COMPUTER SCIENCE EDUCATION 3, 203-221, (1992)

Mathematics of Computing

Hossein Saiedian
University of Nebraska at Omaha

After years of discussion, the consensus among academic computer scien-
tists seems to be that undergraduate computer science programs need
more mathematical content. This mathematical content is not to be found
in areas such as calculus and differential equation but in areas such as
discrete mathematics and mathematical logic. The objective of this article
is to re-examine the central role of mathematics in computer science by
reviewing the undergraduate computer science curriculum from Curricula
'68 to the current Computing Curricula 1991. The trend toward a greater
concentration in such courses as discrete mathematics will be explored.
Furthermore, we collected and put together comments and concerns of
three prominent computer scientists about the importance of mathematics
in computing science and lack of mathematical content in computer sci-
ence programs. We then look at one area of computer science amenable to
mathematical treatment. This area, software specification, is one of the
important phases of the software development. The use of formal meth-
ods based on discrete mathematics has been increasingly emphasized
recently for software specifications in an effort to produce precise and
concise descriptions. We will provide an example to demonstrate the
importance of a mathematical approach to arrive at precise specifications
and argue against claims that mathematical notations introduce unneces-
sary complication by pointing out the advantages of and misconceptions
about the use of formal notations. The article is concluded by once again
emphasizing the integration and applications of mathematics in all areas of
computing discipline, especially for software development.

1. INTRODUCTION

Several recommendations for academic undergraduate programs in
computer science have been published by several different and indepen-

Correspondence and requests for reprints should be sent to Hossein Saiedian, Dept. of
Computer Science, University of Nebraska, Omaha, NE 68182.

The author is grateful to Keith Barker and anonymous referees whose constructive
comments and suggestions substantially improved the quality of this article.

203



o

COMPUTER SCIENCE EDUCATION 3, 203-221, (1992)

Mathematics of Computing

Hossein Saiedian
University of Nebraska at Omaha

After years of discussion, the consensus among academic computer scien-
tists seems to be that undergraduate computer science programs need
more mathematical content. This mathematical content is not to be found
in areas such as calculus and differential equation but in areas such as
discrete mathematics and mathematical logic. The objective of this article
is to re-examine the central role of mathematics in computer science by
reviewing the undergraduate computer science curriculum from Curricula
'68 to the current Computing Curricula 1991. The trend toward a greater
concentration in such courses as discrete mathematics will be explored.
Furthermore, we collected and put together comments and concerns of
three prominent computer scientists about the importance of mathematics
in computing science and lack of mathematical content in computer sci-
ence programs. We then look at one area of computer science amenable to
mathematical treatment. This area, software specification, is one of the
important phases of the software development. The use of formal meth-
ods based on discrete mathematics has been increasingly emphasized
recently for software specifications in an effort to produce precise and
concise descriptions. We will provide an example to demonstrate the
importance of a mathematical approach to arrive at precise specifications
and argue against claims that mathematical notations introduce unneces-
sary complication by pointing out the advantages of and misconceptions
about the use of formal notations. The article is concluded by once again
emphasizing the integration and applications of mathematics in all areas of
computing discipline, especially for software development.

1. INTRODUCTION

Several recommendations for academic undergraduate programs in
computer science have been published by several different and indepen-

Correspondence and requests for reprints should be sent to Hossein Saiedian, Dept. of
Computer Science, University of Nebraska, Omaha, NE 68182.

The author is grateful to Keith Barker and anonymous referees whose constructive
comments and suggestions substantially improved the quality of this article.

203



MATHEMATICS OF COMPUTING 205

mittee’s work was the first comprehensive attempt to describe computer
science as an independent discipline. The committee broke down the
subject areas within computer science into three major divisions: (1)
information structures and processes, (2) information processing sys-
tems, and (3) methodologies. Information structures and processes was
concerned with representations and transformations of information
structures and with theoretical models for such representations and
transformations. Information processing systems was concerned with
systems having the ability to transform information. These systems
usually involved the interaction of hardware and software. Meth-
odologies were derived from a broad area of applications of computing
that have commaon structures, processes, and techniques. The commit-
tee’s view on mathematics in the computer science area were as fol-
lows [2]:

The Committee feels that an academic program in computer science must
be well based in mathematics since computer science draws so heavily
upon mathematical ideas and methods. The recommendations for re-
quired mathematics courses given below should be regarded as minimal;
obviously additional course work in mathematics would be essential for
students specializing in numerical applications.

