COMPUTER SCIENCE EDUCATION 5, 189-210, (1994)

Integrating CASE Technology
into Software Engineering Education

Hossein Saiedian
University of Nebraska at Omaha

Cost-effective development of software has been extensively studied with-
in the past decade, and a considerable number of technologies have been
introduced, some of which have proven effective in practical cases. These
technologies include software engineering methodologies, integrated envi-
ronments, special purpose languages, and automated tools. Among these,
automated or CASE tools have received significant recognition as having
the potential to increase the productivity in software development and
maintenance. We briefly discuss the role of CASE tools in both developing
and maintaining software, but focus our attention on the role of CASE
technology in the context of software engineering education and the
importance of integrating CASE tools in software engineering courses. The
qualitative and quantitative benefits of CASE tools for preparing our stu-
dents to participate in large software projects and subsequent career
growth are discussed. Our approach in and choice of CASE tools for use
in the classrooms is also presented. At the end, the use of CASE tools to
accommodate students” learning process and the potential role of these tools
in enhancing students” understanding of software engineering concepts
are discussed.

1. INTRODUCTION

A phenomenal proliferation of computers into society has been observed
during the past three decades. As the cost/performance ratio of com-

This research was partially funded by a Summer Fellowship grant from the Center for
Faculty Development, University of Nebraska at Omaha.

The author is grateful to an anonymous referee for important suggestions that sub-
stantially improved the overall presentation of this article. My next-door colleague,
Thomas Spencer, provided me with the descriptions of SetPlayer, GraphPack, NPDA, XTur-
ing, and Xtango. He is one of the principle designers of GraphPack.

Correspondence and requests for reprints should be sent to Hossein Saiedian, Dept. of
Computer Science DSC 203, University of Nebraska, Omaha, NE 68182.

189

CASE AND SOFTWARE ENGINEERING EDUCATION 191

tools for further study. In Section 3 we review the industry’s view of
CASE technology. In Section 4 we discuss the integration of CASE tech-
nology into Computer Science education, and in Section 5 we elaborate
on CASE tools as a learning aid for students. In particular, we describe
how a CASE tool can be used to improve a student’s understanding of
formal methods of software development. We conclude with Section 6.

2. WHAT IS CASE?

During the past three decades many methodologies have been suggest-
ed to improve the software development process. Similarly, many auto-
mated tools have been introduced to support these methodologies. In
the mid-1980s, the term “CASE” was coined to describe these tools, and
it is used to describe any computer-aided tool that supports some soft-
ware development activity. It can be as simple as a single editing tool or
as complex as an integrated software engineering environment that
includes many tools, databases, operating systems, and networks which
together provide an integrated, flexible development environment to
support all aspects of software engineering activities. Major advantages
of CASE tools can be summarized as follows [3]:

e Automation of the entire software development process, which
includes the critical early analysis and design phases;

* Interactive development environments characterized by improved
response time and on-line error detection;

* Automatic analysis of specifications for completeness and consis-
tency; and

* Generation of efficient code from design specifications.

Other advantages include support for prototyping, simulation, and proj-
ect management and planning, all through sophisticated, attractive
graphical user interfaces.

CASE tools may be categorized in a variety of ways. They can be cat-
egorized as upper or lower CASE. Upper CASE (also known as front-end
CASE) products provide support for the early phases of development
such as planning, analysis, and design. Lower CASE (or back-end CASE)
products provide support for the later stages of development such as
code generation, integration, and testing. Another common method of
categorizing CASE is to consider its role as an instrument for different
groups of people (e.g., programmers vs. managers), or by its functional-
ity. Some CASE products may fit into more than one category. For a com-
prehensive survey of CASE tools see [3-5]. In the remainder of this sec-

CASE AND SOFTWARE ENGINEERING EDUCATION 193

tenance activities and/or improving the structure of existing programs
in order to reduce maintenance efforts. For example, restructuring and
reengineering tools may analyze an unstructured program and repro-
duce a structured, optimized version. Pretty-printer tools may be used
to improve the visual organization of existing programs and unify cod-
ing conventions used in different programs, making programs more
readable, and by extension, more maintainable. Reverse engineering
tools may assist in the postdevelopment analysis of existing programs.
For example, a CASE tool may take as input a program that has no doc-
umentation and deduce its logical design and specifications, and in the
process identify its missing and/or inconsistent units.

