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Today’s information networks face increasingly sophisticated and persistent threats, where new threat
tools and vulnerability exploits often outpace advancements in intrusion detection systems. Current de-
tection systems often create too many alerts, which contain insufficient data for analysts. As a result, the
vast majority of alerts are ignored, contributing to security breaches that might otherwise have been pre-
vented. Security Information and Event Management (SIEM) software is a recent development designed to
improve alert volume and content by correlating data from multiple sensors. However, insufficient SIEM
configuration has thus far limited the promise of SIEM software for improving intrusion detection. The
focus of our research is the implementation of a hybrid kill-chain framework as a novel configuration of
SIEM software. Our research resulted in a new log ontology capable of normalizing security sensor data
in accordance with modern threat research. New SIEM correlation rules were developed using the new
log ontology, and the effectiveness of the new configuration was tested against a baseline configuration.
The novel configuration was shown to improve detection rates, give more descriptive alerts, and lower

SIEM the number of false positive alerts.
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1. Introduction

The goal of any network security monitoring solution is timely,
accurate and actionable network threat alerts. Such alerts are cited
as an axiom of mature security organizations such as the U.S. De-
partment of Homeland Security Grano et al. (2005). Unfortunately,
security alerts are often prone to false positives based on sensor
location within the network, limitations in their ability to apply
advanced rule logic, or the inability to represent complex organi-
zational data hierarchies such as: user accounts, critical computing
resources, subnet risk levels, and work hours. Additionally, indi-
vidual security devices themselves may be susceptible to exploita-
tion by savvy attackers, affecting the integrity of data they provide
Garcia et al. (2018). These limitations result in a multitude of alerts
flooding security analysts, or a lack of alerts due to overzealous
alert suppression.

Recently, leading information security companies have devel-
oped specialized correlation software designed to aggregate data
provided by disparate sensor feeds, thus enabling holistic analysis
of all network data from a single, centralized, alert feed. Analysis of
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data from these devices may reveal patterns of activity conducive
to fingerprinting individuals or threat groups, based on a trail of
data spread across an entire network of sensors. However, it is the
development of custom algorithms designed to analyze this data in
the context of phased attack ontologies that truly provide additive
value in threat detection and prevention.

Additionally, there is a trend of chatty data feeds, such as fire-
wall logs, drastically outnumbering more forensically valuable data
feeds such as endpoint operating system logs. Observation of secu-
rity analysts operating in a commercial Security Operations Center
indicated that a vast majority of security alerts were ignored by
analysts. Furthermore, many security experts argue that weeding
through every alarm is impractical and often must be combined
with some form of automation for attack attribution Aminanto
et al. (2019), Zhong et al. (2016) and Zhong et al. (2019). Unfortu-
nately, merely aggregating data from sensors does not greatly im-
prove detection rates nor decrease false-positive ratios.

Discerning notable security events from log data, and imple-
menting timely remediation for incidents, is a daunting task with-
out an effective alerting engine employed to filter, categorize and
escalate security events appropriately. Security data must be nor-
malized into a standard ontological framework, analyzed within
the context of known attacker methodologies, and finally allowed
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to accrue suspicion dynamically as threat activity progresses
throughout the network to fully realize the axiom of timely, ac-
curate and actionable alerts.

1.1. Significance

Advanced correlation software in SIEM systems is designed for
real-time alerting of potential security events, as well as to in-
crease the investigative and data retrieval functions associated
with those events. Analysis of raw sensor feeds is overwhelming
for human analysts due to the high volume of alerts and high false
positive ratios. Some studies have revealed as few as 29% of alerts
in a SOC environment are actually inspected by analysts, of which
an average of 40% are determined to be false positives Zhong et al.
(2019). Implementing programmatic analysis decreases false posi-
tive ratios and provides mechanisms for the abstraction of human
labor functions to a higher analytical plane via a unified graphical
user inter-face (GUI). This in turn enables the establishment of an-
alyst pools ultimately improving process efficiency and decreasing
the mean time required to triage and respond to net-work security
events.

However, current software solutions for data normalization and
threat action modeling within SIEM software are limited. These so-
lutions merely provide a framework for normalizing disparate data
feeds and performing logical comparisons of the metadata con-
tained therein. Such tools are often used to implement static trig-
ger criteria based on either volumetric thresholds or watch lists
containing threat signatures, but this methodology is prone to false
detection.

A method of implementing dynamic suspicion escalation
through contextualized data, aggregated from multiple sources,
and attributable to specific threat actions is not found within SIEM
software by default. A threat framework must first be adopted to
attribute malicious activity to specific threat objectives. This frame-
work can then be leveraged to attribute various levels of risk and
suspicion according to the extent to which activities satisfy the
threat objective phases.

This paper analyzes existing threat frameworks for inclusion
within a SIEM solution, with the goal of providing more timely,
accurate and actionable alerts through threat attribution and
dynamic suspicion escalation. Ultimately, a novel threat model
was devised based on the competing threat models evaluated.
This novel model was implemented through modifications to the
database structure of a commercially available SIEM system.

1.2. Research methodology

An empirical research methodology was applied to evaluate
existing research associated with intrusion detection technology,
SIEM software, and network attack methodologies. This study was
conducted over a period of two years and included immersion
within a commercial Security Operations Center (SOC) to observe
security analysts conducting alert triage and investigation during
real-world security incidents. The concepts of data triage, suspi-
cion escalation, threat actor groups, and models for representing
threat methodologies were evaluated within this environment. This
study led to the selection of a commercial SIEM product for eval-
uating the efficacy of implementing ontological frameworks used
to represent security data in a normalized format. The LogRhythm
SIEM was chosen as it was the dominant SIEM system leveraged by
the security analysts during the observation period. Finally, a lab-
oratory environment was constructed to validate insights gained
from observing SOC analysts by implementing the newly devised
SIEM framework within a controlled environment. The laboratory
environment consisted of a security device sensor array, multiple

security devices configured in series, and the selected SIEM prod-
uct. Fig. 1 illustrates this laboratory design. Fig. 14, within the test-
ing and evaluation section, illustrates the network architecture and
provides context for network traffic flow.

SIEM correlation rules were implemented in accordance with
the model devised in this paper. Detection performance was eval-
uated in relation to a baseline SIEM configuration with vendor rec-
ommended correlation rules.

2. Background
2.1. Hacker categories

Research on network intrusion detection systems, and security
event management systems have existed for several years; how-
ever, most research focus on technical challenges associated with
data analysis rather than psychological motivations of attackers
Denning (2001),Denning (1987),Garcia-Teodoro et al. (2009) and
Valeur et al. (2004). An ontological framework representing how
persistent threat groups penetrate networks and exploit vulnera-
bilities is seldom addressed in contemporary research on intrusion
detection.

However, some work has been done to understand the human
factors associated with cyber criminals. Hald and Pedersen catego-
rized threat actors based on expertise and motivation, as depicted
in Fig. 2 (Hald and Pedersen, 2012). Such work associated with the
attribution of actions to specific types of threat actors is an impor-
tant step in eventually establishing a pattern of behavior conducive
to data correlation and attribution of malfeasance.