According to the committee, the supporting work in mathematics
should consist of at least 18 hours including Mathematical Analysis 1
and II.

2.2. Curriculum ‘78

In 1978 the Curriculum Committee of the ACM published another re-
port: ““Curriculum ‘78: Recommendations for the Undergraduate Pro-
gram in Computer Science” [3]. In this report,the committee updated
and expanded upon their previous Curriculum ‘68. The committee also
developed a list of objectives for computer science students. These
objectives clearly emphasized the practical aspects of computer science.
For example, according to the Curriculum 1978,

1. Students should be able to write programs in a reasonable amount
of time that work correctly, are well documented, and are read-
able

2. Students should be able to determine whether or not they have
written a reasonably efficient and well-organized program

3. Students should know what general types of problems are ame-
nable to computer solution, and the various tools necessary for
solving such problems

4. Students should understand basic computer architectures



MATHEMATICS OF COMPUTING 207

1. To provide a coherent and broad-based coverage of the discipline
of computing. Graduates should develop a reasonable level of
understanding in each of the subject areas and the processes that
define the discipline, as well as an appreciation for the interrela-
tionships that exist among them.

2. To function effectively within the wider intellectual framework
that exists within the institutions that house the programs.

3. Different undergraduate programs place different levels of em-
phasis upon the objectives of preparing students for entry into the
computing profession, preparing students for graduate study in
the discipline of computing, and preparing students for the more
general challenges of professional and personal life. Students
should be aware of that program’s particular emphasis with re-
gard to these three objectives.

4. To provide an environment in which students are exposed to the
ethical and social issues that are associated with the computing
field.

5. To prepare students to apply their knowledge, singly or as a
member of a team environment, to specific, constrained problems
and produce solutions.*

6. Provide sufficient exposure to the rich body of theory that under-
lies the field of computing, so that students appreciate the intel-
lectual depth and abstract issues that will continue to challenge
researchers in the future.

2.4, Mathematical Maturity According to the Curricula 1991

The Curricula 1991 emphasizes that an understanding of mathematics is
essential for students in the computing discipline to master successfully
fundamental topics of computing. According to the curricula, all stu-
dents should take at least one-half of a full academic year of mathematics
courses (i.e., at least four or five semester courses) that cover at least the
following two subjects:

* Discrete mathematics (covering topics such as sets, functions, prop-
ositional and predicate logic, graph theory, proof techniques, combi-
natorics, and probability)

* Calculus

‘According to the report, the knowledge implied by this item includes the ability to
define a problem clearly; to determine its tractability; to determine when consultation with
outside experts is appropriate; to evaluate and choose an appropriate solution strategy; to
study, specify, design, implement, test, modify, and document that solution; to evaluate
alternatives and perform risk analysis on that design; to integrate alternative technologies
into that solution; and to communicate that solution to colleagues, professionals in other
fields, and the general public.



MATHEMATICS OF COMPUTING 209

cal analysis is dropped in the favor of discrete mathematics and mathe-
matical logic courses. The recommendations very explicitly recommend
a course in discrete mathematics with a list of all topics to be covered and
further emphasizes that courses in both advanced discrete mathematics
and mathematical logic (covering propositional and functional calculi,
completeness, proofs, etc.) be considered. As pointed out by a col-
league, the Curriculum 1991 view on discrete mathematics and mathe-
matical logic represents an “inverted bell-shaped curve” with respect to
Curriculum ’68 and Curriculum ‘78. In 1968, discrete mathematics was
considered very important when students going into computer science
came mostly from engineering and mathematics was no problem. When
computing became an area of study for a wider range of students during
the 1970s, the emphasis, as reflected in the Curriculum ‘78, was de-
creased. However, as the computing discipline matured, it became
evident that its foundations are strongly mathematical as shown in the
Curriculum 1991.

4. SHOULD COMPUTER SCIENCE BE MORE
MATHEMATICALLY FOCUSED?

Should computer science be more mathematically focused? To answer
this question, we examine the views of three prominent personalities in
the computing discipline and look at their supporting arguments. Our
objective in recollecting these views is to reinforce the emphasis on the
role of discrete mathematics from a slightly different angle than those
presented in the proposed curricula.