3. INDUSTRIAL VIEW OF CASE TECHNOLOGY

The role of CASE technology in the real world is so prevalent that it
necessitates integrating these concepts in Computer Science education.
According to a study by Clark and Hughes [6], the CASE market in 1990
was estimated at $2 billion. Of the organizations surveyed, only about
one-third had obtained and utilized CASE tools; the rest (68.8%) had not
used CASE tools, primarily because of a lack of knowledge and famil-
iarity with them. Given these reasons for not utilizing CASE tools, we
believe that a CASE approach to software development and integration
of CASE concepts into Computer Science education would better pre-
pare our new graduates for career growth, infuse the technology into
industry, and cause the statistics just cited to drop.

The advantages of CASE are realized in the long term, but testimony
abounds as to how they boost productivity, upgrade quality, and prevent
defects [7]. Better communication and documentation have been the
most frequently mentioned reasons for this improvement [8]. Hughes
and Clark [9] identified, through observation of software engineering in
practice, five stages of CASE usage, all of which are expensive. We
believe two of these can be reduced or eliminated, with improved CASE
tool education. The stages are (1) disenchantment, (2) resignation, (3)
commitment, (4) implementation, and (5) maturity.

The first stage, disenchantment, can be eliminated if the user knows
which tools are useful replacements for which manual methods as well
as the desired application before the investment is made. The second
stage, resignation, involves a half-hearted adoption of the tool the orga-
nization is stuck with. The reason this is usually an unenthusiastic
embrace is not because the tool is lacking in some feature or quality, but
because the user does not fully understand that CASE requires the
adoption and enforcement of a methodology. If an organization and its

CASE AND SOFTWARE ENGINEERING EDUCATION 195

incomplete. The feedback would act more as a teaching tool than it
would if used in a business application, because one does not expect the
machine to do all the thinking for the student, but at the same time, one
would not want to discourage him or her with a deluge of syntactic
errors. In using CASE tools in industry, one wishes to speed up the
development processes as much as possible. In using CASE tools in edu-
cation, our goal is to speed up only the communication and documen-
tation activities that are tedious to the student and may otherwise pre-
vent him or her from designing at the proper levels of detail.

In the next section we elaborate on how integrating CASE technology
in Computer Science programs and in particular, on how a CASE-based
approach to software engineering will make new Computer Science
graduates more “marketable” and provide them with greater opportu-
nities for career growth.

4. INTEGRATING CASE INTO THE CURRICULUM

The first curriculum question is: Should there be a separate course in
CASE tools and methodologies, or should the CASE fundamentals be
integrated into a software engineering (or a similar) course? We believe
the latter approach is more appropriate. There are several reasons for
our argument:

* A separate course in CASE would likely be a course in a specific
tool instead of a course in automated software engineering method-
ologies.

* If students are exposed to an appropriate CASE tool within a soft-
ware engineering course, they will see it as part of a “normal” envi-
ronment for understanding, developing, and maintaining software,
and, in the process, they will experience the potentials and limita-
tions of such tools. As students do their software engineering proj-
ects using a CASE tool, they will learn how to automate software
development in the future and thus suffer less when they are
exposed to the concepts in a real job.

* Since most software engineering courses are project-intensive, the
use of an appropriate CASE tool would permit students to concen-
trate on the creative aspects of the project, while allowing the tool
to perform the repetitive and tedious tasks.

* There are always problems associated with developing and offering
a new course. Sometimes it may take a long time before a course is
approved.