This paper focuses primarily on the Information Warrior (IW)
category described by Hald and Pedersen. As such, though the se-
curity landscape is filled with commodity malware or drive-by ex-
ploits, such events are not the focus of this study. The intent of this
paper is not to discount the threat of abbreviated cyber attacks,
but rather focus on the more challenging multi-stage incidents that
require greater analytical rigor by security analysts. Therefore, this
paper focuses on the well resourced, focused and persistent actions
typically associated with organized threat groups.

2.2. The attack lifecycle: kill-chains

The term “kill-chain” emerged in security circles in the
early2010’s as a way to describe the lifecycle of a security inci-
dent. The term kill-chain is derived from the Department of De-
fense joint targeting process, which was designed for the positive
identification and attribution of culpability to actions associated
with suspected actors. The US targeting kill-chain is epitomized by
the acronym F2T2EA, which consists of six phases: Find, Fix, Track,
Target, Engage and Assess. This is similar to a pipe and filter model
in software engineering, with the product of one phase providing
input to subsequent phases in a serial fashion. Disruption of any
phase within this chain will result in the dissolution of the pro-
cess in its entirety. The following studies outline kill-chain model
research.

The Lockheed martin intrusion kill-chain The most prominent
model associated with the term “kill-chain” within network secu-
rity research is the Lockheed Martin Intrusion Kill-Chain depicted
in Fig. 3. In this model, Advanced Persistent Threats (APTs) em-
ploy a methodical targeting process similar to the DoD kill-chain
(Eric Hutchins and Amin, 2011). Lockheed Martin’s “intrusion
kill-chain” describes the seven phases of activities APTs conduct to
compromise a system: Reconnaissance, Weaponization, Delivery,
Exploitation, Installation, Command and Control, and Actions on
the Objective. However, the Lockheed Martin model does not
adequately address actions other than data exfiltration which can
occur after a persistent threat has compromised a system. For
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Fig. 2. The Hald and Pedersen motivation/skill-level circumplex Hald and Pedersen
(2012) depicts varying skill levels associated with categories of hackers.

instance, lateral reconnaissance to determine more susceptible
systems, followed by repetition of phases one through six, is not
addressed by this model. It is uncommon for an advanced threat
to attempt to transfer data from the initial compromised system,

since such activity increases suspicion and may risk loss of the
system as a persistent access point into the network.

Mandiant APT attack lifecycle model The Mandiant Corporation
devised an eight phase model, depicted in Fig. 4, called the “Man-
diant APT Attack Lifecycle,” which includes the iterative process at-
tackers employ to gain additional footholds within a network fol-
lowing the initial compromise (FireEye, 2013). This model consid-
ers the possibility of branch and recursion at phase five, spawning
sub-phases associated with lateral infection. The Mandiant model
greatly simplifies the initial phases of the Lockheed Martin kill-
chain by incorporating the weaponization, delivery, exploitation,
and installation phases into a single phase called initial compro-
mise. The Mandiant model also labels phases based upon intent
rather than action, helping to aggregate actions that serve a com-
mon purpose. Another key differentiator between the Lockheed
Martin model and the Mandiant model is the escalate privileges
phase. Mandiant identifies multiple tools used by APT groups to
gain access to additional resources on the compromised system,
which provide behavioral signatures that may serve as key indica-
tors of compromise and differentiate between routine and persis-
tent threat activity.

Both the Lockheed Martin and Mandiant frameworks inspired
security analysts to provide methodical approaches to security
data triage within the context of an attacker’s perspective. Ad-
ditionally, these frameworks focused on consolidating threat ac-
tivities into discrete groups based on attacker objectives, rather
than exhaustive lists of tools, techniques or signatures observed
in the wild. The ability to organize threat activity in this manner

Installation

Fig. 3. The Lockheed-Martin Killchain Eric Hutchins and Amin (2011) depicts a seven phase attack lifecycle.
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Fig. 4. Mandiant Attack Lifecycle FireEye (2013) depicts an eight phase attack lifecycle with possible recursion.
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Fig. 5. The MITRE ATT&CK™ framework MITRE (2014) depicts a twelve phase model and provides references to techniques used in each phase.

provides a mechanism for methodical triage of security data, rather
than weeding through a sea of disjointed security alarms.

2.3. Hacker methods

The Mitre organization developed the ATT&CK™ framework in
2018, depicted in Fig. 5, as a way to categorize observed threat be-
havior across a twelve phase model along with observed threat
techniques associated with each phase Strom et al. (2018). This
model is the logical evolution of applying the attack lifecycle con-
cepts championed by the Lockheed Martin and Mandiant models

with the traditional approach of developing attack signatures. This
framework is available on the Mitre organization’s website and is
updated as new adversary tactics and techniques are identified.

2.4. Security information and event management (SIEM) software

Amrit Williams and Mark Nicolett coined the term SIEM in
2005 to describe the convergence of Security Event Management
(SEM) and Security Information Management (SIM) software into
a single consolidated product Williams and Nicolett (2005). His-
torically, SIM software was focused on post-incident review and
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analytics, while SEM software was designed to provide real-time
alerting of intrusions or other security incidents. SIEM products
additionally provide log management services since log collection,
analysis, and retention are integral parts of the SIEM process.

Several papers have been written to address individual compo-
nents that provide data for SIEM systems, such as improving de-
tection ratios in low level sensors Kim et al. (2013), log retention
and management data structures Madani et al. (2011), and packet
inspection Silowash et al. (2013). However, few studies have been
conducted on SIEM software and its underlying mechanisms: secu-
rity event management, threat taxonomies, attack ontologies, and
incident weighting. Understanding these mechanisms provides in-
sight to potential areas for optimization.

SEM systems focus on the process of actively detecting security
events as they occur. The following SEM models established the
theoretical basis for future SIEM systems.

2.5. Progression of dangerousness

Legrand addressed the task of wading through holistic network
analysis alerts by subjecting normalized SEM data to a static causal
event ontology based on five factors: why, who, where, how and
what Legrand et al. (2008). Each ontological factor must be satis-
fied by an observable network event and the summation of these
events constitutes an action. The result of this ontological analysis
is run through a threat algorithm called the progression of dan-
gerousness, where actions are weighted to identify which are the
most threatening to network assets. Action weighting is calculated
via the function

fla) = (di(a), dx(a), --- . dy(a))

where each observable action a is iteratively evaluated against all
ontological dimensions d; through dp. This model relies heavily on
the intrinsic detection capabilities of sensors.

Chien et al. proposed a two-layer attack framework where
primitive attack (PA) sensor information feeds into an attack sub-
plan layer, based upon attack subontology and attacker intent
Chien et al. (2007). The ontology has three classes: reconnaissance,
penetration, and unauthorized activity. This signifies the transition
from static ontological analysis to a dynamic ontology with classes
dependent upon the state transitions between PAs. Chien also in-
troduced the notion of assigning confidence values to detection
on a per sensor basis. Chien’s primitive attack layer expands upon
other event verification module concepts as well as incorporating
Legrand’s concept of ontological integration. Higher level subplan
templates are used to align disparate PA information into a coher-
ent attack based on known or suspected attack methodologies.