In February 1989, Edsger Dijkstra, who is perhaps the most prominent
and well-known computer scientist and who has made great contribu-
tions to the field of computer science, gave an invited talk called “On the
Cruelty of Really Teaching Computing Science” at the ACM Computer
Science Conference. During the course of his presentation, some of the
basic assumptions on which the computer science curricula are based
were brought under fire by his comments. He attacked software engi-
neering as a doomed discipline and argued that the teaching of comput-
er science should embrace the disciplines of formal mathematics and
applied logic.

His attack on software engineering, which he calls “The Doomed
Discipline” is backed by what he terms reassuring illusions. In the area
of programmer productivity, he cites the illusion that programs are just
devices like any others. In the area of quality control, he points to the
illusion that what works with other devices works with programs as
well. In the area of software production, he examines the illusion that
the pains of software production are largely due to a lack of appropriate



MATHEMATICS OF COMPUTING 211

Anthony Ralston [10] points out that the general consensus among
academic computer scientists concerning the role that mathematics
should play in an undergraduate computer science curriculum is that
undergraduate computer science programs need more mathematical
content, which needs to be more closely integrated with computer
science courses than is implied by Curriculum ’78. Ralston further elabo-
rates that, when possible, topics in computer science and mathematics
should be paired together, and concludes that computer science stu-
dents could gain valuable knowledge for the first course in computer
science through a prerequisite or corequisite mathematics course that
provides relevant mathematical material in the context of a full discrete
mathematics syllabus. This should be a one-year course in discrete
mathematics taught at an intellectual level equivalent to that of an
introductory calculus course.

On the importance of discrete mathematics, the Mathematical Asso-
ciation of America [13] published a report authored by Ralston that gives
further credence to the importance that discrete mathematics carries in
the field of computer science. Among other things, the report states that
(1) discrete mathematics should be part of the first two years of the
standard mathematics curriculum at all colleges and universities, and
that (2) the primary themes of discrete mathematics courses should be
the notions of proof, recursion, induction, modeling, and algorithmic
thinking and that the topics to be covered should emphasize acquisition
of mathematical maturity and of skills in using abstraction and general-
ization. Furthermore, the report suggests that secondary schools should
introduce many ideas of discrete mathematics into the curriculum to
help students improve their problem-solving skills and prepare them for
college mathematics.

David Gries, also a well-known computer science academician, com-
plains in his excellent article [14] that software engineering, computing,
and computing education all suffer from a lack of basic mathematical
skills that are needed in dealing with algorithmic concepts. He also
states that the formal techniques and their applications in programming
that are being taught are reaching the programmers, software engineers,
graduate students, and upper-level undergraduates too late in the cur-
riculum. Because of the lack of basic skills needed to apply the tech-
niques successfully, attention must be divided between the teaching of
the basic skills and the discussion of their advanced applications. Gries
believes that the heart of the problem in software engineering lies in no
attempt being made to teach methods for formalizing, for solving by
calculation, and for checking calculations. In his opinion, the field relies
far too much on intuition and guessing.

Gries suggests that the answer to the current problems in under-
graduate computer science programs is to overhaul the beginning of the



MATHEMATICS OF COMPUTING 213

The development of any system has to be preceded by a specification
of what is required. Without such a specification, the system’s devel-
opers will have no firm statement of the needs of the would-be users of
the system. The need for precise specification is accepted in most engi-
neering disciplines. Software systems are in no less need of precision
than other engineering products.

Many aspects of a software system must be specified, including its
functionality, performance, and cost. In this section, attention is focused
on a system’s functionality. There is a general agreement that precise
specifications are a must to obtain quality software. Informal specifica-
tions (e.g., in a natural language) alone are certainly not appropriate
because they are normally inconsistent, imprecise, ambiguous, and they
rapidly become bulky, making it very difficult to check for their com-
pleteness. Semiformal approaches (e.g., data flow diagrams, Structured
Analysis and Design Technique, SADT) to specification have been de-
veloped since the 1970s to improve the practices used in software devel-
opment. A particular emphasis in semiformal approaches is on diagram-
matical representation of the software system being built. Major
problems with semiformal methods include their lack of a precise se-
mantics that can be used to reason about or verify the properties of the
software system, and their generally ““free” interpretation. To overcome
the limitations of informal and semiformal approaches, the use of formal
methods for software development is often encouraged.