CASE AND SOFTWARE ENGINEERING EDUCATION 197

inadequate. And, of course, the faculty member needs to learn the CASE
tool so that he or she can present it to the students and answer their
questions.2

4.1 A Typical CASE Environment

An ideal CASE environment includes an integrated collection of tools
that support the entire software development life cycle, from require-
ments analysis to implementation and testing and preparation of a
user’s manual. There are relatively large numbers of such tools available
for both the MS-DOS environment and UNIX-based workstations.3 An
example is Teamwork* which we have used for both of our graduate and
undergraduate software engineering courses. Teamwork has a number of
components. The most important ones are briefly described.

Teamwork/SA is a multiuser, multitasking, workstation-based envi-
ronment for systems analysis (based on the Yourdon-DeMarco struc-
tured analysis). It allows students to easily and quickly build, store,
review, and maintain structured specifications, including dataflow dia-
grams, task specifications, and a data dictionary. The automated facili-
ties of Teamwork/SA help students ensure quality by checking for the
completeness and correctness of models. The Teamwork/SA editor and
consistency check interact with each other to detect errors as specifica-
tions are being created. Teamwork/SA has two special-purpose editors,
one for creating dataflow diagrams (called a DFD Editor) and one for
process specifications (called a P-Spec Editor). Teamwork/SA supports a
multiple-window interface, allowing students to edit and view several
diagrams at the same time.

Teamwork/SD is an environment for systems design that allows stu-
dents to create structured designs (based on the Yourdon-Constantine
method). It provides facilities for partitioning a system into single-func-
tion modules, checking and quantifying the level of coupling, and exten-
sive cross-referencing features. For example, students can list the mod-

Most of these time-consuming efforts need to be done only once and we must contin-
uously remind ourselves that the end result is worth our effort.

3Actually Mynatt and Leventhal [13] refer to a UNIX environment as an example of a
general CASE environment. We share their views. A typical UNIX environment includes
over 200 utility tools, which can be used for creating and archiving programs, data files,
and documents, for manipulating files and directories, and for a variety of other tasks
such as debugging and version controlling. UNIX systems are conceptually simple and
flexible and allow programs to be rapidly developed, tested, and re-used. Saiedian and
Wileman [14] provide a detailed discussion of the advantages of a UNIX environment for
improved productivity and management of computing resources.

4Teamwork is a registered trademark of Cadre Technologies Inc.

CASE AND SOFTWARE ENGINEERING EDUCATION 199

ative activity. Since in the real world software development is a team-
oriented activity, university students should be exposed to such activity
in order to be able to meet the needs and demands of industry. This can
sometimes be achieved through internship, but internship opportunities
are not available to all. However, experience with a realistic group proj-
ect in an academic environment can be a valuable substitute [15,16].
That is why team projects are becoming an essential part of courses like
software engineering, database management systems, and systems
analysis and design. Early participation in and exposure to team proj-
ects helps a student to understand the communication aspects, interper-
sonal skills, and so forth that are vital for professional competence in the
real world. As noted by Bruegge [15], by carrying out the entire software
development life cycle, students observe and learn how to execute all
the roles (such as planner, analyst, designer, project leader, liaison, and
system integrator) that arise during the realization of a software project.

4.2.2 Team Organization. The class is divided into groups of five or
six students.5 Students are strongly encouraged to form their own
groups of compatible people. Each team elects a team leader who is
responsible for coordinating the activities of the other team members as
well as for communicating with the instructor.6 The team leader is also
responsible for final technical decisions and making sure everyone
attends meetings and does his or her share of the work. The projects will
take most of the semester, with major write-ups at three-week intervals.
There will also be a formal oral presentation and a final demonstration
of the finished project at the end of the semester.

Students are graded on the quality of the work they produce, howev-
er, they are requested to create professional-looking documents, not only
for “clients,” but also to improve communication among themselves.
Portfolios, labeled theme binders, and the like are recommended. Each
part of the project is graded based on the accuracy, consistency, and
completeness of its content as well as its organization (e.g., appropriate
title, section, and paragraph names) and appearance (e.g., consistent
page numbers).

