUCTION

Many software engineering researchers have stated that the software in-
dustry is at a critical point in its evolution, some say a “‘crisis” stage.
Pressman [1: 18] explained the prevalent problems of this crisis as follows:

1. Schedule and cost estimates are often inaccurate.

2. The “productivity” of software people has not kept pace with the
demand for their services.

3. The quality of software is less than adequate.

Correspondence and requests for reprints should be sent to Hossein Saiedian, De-
partment of Computer Science DSC 203, University of Nebraska, Omaha, NE 68182.

PLANNING FOR SOFTWARE MAINTENANCE EDUCATION 3

lihood, easier to maintain, this still fails to address a large portion of
the problem.

As an example of the unaddressed magnitude of the problem, Wein-
man [3: 32] stated that “software inventory worldwide comprises more
than 100 billion lines of working source code, with Cobol making up
more than 80% of that. Conservative estimates of the cumulative cost
of producing those systems is $2 trillion.” With that kind of investment,
it is unlikely that companies are going to have all of these systems
replaced at any point in the near future. Therefore, as long as they
exist, we will have sizable maintenance problems. Even when the last
of these legacy systems is replaced, the systems that succeed them may
be viewed as equally difficult to maintain by those called upon to do
so many years later.

3. DIFFERENTIATING DEVELOPMENT
AND MAINTENANCE

Is software maintenance truly that different from software develop-
ment? The answer seems to be, quite clearly, yes. As Wedo [4: 28]
pointed out: “Maintenance is not identical to development and a pro-
grammer should recognize this.” Let us look at some of the ways that
software maintenance differs from software development.

Wedo [4] further pointed out that one of the most significant differ-
ences between maintenance and development is that development in-
volves designing and writing programs that do not yet exist, whereas
maintenance entails programs already running. Since this operational
program is already running there is no luxury of time. Any creation of
problems or delay in the fixing of a problem will have a direct effect
on users of the system today.

Paraphrasing Chapin [5: 5], maintenance programmers are subject to
more pressure than development programmers, in part because of the
large number of varied projects that a maintenance programmer com-
pletes during a time period. Chapin even went so far as to assert that
maintenance programmers have greater demands placed upon them
for reasoning, creativity, imagination, problem solving, and a facility
for expression. While this may be overstated, the field of software
maintenance is certainly a mentally challenging one.

One of the most interesting differences that Glass and Noiseux [6:
18] espoused is that “software maintenance remains a bastion of the
individual worker.” They noted that quite frequently a programmer
will be solely responsible for one or more programs. Maintainers must
be flexible enough to adapt to different styles of code and distinguish

PLANNING FOR SOFTWARE MAINTENANCE EDUCATION 5

However, software maintenance is given scant individual attention in
the majority of U.S. computer science programs.

4. THE COVERAGE OF SOFTWARE MAINTENANCE IN
EDUCATION

It is hard to get an accurate, objective assessment on the degree to
which software maintenance is covered in U.S. computer science degree
programs. However, Collofello [9: 26] had this to say: ““Although soft-
ware maintenance is widely regarded as being the dominant activity
performed in most software development organizations, very little at-
tention has been paid to software maintenance in either university or
industrial training courses.” Many software engineering textbooks men-
tion maintenance, but often in the vein of, “develop your code so it is
maintainable in the future.”

Leventhal and Mynatt [10] surveyed undergraduate software engi-
neering textbooks with regard to course content and found that 80%
had some coverage of maintenance. Approximately 50% of these courses
reported that the coverage was limited, 35% moderate, and 15% in-
depth. Thus, only 10% of undergraduate software engineering text-
books provide in-depth coverage of software maintenance, whereas 60%
provide limited or no coverage at all.

Cornelius, Munro, and Robson [11] vividly illustrated the paradox
that this limited coverage of maintenance brings about. They pointed
out that the emphasis in most computer science and software engi-
neering courses is on developing new software. They stated that stu-
dents are rarely exposed to existing code developed by someone else.
Furthermore, they explained [11: 233]: “Once students take up em-
ployment in industry, the situation is almost reversed.” Clearly, many
students are not directly educated for the work that they will be doing,
nor are many programmers properly trained to go from development
to maintenance. Now let us examine some things that can be done to
improve this education and training situation.