5.1. What Are Formal Methods?

Generally speaking, a formal method consists of a set of symbols and an
associated set of well-defined, mathematically based rules for inference
and manipulation of symbols. A formal method is used to model and
reason about some characteristics, for example, functionality, of a soft-
ware. The important aspect of formal methods is the use of formalism
for describing a software system and for developing the software based
on the techniques of mathematical modeling and reasoning. Mathemati-
cal modeling, abstraction, and reasoning will help provide a scientific
base for the software system in the same way as they have done for
other engineering disciplines. Indeed, if our objective is to make soft-
ware engineering a true engineering discipline, we must ensure that the
methods we use are scientific and, by extension, have a mathematical
foundation so that they provide predictable and verifiable results.
Formal methods can be used during various stages of software devel-
opment and for variety of purposes. They can be used during the early
stages for modeling and specification purposes and during later stages
for program verification. Whereas formal methods have traditionally



MATHEMATICS OF COMPUTING 215

LibSystem
’_members : F Person
shelved : F Book

checked : Book + Person

shelved N dom checked = @
ran checked C members
Vmem : Person e #(checked > {mem}) < MazLoan

The state variables include: (1) members, a finite set of type Person
representing those who can borrow books from the library; (2) shelved, a
finite set of type Book representing the set of books currently in the
library; and (3) checked, a partial function (shown by +>) from type Book
to type Person used for representing who borrowed which book. The
predicates capture the properties of the system: the first predicate states
that no book can be on shelves and checked out at the same time; the
second predicate states that only members can check out books; and the
third predicate states that each member can borrow as many as MaxLoan
books. (The symbol # reads as size of, while symbol >, for range
restriction, restricts the set checked to those entries whose range is merm.)
The schema CheckOut specifies the properties of the book checkout
operation:

CheckQOut
|—-ALz‘ng,.'ste‘m
borrower? : Person
book? : Book

book? € shelved

borrower? € members

#(checked > borrower?) < MagzLoan
checked' = checked @ {book? — borrower?}
shelved' = shelved \ {book?}

members' = members

The declaration ALibSystem alerts that the schema is describing a state
change. Thus we have to specify clearly which elements of LibSystem will
be changed. Other items of the signature include borrower? and book?,
both adorned with a question mark symbol to show that they are input
items. The first three predicates describe the preconditions of checkout:
the requested book must be on shelves, borrower must be a member,
and must have borrowed less than MaxLoan. The last three predicates
represent the state changes. Note that all state variables of LibSystem



MATHEMATICS OF COMPUTING 217

* Unambiguous interpretation. Different interpretations are avoided be-
cause the elements of the notation have a well-defined meaning.

* Conciseness. By using a mathematical notation (such as Z), it is
possible to express complicated facts and relations in a short space
that would otherwise take a large number of noise words and
verbose sentences to describe in a natural language.

* Ease of reasoning. Mathematics provide one with the ability to deduce
useful results, or to use inference rules and theorems to check
results of propositions.

* Modeling reality. A mathematical notation has concepts that can be
used for abstract modeling of reality. In fact, mathematical notations
have been used in other areas such as engineering for modeling and
the successful development of reliable systems. The same concepts
should be exploited for software development.

In a recent article by Cooke [15], mathematics, theory, and the applica-
tion of formal methods are explained in greater detail. (In fact, that same
issue of The Computer Journal is dedicated to formal methods and con-
tains several other inspiring articles.)

5.4. Misconceptions about Mathematical Specification

One misconception about the use of formal methods for software speci-
fication is that mathematical methods are not used in industry for real
projects. The fact is that they are. There are numerous reports on
practical and effective use of formal methods in industry. The range of
applications, from small to large systems, possessing attributes such as
real time, interactive, robust, and secure, has been sufficiently wide to
test the viability of formal methods, and to establish a considerable body
of knowledge and experience. A number of authors (e.g., [16, 17])
discuss experience gained in applying formal specification techniques to
IBM’s CICS transaction processing system. CICS is a large, 20-year-old
system and contains over half a million lines of code. The language Z
was used by IBM to respecify CICS to improve its maintainability.

The industry’s concern for mathematical techniques is also evident
from a recently completed report by the Computer Science and Technol-
ogy Board [18]. This report points to the need for strengthened mathe-
matical foundations in software engineering courses:

As software engineers begin to envision systems that require many thou-
sands of person-years, current pragmatic or heuristics approaches begin to
appear less adequate to meet application needs. In this environment,
software engineering leaders are beginning to call for more systematic
approaches: More mathematics, science, and engineering are needed.