4.2.3 Project Structure. The course project is organized similarly to
the one described by Kant [17] and Tomayko [18]. Basically, the students
must produce a document for each major phase of the waterfall life

5Large groups are chosen partly to force students to face issues of project management.
Smaller groups teach fewer lessons about software development in groups.

6Teams are encouraged to assign other roles to members, such as “project administra-
tor,” “configuration manager,” “quality assurance manager,” or “maintenance engineer.”

CASE AND SOFTWARE ENGINEERING EDUCATION 201

core system. Thus, major modules are identified; the relationship
between these modules is established, and the interfaces are clearly
defined. Minimally, each module includes the number and type of its
formal parameters, an English description of its behavior, a set of pre-
and postconditions, and a listing of all modules (along with an appro-
priate number and type of actual parameters) that are invoked. The end
result is usually given in terms of structure charts which include at least
15 to 20 modules. CASE tools are also used quite extensively during this
stages for preparing the structure chart.

4.2.3.3 Detailed Design. During this phase of the project, students
define all data structures and devise algorithms needed to realize the
behavior of each module. In addition, error-handling parts, concrete rep-
resentations of certain implementation parts (e.g, data structure declara-
tions), and side effects are clearly defined, and alternative design strate-
gies are explored. Metrics (e.g., effort/time estimation) are applied to
ensure that the project is within control and manageable. The document
for this part of the project runs about 30 to 40 pages.

4.2.3.4 Implementation and Testing. During implementation design
algorithms and data structures are translated into program code. Stu-
dents must follow programming guidelines very carefully, and they are
asked to gear their overall implementation toward modularity and
expandability rather than speed. Individual modules are tested first.
Each team must carefully plan and document the order in which mod-
ules are to be integrated. Functional testing, performance testing, and
acceptance testing are scheduled. Each team prepares a test plan that
includes a statement of objectives and success criteria, integration plans,
testing methodologies, and schedules. Some team members use CASE
tools at this stage to produce partial Ada code for Ada packages.

Each team is also responsible for developing a user’s manual. The
user’s manual should have a structure that is evident both to someone
reading it straight through and someone who will look for a particular
topic. The user’s manual is organized as follows: a table of contents, an
introduction that concisely describes the system, an overall description
of the style of user interaction, detailed systems operations, a list of
known features and deficiencies, and an index.

CASE tools are used primarily during the first three phases of devel-
opment. The instructor gives introductory lectures and/or materials on
using the CASE tools prior to a particular phase of the project. Table 1
gives an approximate schedule for each of these phases during a 15-
week semester. Each part of the project (including presentation and
demonstration) is worth 100 points for a total of 500 points and accounts

CASE AND SOFTWARE ENGINEERING EDUCATION 203

enhanced their productivity, generated better documentation, made
maintenance easier, improved project management, and forced them to
adhere to a structured methodology. The last survey item was as follows:
“Adopting CASE would lead to an increase in the software development
productivity of your team,” and to this 83% responded, “strongly agree.”

To more closely measure the impact of CASE tools on students’ per-
formance, we compared the software engineering projects produced by
the students in two different semesters. The criteria for comparison were
completeness, consistency, and resources (both manpower and time)
used. During the summer of 1992 five software engineering teams
designed and implemented five independent modules of a major record-
keeping and report-generating system. (The whole system contained
over 14,000 lines of codes each module, on average was about 3,000
lines.) During the fall of 1992 another five teams developed five differ-
ent versions of a class-scheduling system. Each system consisted of more
than 3,000 lines of code. During the fall of 1993 another five teams
developed five different versions of a simplified airline reservation sys-
tem. Each version included, on average, nearly 3,500 lines of code. Thus,
even though the nature of these projects differed, the implemented pro-
grams for each team consisted of at least 3,000 lines of code (in Ada, C,
or Pascal).