Visualization and graphical tools SIEM software may be improved
with visualization tools for postmortem incident auditing and pre-
dictive analysis. Kotenko and Novikova outlined the essential func-
tions of a SIEM visualization subsystem: Real time data monitor-
ing, integration with a historical data repository, graphical inter-
face for rule editing and generation, attack modeling, and resource
management Novikova and Kotenko (2013). Histograms, linear dia-
grams, and dashboards are all useful.

Filtering and Correlation Flynn focused on implementing kill-
chain methodologies in SIEM software and stressed collecting
event data on routine activity so holistic analysis may be con-
ducted on security incidents Flynn (2012). A continuum of pro-
gressive suspicion is needed, similar to Legrand’s progression of
dangerousness. Flynn proposed an “event pipeline” framework con-
sisting of blacklisting, identity translation, correlation, context, and
analysis. Blacklisting in this context is the removal of known false
positives, such as those which match signatures stored on in-
trusion detection systems, but which are associated with operat-
ing systems that are not in the network. Identity translation en-

tails maintaining a record of internal machines, users, and IP ad-
dresses for future correlation. Correlation has two sub-phases: the
attack plane and the kill-chain Flynn (2012). The attack plane com-
pares disparate events with some shared identifying characteris-
tics to determine group events for context and suspicion escala-
tion. The Lockheed Martin model is the basis for the kill-chain,
which provides criteria for attack plane grouping. Context is the
fusing of external information surrounding the detection, such as
cross-referencing network diagrams. In Analysis, a correlated and
contextualized alert is provided to a human for review.

3. Security operations center study and observations
3.1. SOC environment overview

The authors of this paper were provided with unfettered ac-
cess to a leading Managed Security Services Provider’'s (MSSP) Se-
curity Operations Center (SOC) over a two year period. Data pro-
cessed within the SOC was associated with a growing list of clien-
tele reaching more than 120 distinct clients across the globe by the
end of the study. Client profiles extended across multiple industry
verticals including: retail, health services, gambling, utilities, edu-
cation, hotels, and the public sector.

The MSSP employed a total of 22 SOC security analysts dur-
ing the study period. Analysts were aligned within a three-tiered
model based on analyst experience and rigor of expected inves-
tigative effort. Tier 1 analysts were responsible for alert triage and
escalation of routine incidents to clients. Tier 2 analysts were re-
sponsible for handling internal escalations for abnormal activity or
validation of suspected false positive events relayed by tier 1 an-
alysts. Tier 3 analysts were responsible for in depth investigations
and response actions associated with known or suspected security
breaches or client initiated investigations.

SOC analysts were responsible for responding to alerts and per-
forming investigations within several different SIEM systems in-
cluding: McAfee ESM (formerly Nitro Security), IBM QRadar, Arc-
Sight, Splunk and LogRhythm. Alarms were provided to analysts ei-
ther via a remote console into the SIEM management system or via
email alerts automatically generated by the SIEM system. The Lo-
gRhythm SIEM system was configured as a multitenant system ser-
vicing the majority of the MSSP clients simultaneously via a cloud-
based deployment.

The multitenant LogRhythm deployment provided a consistent
basic SIEM correlation rule set across multiple clients, with the op-
tion for select clients to request additional rules above the base
configuration. Single client SIEM deployments varied greatly from
one another in terms of correlation rule construction, data source
integration and possibly metadata parsing standards. Single client
SIEM systems were not a primary focus during this study due to
the large variance in system configuration and relative complexity
in accessing systems vice the convenience of a multitenant con-
sole. Therefore, the SOC study focused primarily on data collected
within the LogRhythm SIEM as it provided direct access to SIEM
data via a management console, allowed for real-time log queries,
and contained the largest variety of client data across multiple in-
dustry verticals.

The MSSP also employed a total of five SIEM engineers, also
aligned within a three-tiered model. SIEM engineers provided sup-
port to each of the SIEMs analysts operated within. SIEM engineers
were expected to be experts in at least one SIEM system, but also
possess working knowledge of all other systems. The authors were
allowed to provide recommendations for potential correlation rules
to SIEM engineers during the study period, presenting the oppor-
tunity to review existing and pending correlation rule construction.
Observation of SIEM correlation rule construction provided insight
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into the relative complexity of correlation as well as best practices
for rule development.

Security data processed by SIEM systems and analysts grew at
an exponential rate as clients flocked to the MSSP. The multitenant
SIEM serviced 12 clients at the beginning of the study and grew to
more than 60 by the end of the two-year period. By the end of the
study, several million logs were processed by the LogRhythm SIEM
on a daily basis resulting in over 4000 alarms for analysts to triage,
investigate and/or escalate to clients at the peak of the study. Ana-
lysts were expected to conduct initial triage and client notification
(if warranted) with a 15-minute service level agreement.

3.2. Security analyst overview

Analysts operated across five different shifts in order to pro-
vide 24x7x365 coverage, were expected to work on holidays, but
were offered additional vacation days to make up for holiday as-
signments. The weekday day shift operated from 0800 to 1600h
on Mondays through Fridays. Monday through Thursday were aug-
mented by a “swing” shift from 1200 to 2200 h, and an evening
shift from 2100 to 0900 hrs. The weekend shifts worked Friday
morning to Monday morning from 0800 to 2100 and 2000-0900.

Symptoms of analyst burnout and alert fatigue were most
prevalent during the weekday day shift from 0800-1600hrs. The
weekday day shift was particularly problematic for security ana-
lysts as they were responsible for addressing client inquiries via
email or phone while also responding to SIEM generated alerts.
Client inquiries typically tapered off by 1600 client local time,
except for Friday afternoons, which exhibited a large increase in
client inquiries between 1500-1700 client local time. The large in-
crease in Friday client inquiries is suspected to be associated with
client attempts to investigate incidents during the week without
MSSP involvement and escalating unresolved issues to the MSSP
prior to retiring for the weekend.

Analyst interactions with clients proved to be a very time-
consuming process. Typical email exchanges between clients and
analysts took an average of five minutes to draft per message.
Phone calls between analysts and clients typically took longer than
email correspondence and eventually became burdensome to the
point where select clients were scheduled for prearranged 30-min
calls with dedicated analysts on a weekly basis. Eventually the
MSSP created a new section responsible for handling interactions
with clients in an effort to alleviate the pressure placed on ana-
lysts. However, analysts were often required to continue to attend
client calls based on a lack of security expertise on the part of the
newly appointed client services team.

Analysts used the US CERT Federal Agency Incident Categories
in order to standardize incident reporting to clients. The US CERT
categories are based on a seven level zero based system, with
lower categories representing more pressing issues. Category O is
reserved for known security tests and was omitted from report-
ing requirements by analysts. However, blind penetration tests con-
ducted by clients were expected to be reported by analysts and
would have been considered a category 1 event. Category 1 was re-
served from a suspected security breach resulting in unauthorized
access. Category 2 was reserved from successful denial of service
attacks. Category 3 was reserved from malware or other malicious
code detection. Category 4 was reserved for “improper usage” and
was seldom defined or implemented in client environments. Cat-
egory 5 was reserved for scans, probes or attempted but unsuc-
cessful access attempts. Finally, category 6 was reserved from un-
confirmed incidents and served as a “catch all” for alerts analysts
chose not to escalate to clients.