5. EDUCATION AND TRAINING FOR MAINTENANCE

Obviously, the instructional needs are somewhat different for students
versus programmers who already have substantial development ex-
perience. We will examine the needs of students for specific educational
experiences and the needs of development programmers for specific

PLANNING FOR SOFTWARE MAINTENANCE EDUCATION 7

Wedo [4] emphasized that the programmers first job has got to be
learning enough to perform corrective maintenance due to its critical
nature. He also distinguished between a detailed examination of a
subprogram’s code and an understanding of the functions of the pro-
gram of a whole. Finally, Brooks [16] recognized that the essence of
high-level program understanding is not just in understanding the code,
but also in the mappings between the programs and its problem do-
main. We will discuss the need for training in the lower level reading
and understanding of individual programs in the following.

Aside from the aforementioned knowledge, the education necessary
for students tends to diverge from the training necessary for devel-
opment programmers. We first examine the educational needs of stu-
dents and then the training needs of development programmers.

5.1 Educating Students On Maintenance

Specific to the educational needs of students are two pressing needs:
teaching program reading and software maintenance exercises. As chil-
dren, when we are taught English (or any other native language), we
are first taught to read and then to write. However, when we learn a
programming language, we are generally only taught to write. Bergland
[17] pointed out that we miss something by not learning to read pro-
grams first. Furthermore, Glass [12: 201] quoted Bill Gates (founder and
head of Microsoft) as follows:

The best way to prepare to be a programmer is to write programs and
to study great programs that other people have written . . . I went to the
garbage cans at the Computer Science Center and I fished out listings of
their operating system.

Teaching students how to really read and comprehend programs is,
of course, related to program comprehension, mentioned earlier, but
it is at a different level. Students need to be given exercises where they
have to read an undocumented program that they know nothing about
and accurately figure out what it is doing. Unfortunately, they may
very well be doing the same thing on their first day at work.

In addition to program reading, students need to be exposed to
significant maintenance exercises. Calliss and Trantina [18] discussed a
project that requires groups to communicate with each other as they
work on an evolving program.

Tomayko [13] provided good coverage of a software maintenance
course that he developed. His discussion of the course brings out that
the course cannot be purely theoretical and must have a significant

PLANNING FOR SOFTWARE MAINTENANCE EDUCATION 9

need for instructors with experience in coping with the complexity of
maintaining large systems [20] and the lack of adequate texts on the
subject [21]. Nevertheless, because only a small minority of computer
science graduates go on to pursue a masters degree in computer science,
most entry level programmers aren’t receiving this instruction. An ad-
ditional factor according to Cardow [20] is that undergraduates need
more focus in technical and support issues, whereas graduate students
need more focus in management and support issues. We need to add
software maintenance classes or make software maintenance a very
significant component of software engineering classes at the under-
graduate level to ensure that those who need it most get this infor-
mation.

5.2 Training Development Programmers for Maintenance

The training of development programmers to do maintenance has quite
a bit in common with the educating of students to do maintenance,
but there are significant differences. According to Calliss [21: 320],
“people in industry need to know that what they are learning will be
of value to them in their work.” Although this is certainly true of
students as well, it is probably safe to say that people working in the
industry are more inclined to take things with a grain of salt. Speaking
of software engineering education in general, Besemer, Decker, Politi,
and Schnoor [22: 401] cited the following reasons why we have to view
educating those in industry somewhat differently:

Academia and industry attempt to educate the software engineer with
methods that lie at opposite ends of a spectrum, neither of which is
sufficient alone. University courses try to give a broad view of software
engineering, but the brevity of the courses dictates that the student will
not attain a firm grasp of the problems and principles.

In the realm of understanding programs, we know (or have a good
probability) that a programmer who has been working in software
development has a reasonably strong background in writing software.
However, we have little, if any, indication that said programmer knows
how to read software and accurately assess its function. Therefore,
exercises are called for to ensure that these programmers are able to
apply their skills in reverse.