We studied and compared these projects in terms of their completeness
(with respect to the specifications), consistency, and the resources used.
For measuring the resources used, we used the log reports generated by
each team. The log reports included an approximate count of number of
log-ins, number of compilations, and approximate CPU time used.8

Our study showed that those teams that used a CASE tool produced
much better systems and much higher quality documents. Their systems
were more complete with respect to their specification.? Overall, those
teams that used the CASE tool completed over 80% of their proposed
system, while those who did not use a CASE tool completed less than
75% of their system. Furthermore, the teams that used CASE tool pro-
duced systems (comprising the requirement specifications, design spec-
ification, code, user’s manual, and test plans) that were more consistent
and uniform. The overall resources used by these teams were substan-

8At the beginning of each semester, we ask the students in each software engineering
team to maintain a log of the times they spent on the project and a description of what
they did during each time, the reason for each computer run, the amount of CPU ftime,
the result of each run, the number of changes, and so forth. The students are told that the
logs will help them make better predictions of the times and resources needed during each
phase of the software development.

9The measure was the degree to which the final system met the requirements identified
and documented during the requirements specification.

CASE AND SOFTWARE ENGINEERING EDUCATION 205

(abstract) mathematical description of an information system using for-
mal methods before building the system itself. The reason for doing so
is to achieve more precision in the description and to explore the valid-
ity of a design by reasoning about the descriptions. Since the formal
methods deal with the semantics aspect of an information system, they
can help students determine which functional properties to capture in
an abstract specification and which to focus on in concrete design.

Software engineering, like most other fields (particularly engineering)
that have been shown to be amenable to such treatment, can benefit
greatly from mathematical treatment. Computer Science curricula thus
must embody enough material to ensure that future software engineers
are able to use scientific knowledge and formal methods in the con-
struction of computer programs.!l

One factor limiting the use of formal methods is the lack of invest-
ment in automated tools and support structures to reduce the efforts of
applying these methods in academic environments. In fact, lack of sup-
port tools is often seen as a major barrier to learning formal methods. A
key factor in the acceptance of high-level languages has been the pres-
ence of a comprehensive set of tools to support the user. If formal lan-
guages are to achieve the same level of acceptance, they too require
extensive automated support. Support tools may reduce learning time,
thereby aiding their widespread use. Automated tools may include (1) a
special editing environment, (2) syntax checkers, (3) animation tools,
and (4) refinement and proof tools.

A special editing environment for a formal language would, for exam-
ple, provide a student with a number of pop-up menus from which he
or she could view global schemas, local schemas, state schemas, opera-
tion schemas, or defined sets. The editor would also make schema cre-
ation, modification, and deletion more flexible. In addition, good inter-
faces to formal specification languages, transformation tools for taking
established nonformal methods and converting them into formal meth-
ods, and tools for interfering from specifications to assist software vali-
dation are needed.

5.2 Visualization Tools for Complex Concepts

It has been our experience that students learn more by active participa-
tion than by just observing. Theoretical concepts (such as discrete math-
ematics and graph theory concepts) should be reinforced with hands-on
experience in labs. Since such courses should be taught early in college
(to provide the necessary background for higher level courses), educa-

1For a detailed exposition of this argument see [19].

CASE AND SOFTWARE ENGINEERING EDUCATION 207

30 animations of algorithms and data structures studied in the first two
years of our Computer Science curriculum including bubble sort, inser-
tion sort, shell sort, merge sort, quick sort, depth first search, binary
search, minimum spanning trees, and many others.

For formal specification purposes, a tool, with similar functions as the
above tools can help students in many ways. For example, an integrat-
ed environment may provide specialized editors,12 a static analyzer
(parser and type checker), and refinement tools. Visualization is impor-
tant and can help students learn the concepts more effectively. A spe-
cialized CASE environment for popular formal notations such as Z [21]
or VDM [22] can assist students in the creation of specification schemas
through the use of a visual notation and present the essential structures
in diagrammatical form that could enhance learning. Furthermore, a tool
that would extract from specifications in Z or VDM a definition for
another diagrammatical tool, for example, a structure chart, and gener-
ate the corresponding charts would be even more interesting as it would
teach students how a formal methodology relates to traditional
approaches. Since students may already be familiar with traditional
approaches, they can relate to and learn the formal methods approach
when they can relate it to concepts with which they are already familiar.