Every alert in the multitenant SIEM was expected to be manu-
ally assigned one of the 7 US CERT categories by an analyst. More
severe alert categories (CAT1-CAT3) required immediate escalation

and a phone call to a client. Category 5 and 6 alerts only required
email notifications or consolidation into daily or weekly reports
based on client preference. The vast majority of alerts were as-
signed to the “category 6 catch all” category. The analyst triage
process typically began by reviewing the name of alarms produced
by the SIEM. Well named alarms provided analysts with insight
pertaining to which actions should be conducted during triage.
Poorly named or vague alerts were typically ignored by analysts,
unless they were occurring very frequently, in which case they
were escalated to SIEM engineers for “tuning” or removal from the
system.

Furthermore, alarms that could not be easily explained by ana-
lysts were often not sent to clients. The was likely due to client
pushback after receiving several escalations from analysts that
were interpreted as being unactionable. The most common alarms
that analysts received pushback from clients for were associated
with IP blacklists, wherein one or more systems were observed
communicating with a system previously known for malicious ac-
tivity. These alerts were typically triggered off of network data,
with little context, and did not provided insight as to the nature
of the offense. Clients quickly developed a policy of inquiring for
more data following escalations, such as account names involved,
processes running on target systems, and actions performed by the
attacker, all of which required additional resources from analysts
to collect. Ultimately, escalation rates for alarms were directly pro-
portional to analysts’ ability to rapidly identify malicious activity
and collect adequate forensic evidence to make remediation rec-
ommendations to clients. If the evidence required for the latter
was lacking, analysts opted not to escalate alarms.

3.3. SIEM engineer overview

SIEM engineers operated predominantly during the weekday
day shift hours and maintained an on-call roster for after-hours
emergencies. SIEM engineers occasionally scheduled work during
evenings or weekends if prearranged maintenance windows were
requested by the client for large installations or major system
modifications. SIEM engineers operated off of a ticket based work-
flow wherein configuration requests could be initiated by either
clients or SOC analysts. Client requests typically involved the con-
figuration of sensor data feeds, managing alert thresholds (also
known as tuning), and custom SIEM alert rule development. Ana-
lyst requests typical involved alert threshold configuration requests
to silence “chatty” or “bad” SIEM alert rules. SIEM alerts that were
evaluated as “bad” by tier 1 or 2 analysts were required to be re-
viewed by a tier 3 analyst before being escalated to SIEM engineers
for resolution. Tier 3 analyst review of alarm quality was required
to prevent lower tier analysts from merely removing alerts they
did not wish to report from the system.

SIEM engineers were expected to interact with clients on a
regular basis in order to maintain customer satisfaction with the
services provided. During initial client integration, SIEM engineers
conducted calls or video meetings with clients several times a
week to install or configure security data streams. Data streams
were monitored for an approximately two-week period before set-
ting baselines or alarm thresholds. After this learning period, alerts
were enabled and began flooding SOC analyst consoles. Excessively
noisy alerts were reported by SOC analysts to SIEM engineers as
candidates for tuning. This tuning process typically lasted for two
weeks following the initial log baselining period.

The variety of security data sources evolved as the study pro-
gressed. During the initial phases of the study, clients primarily
forwarded firewall and IDS alerts to the SIEM but did not forward
operating system audit logs or specialized security devices (aside
from network based IDS). A few select clients chose to forward
network device logs from routers and switches. Eventually clients
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began integrating more exotic data sources into the SIEM environ-
ment. This was partially motivated by media reports of high-profile
security breaches, but also the adoption of larger companies as
clients with more mature security organizations. Eventually moni-
tored data sources expanded to include operating system logs, spe-
cialized anti-malware solutions, host-based IDS, web proxies, and
vulnerability scanners. Developing parsing rules for this large vari-
ety of heterogeneous data sources eventually posed the most sig-
nificant challenge to SIEM engineers; especially due to the fact that
no agreed upon standard existed for metadata normalization, and
not every SIEM normalized data in the same manner. Though most
system vendors, such as firewall manufacturers, provided similar
data for like systems, each did so with proprietary labels that had
to be interpreted by the SIEM into a common representation for
correlation.

The SIEM used to automatically triage log data and generate
alarms implemented a system of event classification labels in or-
der to prioritize observed traffic. All log data ingested by the SIEM
received a classification label during the initial data normaliza-
tion phase, wherein metadata was aligned with standardized fields
for correlation across disparate data streams. Normalized log data
could also be used to create “events” stored in the LogRhythm
database. Events were similar to logs, in that they could be re-
trieved during investigations and could be used to generate alerts;
however, events, unlike logs, could be generated off of one or more
logs or events using if-this-then-that logical operations. Addition-
ally, newly generated events could be labeled with classification
categories or event titles different from the labels associated with
the logs or events used to generate them.

By default, the LogRhythm SIEM was configured with three top
level classifications “security”, “operations” and “audit”. During this
study, SIEM alarms were predominantly created to trigger from
logs with the security or operations classifications, while audit logs
were primarily used for generating daily activity reports. Fig. 6 de-
picts the default classification labels available to SIEM engineers
using the LogRhythm SIEM.

SIEM correlation rules could be used to generate alarms, which
would be sent to the analyst consoles for triage, or via email notifi-
cation, or both. Additionally, correlation rules could be constructed
to convert observed logs or events into additional events. Events
could be queried from the SIEM database during investigations,
used to generate future alerts and events, or included in reports
as desired.

The practice of generating non-alerting events was not heav-
ily used by SIEM engineers during the SOC study. SIEM engineers
were typically told by clients or analysts to generate alert noti-
fications for specific events or the presence of well-known sig-
natures within log data. SIEM engineers employed multiple ap-
proaches to SIEM rule construction and attended regular vendor
training sessions to discuss rule construction techniques. The dif-
ferent approaches SIEM engineers used toward rule construction
are explained in the following paragraphs.

Single block rules These rules were the simplest to construct
and the most likely to generate alarms on a consistent basis.
This type of rule simply involved querying the SIEM log or event
databases for specific elements of normalized metadata and gen-
erating an alert. The most common method for creating these
rules was by comparing metadata fields with lists of known in-
dicators. For example, lists of IP addresses associated with known
malware or threat groups could be used to generate alerts when-
ever said IP addresses were observed within log or event metadata
fields.

Multi block rules These rules were constructed using multiple
if-this-then-that conditional statements executed in series. These
rules were intended to perform automated triage and potentially
provide additional context for alerts generated. However, there

were several limitations to this approach that eventually caused it
to fall out of favor with SIEM engineers.

First, this approach required several conditions to be met in or-
der to trigger an alert. The likelihood that all conditions would
be met decreased with each subsequent rule block. Originally, this
phenomenon appeared to work as intended, as too many alerts
overwhelm analysts. However, there was no mechanism for in-
forming analysts or SIEM engineers that some, or most of the alert-
ing criteria had been satisfied, but an alert was not triggered be-
cause of a technical oversight or faulty configuration setting. The
end result was that this type of SIEM rule was highly prone to false
negatives, wherein an alarm should have been generated, but was
not.