Software maintenance project exercises are also called for, but in the
case of already experienced programmers, they will take the form of
context exercises. These exercises will require the programmer to de-
velop a solution to a complex problem within the constraints of an

PLANNING FOR SOFTWARE MAINTENANCE EDUCATION 11

grammers. Additionally, programmers need to be trained in modern
software maintenance techniques and the tools to support them. Per-
haps most significantly, we need to show programmers a structured
approach for gaining an understanding of the software components for
which they are responsible.

Computer science students need to be instructed in how to read (as
well as write) computer programs, preferably learning to read them
before they learn to write them. We must provide software maintenance
courses for students that require working in groups, and use both well-
documented and poorly documented large software artifacts to teach
good software maintenance practices. There is currently a dearth of
such software maintenance courses, though the situation is improving
with the proposal of a software maintenance unit in the Software En-
gineering Institute curriculum [7]. However, the proposed curriculum
has been implemented (or partially implemented) only at a relatively
small number of schools and then (quite frequently) only at the graduate
level. This situation leaves a large portion of the programmers likely
to be performing software maintenance without the benefit of these
courses.

Programmers who lack maintenance experience, but who have worked
in software development, have a different set of needs than computer
science students. These development programmers need instruction in
the reading of software components for program understanding. Also,
these programmers need training in the solving of software problems
within the constraints of an existing system such that they don’t un-
necessarily detract from the existing structure. The recommended train-
ing approach for these development programmers would be a full-time
training program for their first several weeks after hiring, followed by
several weeks of half-day instruction while beginning the comprehen-
sion of their primary software components.

If we want to make the maximal progress in software maintenance,
we must invest in training for maintenance personnel. For software
maintenance, the three primary personnel sources are experienced
maintenance programmers, recent college graduates, and experienced
programmers who lack maintenance experience. We may initially as-
sume that the first group has the requisite skills, but we cannot assume
the requisite skills among the other two groups.

Undergraduate (and graduate) computer science degree programs
must offer significant software maintenance instruction and we must
provide software maintenance instruction for programmers who lack
such experience. If we do so, shorter learning curves will, in all like-
lihood, become the norm, and we will enjoy greater productivity within
software maintenance organizations. Being a major portion of the soft-

PLANNING FOR SOFTWARE MAINTENANCE EDUCATION 13

[12] R. L. Glass, Software Conflict: Essays on the Art and Science of Software Engincering.
Englewood Cliffs, NJ: Prentice-Hall, 1990.

[13] J. E. Tomayko, “Teaching maintenance using large software artifacts,” in Software
Engineering Education (Lecture Notes in Computer Science 376), N. E. Gibbs, Ed.
Berlin: Springer-Verlag, 1989, pp. 3-15.

[14] P. Oman, “Maintenance tools,” IEEE Software, vol. 7, no. 3, pp- 59-65, May 1990.

[15] S. D. Fay and D. G. Holmes, “Help! | have to update an undocumented program,”
in Proc. Conf. Software Maintenance, Nov. 1985, p. 194.

[16] R. Brooks, “Towards a theory of the comprehension of computer programs,” Inter-
national Journal of Man-Machine Studies, vol. 18, pp- 543-554, May 1983.

[17] G. D. Bergland, “Guided tour of program design methodologies,”” [EEE Computer,
vol. 14, no. 10, pp. 13-37, Oct. 1981.

[18] F. W. Calliss and D. L. Trantina, “A controlled software maintenance project,” in
Software Engineering Education (Lecture Notes in Computer Science), J. E. Tomayko,
Ed. Berlin: Springer-Verlag, 1991, p. 25.

{19] K. R. Pierce, “The benefits of maintenance exercises in project-based courses in
software engineering,” in Proc. Conf. Software Maintenance, Nov. 1992, p. 324.

[20] J. E. Cardow, “Can software maintenance be taught?"” in Proc. Conf. Software Main-
tenance, Nov. 1992, p. 322.

[21] F. W. Calliss, “An outline for a software maintenance course,” in Proc. Conf. Software
Maintenance, Nov. 1992, p. 320.

[22] D.]. Besemer, K. S. Decker, D. W. Politi, and]. F. Schnoor, “’A synergy of industrial
and academic education,” in Issues in Software Engineering Education, R. Fairley and
P. Freeman, Eds. New York: Springer-Verlag, 1989, pp. 399-413.