A number of formal methods incorporate tool support as part of the
method itself although we have not directly used them in the classroom
to see their effectiveness. Examples include OBJ [23], which offers exe-
cutable subsets, Larch [24], which offers a theorem prover, and ZTC and
fuzz, which offer type-checking for Z.13 CADIZ also offers a suite of
tools for Z and supports refinement to Ada code. Many other tools are
reported by Bowen and Hinchey [25].

Two tools that we quite often use for pretty-printing of Z specifica-
tions include the LaTEX “style” macros zed.sty and oz.sty. Both of these
macros are freely available electronically via anonymous FTP. When
using these macros, students no longer need to hassle with their editors
to typeset special symbols and/or schema boxes. Every Z construct or
symbol can be typed in through an ASCII terminal and either one of the
above LaTEX macros can be used to generate beautiful Z output. For
example, one can type in the following (space and line breaks are
ignored):

12This is of significant importance since most formal methods use mathematical nota-

tions not available in traditional editors.
13ZTC is PC-based public domain software while fuzz is a relatively inexpensive com-
mercialized system that runs under UNIX.

CASE AND SOFTWARE ENGINEERING EDUCATION 209

6. CONCLUSIONS

It has been our aim to provide our students with software engineering
concepts, technologies, and hands-on experience. Our students are
exposed to the challenges of working in teams to develop a software
system using CASE technology. Because the students are exposed to a
CASE tool within a software engineering course, they see it as part of a
“normal” environment for understanding, developing, and maintaining
software, and, along the way, they experience the potentials and limita-
tions of such tools. As students do their software engineering projects
using a CASE tool, they learn to automate their software development
in future and thus suffer less when they are exposed to these concepts
in a real job. Since most software engineering courses are project-inten-
sive, the use of an appropriate CASE tool permits students to concen-
trate on creative aspects of the project while allowing the tool to perform
the repetitive and tedious tasks. For these reasons, we believe that it is
important to integrate CASE tools within the beginning software engi-
neering courses that are project-intensive.

The development of this approach has been a real learning experience
for us, and we hope that this article will provide a few suggestions to
those who are or will be teaching a software engineering course and
may want to consider integrating CASE technology in their courses.

REFERENCES

[1] P. Ng and R. Yeh, Eds., Modern Software Engineering. New York: Van Nostrand Rein-
hold, 1990.

[2] R. Norman and J. Nunamaker, Jr., “CASE Productivity Perceptions of Software Engi-
neering Professionals,” Communications of the ACM, Vol. 32, No. 9, pp. 1102-1109,
1989.

[3] P Mimno, “Survey of CASE Tools,” in P. Ng and R. Yeh, Ed., Modern Software Engi-
neering, pp. 323-350. New York: Van Nostrand Reinhold, 1990.

[4] M. Chen,]. Nunamaker, Jr., and E. Weber, “CASE: Present Status and Future Direc-
tions,” Data Base, Vol. 20, No. 1, pp. 7-13, 1989.

[5] M. Brough, “Methods for CASE: A Generic Framework,” in Advance Information Sys-
tems Engineering, LNCS 593, pp. 524-545. New York: Springer-Verlag, 1992.

[6]]. Clark and C. Hughes, “CASE Utilization Revisited,” Information Executive, Vol. 4,
No. 3, pp. 58-60, 1991.

[7] G. Forte and R. Norman, “A Self-Assessment by the Software Engineering Commu-
nity,” Communications of the ACM, Vol. 35, No. 4, pp. 28-32, 1992.

[8] H. Green, “Adapting CASE Tools for More Effective Learning,” Journal of Educational
Technology Systems, Vol. 19, No. 4, pp. 291-298, 1991.

[9] C. Hughes and J. Clark, “The Stages of CASE Usage,” Datamation, Vol. 36, No. 2, pp.
4144, 1990.