The second issue with this approach was that it often resulted
in poor forensic value to analysts. This was due to the way the
LogRhythm SIEM retrieved data from its log and event datastores
when generating alerts. SIEM engineers were required to select at
least one metadata field as the “primary” field when generating
correlation rules. The primary field was used to satisfy conditions
for the rule. Engineers could optionally select additional “group by”
meta data fields which would be included as populated meta data
fields in the newly generated event or alert if the primary condi-
tion was met and the “group by” meta data field was not null. If a
rule was configured with a specific “group by” meta data field, and
a log or event met the primary criteria for the rule block, but did
not contain data in one or more “group by” fields, the rule block
would fail to fire for that log or event. Initially, SIEM engineers at-
tempted to include as many “group by” fields as possible to sat-
isfy security analyst and client demands for more detailed alarms;
however, overzealous attempts to populate alarms with additional
meta data resulted in most of these alarms failing to trigger. As
such, this approach to SIEM rule construction resulted in rules ei-
ther containing very few additional “group by” fields or being re-
stricted to specific data sources with known consistent meta data
fields to query.

Statistical rules These rules were intended to implement
anomaly detection functionality within the SIEM. All of these rules
operated in a multi block fashion consisting of two rule blocks,
with the first block establishing the primary criteria for observa-
tion and a learning period from which a baseline could be estab-
lished. The second block was used to establish the threshold be-
yond the baseline for triggering an alarm.

This type of alarm suffered from the same limitations as the
multi block rules, in that few, if any, meta data fields would be
returned within alerts. However, this rule also introduced an addi-
tional performance penalty associated with storing statistical data
in memory for continual comparison with real-time data. This per-
formance tax eventually resulted in this type of rule being reserved
for only select use cases. Despite its limitations, this type of rule
could be beneficial in generating suspicious events for inclusion in
multi stage rules, as the title of events generated by this approach
could be included in a multi stage rule and provide context, even
if most or all meta data fields were omitted in the statistical event.

Multistage rules These rules were rarely used by SIEM engineers
but offered the best tradeoff between forensic value and perfor-
mance impact on the SIEM. Multistage rules relied on the ability of
the SIEM to generate events for suspicious behavior, leverage sus-
picious events as alert criteria, and then eventually aggregate said
events into single alerts containing data from each event observed.
These rules operated in a similar fashion to multi block rules, as
multiple criteria were required to be satisfied prior to generating
an alert. However, unlike multi block rules, multistage rules were
not limited to the construction of rule blocks configured in se-
ries within a single correlation rule. Rather, multistage rules relied
heavily on the ability of a SIEM to use conditional statements to
generate events and apply appropriate classification labels to said
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Classification

Operations

[ startup and Shutdown | | critical |
[ Configuration | | Error |
| Account Created | | Warning |
| Account Modified | | Information |
| Account Deleted | | Network Allow |
| Access Granted | | Network Deny ]
[ Access Revoked ] [ Network Traffic |
| Authentication Success | | Other Operations |
| Access Failure ] | Access Failure |
| Other Audit | | Other Operations

I Attack | Failed Attack I
I Denial of Service | Failed Denial of Service I
I Malware | Failed Malware I

| Failed Suspicious ]

I Reconnaissance | Failed Reconnaissance |

|
|
|
I Suspicious |
|
|
|
|

[ Misuse | Failed Misuse |
| Activity | Failed Activity |
| Vulnerability

| Compromise |

| Other Security |

Fig. 6. LogRhythm SIEM log and event classification labels.

events. Once suspicious events were generated in the first stage,
their classification label could be used as the primary criteria for
generating another event or alarm in the second or subsequent
stages of the series of rules. Since the first stage in this approach
was merely intended to create a new event with the appropriate
classification label and a descriptive title, there was little risk in
applying too many “group by” fields for extracting meta data from
observed logs or events as there was no second rule block that
could fail. Additionally, any data source that was incapable of pro-
viding adequate meta data would be omitted from future correla-
tion stages, thus preventing SIEM rules from failing due to config-
uration issues in later stages.

Despite the benefits of this approach, there were two key lim-
itations to its implementation. The first limitation was that there
was a performance cost to generating new events in each stage.
Specifically, new events required storage space within the SIEM
event database. At a minimum, every interesting event or log that
met stage one criteria would result in at least one more duplicate
event being generated, all be it with a different classification and
event title. In the worst-case scenario, a single event or log could
meet the criteria for multiple stage one rules, and therefore result
in a multiplicative increase in events. This was especially problem-
atic in statistical baseline rules that were sensitive to drastic in-
creases in events. Theoretically, one highly suspicious event could
result in a storm of suspicious residual events. This phenomenon
could be beneficial in prioritizing suspicious traffic but could also
result in false positives and data retention issues if not configured
properly.

The second limitation was that this type of rule was limited to
classification labels available to SIEM engineers during rule con-
struction. The LogRhythm SIEM classification labels, previously al-
luded to in Fig. 6, were not always easy to map to observed be-

havior. Technically, multistage rules did not require engineers to
use the classification meta data field as primary criteria; however,
doing so was helpful in ensuring at least one data source con-
tained the necessary meta data fields for optimizing “group by”
field inclusion when generating alerts. SIEM rule names could also
be used as primary criteria, however this approach often resulted
in commission of unexpected data sources which could have pro-
vided useful context when generating alarms. Labeling suspicious
logs and events with similar classification labels allowed for data
provided from multiple disparate data feeds to be used as crite-
ria in multistage rules. If analysts requested that an alert contain
certain pieces of meta data to provide context during triage, each
of those fields could be used as “group by” criteria in establish-
ing an event for that stage of an attack and remove logs or events
that did not contain them. However, unlike the multi block rules,
which exhibited a high false negative rate due to null queries for
meta data within one or more rule blocks in series, if a rule block
failed in a multi stage approach, that stage was simply omitted,
but a terminal alert rule could still trigger off of other rules in
different stages. Essentially, multistage rules could tag data within
each stage, extract meta data if appropriate for said stage, and
then be aggregated in an alert at the final stage of construction
in necessary. Additionally, each stage could be used to satisfy mul-
tiple terminal rules, essentially creating several options for partial
detection.

Although the multistage rule approach appeared to be the best
option, it was seldom used by SIEM engineers. Creating these rules
required a large amount of planning and a framework for guiding
rule stages as well as classification labels. Unfortunately, the de-
fault SIEM classification labels were not appropriate for mapping
to logical stages, and a consistent framework did not exist for de-
scribing attacker actions.
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Table 1
SIEM alert names observed during blind penetration test.