MATHEMATICS OF COMPUTING 219

6. CONCLUSIONS

It is evident from the recommendations in Curriculum ‘68 that those
responsible for the recommendations for academic undergraduate pro-
grams in computer science knew from the beginning that mathematics is
a crucial component in computer science. Also evident from the progres-
sive recommendations toward mathematics from Curriculum ‘68 to
Computing Curricula 1991 is the increased realization of the extent and
degree to which discrete mathematics is and should be involved in the
computer science areas. In Curriculum '68 it was recommended that at
least 18 hours of mathematics be taken by those majoring in computer
science. In Curriculum ‘78, the committee responsible for the report,
while recommending that “courses concentrating on discrete mathe-
matics which are appropriate to the needs of computer scientists”
should be developed, it overemphasized the practical aspects of com-
puter science. In the current Computing Curricula 1991 there are as
many as 21 hours of mathematics and it is recommended that the
courses covered must include discrete mathematics and even advanced
discrete mathematics.

The views of several computer scientists offer even greater evidence of
the importance of mathematics to computer science. Dijkstra points out
that: (1) well-chosen formalisms provide a shorthand with which no
verbal rendering can compete; (2) by viewing the purpose of mathemati-
cal logic as providing a calculational alternative, its potential as a tool for
practical proof design can be realized; (3) in proof design, strong heuris-
tic guidance can be extracted from a syntactic analysis of the theorem
and from proof theory; and (4) the effective techniques of symbol manip-
ulation are well within the teachable domain. Ralston asserts that there
seems to be a general consensus among academic computer scientists
for a more mathematical context within undergraduate computer sci-
ence programs which needs to be integrated more closely with computer
science courses and that traditional undergraduate mathematics (i.e.,
the calculus sequence) is not usually supportive of the computer science
curriculum. Gries believes that software engineering, computing, and
computing education are all plagued by a deficiency in basic mathemati-
cal skills that are needed to utilize algorithmic concepts. He attributes
this problem to the fact that generally no attempt is made to teach
methods for formalizing, for solving by calculation, and for checking
calculations. Gries suggests that, to remedy the problem, undergraduate
computer science programs should be revised by merging the contents
of programming and mathematics courses. These views show how vital
it is that those involved in the computer sciences also be involved in the



[11]

(12]
[13]

(14]

[15]

(16]

(17]

(18]

[19]

[20]

MATHEMATICS OF COMPUTING 221

A. Berztiss, A Mathematically Focused Curriculum for Computer Sci-
ence,”” Communications of the ACM, Vol. 30, No. 5, pp. 356-365, May
1987.

Edsger W. Dijkstra, A Debate on Teaching Computing Science,”” Commu-
nications of the ACM, Vol. 32, No. 12, pp. 1397-1414, 1989.

Anthony Ralston, Discrete Mathematics in the First Two Years. The Mathe-
matical Association of America, 1989.

David Gries, “Teaching Calculation and Discrimination: A More Effective
Curriculum,” Communications of the ACM, Vol. 34, No. 3, pp. 45-55,
1991.

J. Cooke, ““Formal Methods: Mathematics, Theory, Recipes or What?, The
Computer Journal, Vol. 35, No. 5, pp. 419423, 1992.

C.J. Nixand B. P. Collins, “The Use of Software Engineering, Including Z
Notation, in the Development of CICS,” Quality Assurance, Vol. 1, No. 9,
pp. 103-110, September 1988.

I. Hayes, “Applying Formal Specification to Software Development in
Industry,” IEEE Transactions on Software Engineering, Vol. SE-11, No. 3,
pp. 169-178, February 1985.

“Computer Science and Technology Board Report: Scaling Up: A Research
Agenda for Software Engineering,”” Communications of the ACM, Vol. 33,
No. 3, pp. 281-293, March 1990. Excerpted.

A. Hall, “Seven Myths of Formal Methods,”” IEEE Software, Vol. 7, No. 5,
pp- 11-19, September 1990.

J. C. Cherniavsky, “Software Failures Attract Congressional Attention,”
Computer Research Review, Vol. 2, No. 1, pp. 4-5, January 1990.