Alarm Name Count _Percentage
Critical Condition 436 48.77%

| High Severity IDS/IPS Alerts 88 9.84%
Silent Log Source Resumed 68 7.61%
Password Modified By Another User 56 6.26%
Operations : Abnormal Log Volume Fluctuation Decrease 54 6.04%
LogRhythm Silent Log Source Error 53 5.93%
Operations : Abnormal Log Volume Fluctuation Increase 36 4.03%
Behavioral Anomaly : Host : Abnormal Authentication 23 2.57%
Account Disabled/Locked AIE Rule 20 2.24%
Critical Service Did Not Restart 18 2.01%
Successive Attacks 15 1.68%
Internal Brute Force from a Single Origin Host 7 0.78%
Internal : Suspicious : Multiple Accounts Disabled By Administrator 5 0.56%
Excessive Suspicious Activity 5 0.56%
External : Host Compromised : Attack/Compromise Followed By
Process Starting 5 0.56%
LogRhythm Agent Heartbeat Missed 3 0.34%
Internal : Suspicious : Password Changed On Multiple Accounts By
Administrator 2 0.22%

3.4. Significant data points

At least four data breaches, and more than a dozen blind pen-
etration tests were observed during the study period. Each of the
data breaches was initially undetected by security analysts and was
escalated to the SOC by the client. Approximately half of the blind
penetration tests were detected during the study period. All of the
security breaches and penetration tests that did not result in client
notifications resulted in demands for investigations from the client.
These investigations required tier 3 analyst review for a period
ranging from 48 hours to a week in order to determine root cause
analysis and incident response actions.

3.5. Analysis of data collected

A few common themes were observed during these investiga-
tions. Every investigation identified some form of inadequacy in
data provided to SIEM systems. In some cases, the compromised
system was simply not sending data to the SIEM. In other cases,
the system was sending data to the SIEM, but was not properly
configured to audit actions in the level of detail required to detect
the action (such as failing to audit process creation, or system log
on events). In two instances the initial vector of compromise was
social engineering resulting in the successful phishing of an em-
ployee’s credentials and produced no observable data prior to the
compromise. Several instances were identified where log data ex-
isted, but SIEM correlation rules did not fire based on strict thresh-
old or sequencing requirements for alert triggering. In the final in-
stance, a logically sound SIEM correlation rule could fail due to the
lack of one or more data elements expected to be present in log
data but was missing.

Aside from issues associated with data being collected by the
SIEM, alarms configured to notify analyst were woefully vague.
Table 1 depicts the unique SIEM alert titles presented to analysts
during a blind penetration test. Over 48% of the alarms generated
merely bore the title “critical condition”. A few other alerts pro-
vided slightly better descriptions such as “high severity IDS/IPS
alert”, “successive attacks” and “external: host compromised: at-
tack/compromise followed by process starting.” As stated previ-
ously, none of these alerts were escalated to the client during the

penetration test as they were deemed too generic to be action-
able by SOC analysts. Analysts were able to investigate alarms and
retrieve logs responsible for triggering the notification. In retro-
spect, the alarm “External: host compromised: attack/compromise
followed by process starting” should have been investigated fur-
ther and was likely omitted due to analysts being overwhelmed
with other alarms during the observed period.

Analysts were routinely bombarded with an extreme volume of
logs and alerts generated daily. 48 h worth of log data were re-
trieved from the SIEM during postmortem analysis of the penetra-
tion test discussed previously. The client in question had generated
over 5.5 million logs during the collection period, resulting in over
700 alarms being sent to analysts for triage. None of the alerts
generated during the blind penetration test were associated with
“audit” classified data. Fig. 7 depicts the classification of logs con-
tained within alerts generated during the blind penetration test.
Note, none of the alerts generated contained logs classified as “au-
dit”.

Despite not being associated with any of the alarms generated
for analyst triage, logs classified as “audit’ by the SIEM accounted
for over 55% of log data generated during the investigation period.
Additionally, none of the alarms generated accurately reflected the
actions performed by the security assessment team conducting the
penetration test. Additional investigation into the nature of audit
logs revealed that some of the most forensically useful information
was contained within them, specifically the rarest occurring audit
logs. Fig. 8 depicts the Windows audit logs that occurred most fre-
quently during the penetration test, and Fig. 9 depicts the Win-
dows audit logs that occurred the least frequently.

Local firewall data, specifically acknowledgment of allowed con-
nections, accounted for over 1.7 million logs collected or approxi-
mately 55% of audit data. Account logon and logoff data accounted
for roughly 45% of the remaining audit data. However, analysis
of the least frequent audit events, accounting for 121 logs out of
over 3 million collected during the investigation, provided detailed
insight into actions performed by the security assessment team.
Note, not all of these logs were associated with the assessment
team; however, the actions being audited were much better suited
for describing threat actions than the generic “security”, “opera-
tions” or “audit” labels used previously.
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Log top level classifications observed in SIEM alarms

0.27% W Security

99.73% M Operations

Security log sub classifications observed

. 59.14% M Security: Activity

Operations log sub classifications observea

0.01%
0.36%
17.49%
0.12%
77.34%
0.02%
4.40%

Fig. 7. SIEM event classification labels observed during blind penetration test (out of 2,573,479 logs observed).
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Fig. 8. Occurrence of most frequent Windows event IDs within audit data during penetration test (out of 3,146,389 Windows logs observed during investigation period).

31.89% M Security: Attack
0.36% ™ Security: Denial of Service

5.81% M Security: Failed Denial of Service

2.80% M Security: Suspicious

M Operations: Critical

B Operations: Error

m Operations: Information

M Operations: Network Allow
M Operations: Network Deny
B Operations: Network Traffic
m Operations: Warning

31% ™ 5156 The Windows filtering platform has allowed a
connection

259,8 5158 The Windows filtering platform has permitted a
bind to a local port

15%m 4634 An account was logged off

15%m 4624 An account was successfully logged on

13% m 4672 Special privileges assigned to new logon

1% m 4648 A logon was attempted using explicit credentials

0%m 4769 A Kerberos service ticket was requested

4. Development of a novel SIEM configuration: Revising the log
classification ontology

4.1. Overview
Observations during the SOC study indicated that merely gen-

erating SIEM alerts for suspicious activity did not increase the rate
at which security analysts responded to events. In fact, it could be

argued that too many SIEM alerts had an adverse effect on analyst
response rates. Excessive alerts were either ignored by analysts or
consumed vast resources to gather enough data to explain the na-
ture of the alarms.

As was introduced within the SIEM engineer overview section
of the SOC study, multistage rules could be used as a mechanism
for increasing the amount of meta data contained within alerts
as well as triage data sources during evolution through stages of
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2 W 4673 An attempt was made to access an object

1 = 4767 A user account was unlocked

1 = 4702 A sheduled task was updated

1 = 4647 User initiated logoff

39 ® 4742 A computer account was changed

20 = 4689 A process has exited

20 ™ 4688 A new process has been created

g m 63 Content type imported

6 m 6145 One or more errors occurred while processing
security policy in the group policy objects

6 m 4954 Windows firewall group policy settings has
changed. The new settings have been applied

4 m 64 Imformation management policy deleted

4 m 629 User Account Disabled

4 m 5140 A network share object was accessed

2 m 5154 The Windows filtering platform has permitted an
application or service to listen on a port for incoming

connections
2 m 4723 An attempt was made to change an account's

password

Fig. 9. Occurrence of rarest Windows event IDs within audit data during penetration test (out of 3,146,389 Windows logs observed during investigation period).

suspicion. However, data derived from confirmed breaches and
penetration tests indicated that classification labels used in log
parsing and event generation were inadequate for properly rep-
resenting attacker actions on an ontological level. Furthermore, a
standardized framework which could be used to describe attack
stages had not been adopted between SIEM engineers, security an-
alysts and clients.

The SOC study identified merit in being able to use broad clas-
sification labels when developing SIEM correlation rules from a
SIEM engineering complexity viewpoint and alarm naming view-
point for analyst triage. Ideally these correlation rule classification
labels would align with kill-chain phases, and furthermore con-
tain consistent metadata fields for reliable correlation with similar
events in the same phase or allow for pivoting to data in hetero-
geneous phases. Unfortunately, none of the existing models, dis-
cussed in the background section, were ideal for suiting both hu-
man investigative processes and automated SIEM correlation.

The Lockheed Martin, Mandiant and Mitre models each devel-
oped a framework conducive to categorizing observed data through
the perspective an adversary, which seemed to mirror the logi-
cal investigative process SOC analysts migrated toward during in-
cidents. However, none of these models considered sequencing or
metadata requirements for automated SIEM correlation rule devel-
opment. The Mitre framework provided additional detail by includ-
ing adversary techniques and potential indicators of compromise
associated with each objective phase, but Mitre phase categories
do not neatly align with consistent sensor metadata groupings, and
therefore could have been problematic in use as classification la-
bels in multi stage rule construction.

Despite the lack of a “drop in” solution for a correlation frame-
work, the kill chain approach appeared to be consistent with an-

alyst observations that recurring patterns of evidence emerged
within certain phases of an attack lifecycle. A framework repre-
senting different attacker objectives, tasks, and related forensic
data was created to serve as a new SIEM log ontology based upon
these observations, deviating from either of the “kill-chain” models
described previously Bryant and Saiedian (2017).

4.2. Development of the novel framework

The proposed framework was initially inspired by the Lockheed
Martin kill chain and the Mandiant APT1 attack lifecycle models
that were published circa 2013. These frameworks were used as
the basis for investigating routine escalations or performing post-
mortem analysis of key events during the SOC study. Note, these
actions were primarily associated with tier 2 and tier 3 analyst
activities and not routine tier 1 analyst triage. Additionally, many
of the phases depicted by these frameworks were not compatible
with creating automated alert logic via SIEM systems, ultimately
requiring manual review of raw log data.

After several months of investigations while referencing the
Lockheed Martin and Mandiant frameworks, it became apparent
that neither model was suitable for creating strict deterministic
correlation rules similar to the ones used in the default SIEM rule
base. For instance, no clean rules existed for determining that
an “initial compromise” had occurred. It was understood that a
compromise must take place to access the system, but opinions
among analysts varied as to what indicators would reliably in-
dicate a system was compromised without having a large num-
ber of false positive cases. In such instances where a compromise
was suspected, or alleged by a client demanding an investigation,
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Fig. 10. Investigation framework phases derived from the four logical domains of: network, endpoint, domain and egress.

| Reconnaissance | | Delivery I | Installation || Privilege Escalation || Lateral Movement || Actions on Objective || Exfiltration |
Tasks ' i I— : ¢ : )
J| Host || Host || Privilege Escalation || Internal || Data Manipulation | External
I| Access || Delivery 1 || Reconnaissance 1 Data
I 1 — 1 - Transfer
Enumeration | Network [ | Software I Privilege Use Lateral " Obfuscation
I Delivery I Modification - Movement I |
SELTIET : : | : : : Perimeter
Perimeter Firewall I Firewall
| I | [ | |
| Network IDS I || Network IDS
1 I I T T
Domain Controller Logs ||
Endpoint Operating System ;
Host Based :

Anti-Malware

Mail Server Logs I

I
I
i
!
! Web Server Logs
i

Database Server Logs

Fig. 11. Data source alignment with novel killchain phases.

analysts immediately began collecting information on the alleged
compromised system and pivoting off of metadata identifiers such
as IP addresses, host names, account credentials, port numbers, or
processes to confirm suspicious activity was occurring around the
system in question.

During this investigative process, distinct phases were identified
with homogeneous metadata provided reliably by sensor feeds. Ad-
ditionally, these phases could be aligned with discrete and de-
scriptive actions, rather than generic labels such as “compromise”
or “exploit.” Aligning reliable metadata sources with logical pivot
phases was imperative for analyst data queries in attempts to make
root cause determination for a suspected breach and could be used
to perform automated pivots and data aggregation by the SIEM via
multistage correlation rules.

The novel model was eventually developed around seven de-
scriptive phases: reconnaissance, delivery, installation, privilege es-
calation, lateral movement, actions on the objective and exfiltration
depicted in Fig. 10. These phases were further grouped into four
logical domains: network, endpoint, domain and egress, based on
the types of systems that provided reliable metadata for detection
and correlation. Fig. 11 depicts phase alignment with reliable data
sources for each phase. The egress phase included both network
data and endpoint data, but was differentiated by specific adver-
sary tactics or techniques

Many of these phases align with phases of the Mitre ATT&CK™
framework, with the exception that the Mitre framework appears
to focus on end point analysis and omits phases that cleanly align
to network device data, such as “reconnaissance” and “delivery”.
It is worth noting that network device data could prove useful to
pivot from data associated with a compromised end point observed
network traffic useful for determining the initial entry into the net-
work, or other potential pivot points.

5. Applying the kill chain to SIEM software
5.1. SIEM platform selection

The LogRhythm commercial SIEM platform was selected as the
preferred system to evaluate inclusion of a kill-chain model based
on the authors’ prior experience with the system and access to his-
torical data conducive to evaluating multiple production environ-
ments. The IBM Qradar, McAfee Nitro, and Splunk platforms also
exhibited potential to be modified to incorporate this model, but
were not evaluated within this paper since none of them operated
in a multi-tenant fashion and fewer SOC analysts were dedicated
to triaging alerts generated within these systems.

The LogRhythm system consists of multiple distinct data pro-
cessing subsystems. The first subsystem, referred to as the log
manager, is responsible for initial data ingestion and parsing free
text into normalized metadata fields. The second subsystem, the
event manager, is responsible for creating and labeling interesting
“events” based on normalized log data or other events generated
by the SIEM. The third subsystem, the advanced intelligence engine
(AIE), is responsible for implementing advanced correlation logic
to logs or events previously generated by the SIEM and generating
new events with custom names or labels. Either the event manager
or AIE subsystems may be used to generate alerts by the system;
however, the AIE subsystem is the only subsystem capable of im-
plementing multiple logic blocks and was therefore the preferred
subsystem for developing correlation rules within LogRhythm.

The LogRhythm data flow model implements suspicion escala-
tion and data triage functions by parsing sensor information into a
threat ontology and applying descriptive classification labels to ob-
served events. The classification label is potentially applied in two
different stages of the data flow model; either during the initial
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Fig. 12. Reliable Pivot Metadata by Killchain Phase.

parsing and normalization phase by the message processing engine
within the log manager, or by the AIE during correlation and sub-
sequent reclassification. Fig. 6 illustrates the default classification
labels available for classifying log and event data.

The ability to use the AIE to mutate a log or event into a new
event with a custom classification label was a critical component
in implementing the novel framework within the SIEM. This pro-
vided a mechanism for creating a new event comprised of meta-
data contributed by dissimilar but related sources and attributing
this newly created event to specific phase-aligned activity. This dis-
covery became a fundamental element in implementing data en-
richment and aggregation within the SIEM platform. Fig. 13 depicts
the introduction of new classification labels within the LogRhythm
SIEM conducive to alert creation and log aggregation within sub-
planes and associated alert phases.

Unfortunately, the AIE subsystem relied upon specific SQL
queries to populate metadata fields in events or alerts it created.
For instance, if one desired to include the account name, process
name, source IP address and destination IP address associated with
a remote access program, each of these fields must be included as
“group by” fields within the AIE SQL query. If any of these desired
metadata fields were null, then the entire query would fail, result-
ing in a false negative. It was very rare for all desired metadata
fields to exist within a single data point sent to the SIEM system.
Furthermore, since each desired metadata field was required by the
AIE system, data points with partial detections would be omitted
from an AIE event or alert. Partial detections assisted in providing
context to analysts and providing insight to root cause attribution.
Therefore, it was necessary to aggregate metadata from multiple
partial detections to be included within AIE events or alarms.

Aggregation with the new model was performed in a multi-
staged process described in the following sections. The first aggre-
gation stage was associated with combining related metadata ele-
ments from dissimilar sources to create intermediary events suit-
able for AIE correlation. The second aggregation stage was associ-
ated with combining events and alerts into a manageable number
of notifications to be sent to human analysts for review.

5.2. Data enrichment and intermediary event construction

Analyst postmortem analysis of known security events indi-
cated a need to use specific metadata fields within each phase to
pivot between log sources and generate an accurate depiction of
suspected malicious actions. This observation shaped the develop-
ment of the new hybrid model wherein each newly devised phase
has a natural “aggregation” metadata field depicted in Fig. 12.

For instance, “reconnaissance” aligns naturally to network data
of the source machine (i.e. source IP address), while “delivery”
aligns naturally to network data of the destination machine (i.e.
destination IP address). These fields (source IP and destination IP)
were normalized by the SIEM log manager sub-system during log
ingestion. Later stages, such as “installation”, could potentially con-
tain several types of metadata, from network data (IP and MAC
address) to user information (account names, privilege levels, se-
curity groups). These stages were therefore segregated based on
which metadata fields were most pertinent to detecting and de-
scribing action within them, rather than where the detection oc-
curred.

It is possible for a single data source or event to contribute
to multiple phases, such as “installation” and “privilege escala-
tion” events. Both phases are likely to be observed within endpoint
operating system logs. However, knowing that “installation” logs
are machine based (e.g. aggregation is conducted on hostname or
other computer identifier) and “privilege escalation” events are ac-
count based (e.g. aggregation is conducted on account/username),
provides insight as to how to best combine data within their re-
spective logical phases.

Ideally distinct metadata from multiple dissimilar data sources
could be combined automatically by the SIEM using these natural
metadata pivot points. The hybrid model was originally designed
so that each phase would contain metadata fields necessary to
perform automated event combination. Fig. 12 depicts the natu-
ral metadata fields conducive to aggregating logs or events from
disparate sources within the same logical phase. This relational
database approach was motivated by the fact that the LogRhythm
SIEM utilized SQL queries to perform correlation functions. How-
ever, phase labeling may prove beneficial to other systems that are
not using the SQL language.

Unfortunately, not every data source provided all metadata
fields necessary for proper correlation via the AIE. It became appar-
ent that it was necessary to create intermediary events that com-
bined disparate metadata fields from dissimilar but related sources
within phases. This observation led to the development of sub-
phases within the hybrid model. Each parent phase of the hybrid
model was expanded to include three sub-phases. Two of the sub-
phases were designed to label log data that contained partial ele-
ments of ideal metadata fields and a third sub-phase was designed
to indicate primitive alerts within the parent phase.

Partial data sub-phases provided an elegant solution for suspi-
cion escalation in a manner similar to the subplan-based correla-
tion scheme described by Chien et al. (2007). These events were
not suitable for creating alarms based solely upon the data they
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Fig. 13. Comparison of SIEM classification labels after modifying the LogRhythm database .

contained; however, they were beneficial for combination with
other related events to create a more complete picture of activity
within the network. Events tagged with a partial data sub-phase
could easily be combined with other events with the same, or ad-
jacent sub-phases to create more complete events containing ideal
metadata fields. The reason two sub-phases were used for this pur-
pose was to allow for data sources to potentially provide insight
to transition between parent phases. Knowing that events with
specific classifications are guaranteed to contain certain metadata
fields provides for the development of reliable correlation rules
and transition between logical phases of the model.

An example of adjacent phase transition with sub-phase la-
beling may include network-based IDS data which contributes to
two phases of the hybrid model, “reconnaissance” and “delivery.”
The aggregate metadata field associated with the “reconnaissance”

phase is the “source IP” field, while the aggregate metadata field
for the “delivery” parent phase is the “destination IP” field. As the
sub-phase of “enumeration” exists on the border between “recon-
naissance” and “delivery”, it must contain both “source IP” and
“destination IP” metadata fields at a minimum. Further extend-
ing the network-based IDS example, IDS signatures attributed to
interrogating services running on target systems could be com-
bined with data attributed to the “host access” sub-phase of “de-
livery.” “Host access” classified data must contain “source IP” data
as well as “destination IP” data. Therefore, response or firewall al-
low messages from a victim machine should be classified as “host
access” to allow for natural correlation between “reconnaissance’
and “delivery” phases of the hybrid model. Fig. 11 shows how
data sources may contribute to phase transitions within the hybrid
model.
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Fig. 14. Laboratory logical architecture depicting network configurations and IP space.

It is possible that a single event may contain all ideal meta-
data associated with a parent phase, meaning it satisfied minimal
metadata fields for both child sub-phases. In such cases, the event
would be classified with the parent phase classification, such as
“privilege escalation.” Events labeled with the parent phase classi-
fication are referred to as intermediary events. Even though inter-
mediary events contain the ideal amount of metadata fields, they
may not necessitate generation of an alarm or analyst notification.
Intermediate events were primarily intended to enrich other alarm
generating events with as many metadata fields as possible to con-
textualize the alarm. Additionally, intermediary events were ideal
for combination with other intermediary events in adjacent phases,
as they would contain minimal metadata fields for combination
with both the phase preceding and following the phase in which
they were associated with.

The “alarm” sub-phase label was reserved for events that were
well known or high confidence indicators of phase activity. These
events were worthy of generating an alert in and of themselves
but may benefit from additional context through combination with
partial data sub-phases or intermediary events. Once an event was
generated with the “alarm” sub-phase label, all other partial or in-
termediate events within that phase would be combined into a
single alarm leveraging the natural aggregate field associated with
their parent phase. The resultant alarm would be presented to an
analyst with all distinct metadata values associated with phase
classifications, ultimately automating several secondary or tertiary
investigations analysts would have previously performed manually.

A more thorough explanation of alarm construction for metadata
and alarm aggregation is reserved for the following section.

5.3. Alert fusion

The LogRhythm SIEM allowed for two different approaches to
creating alerts to be sent to analysts for triage. The “traditional”
approach leveraged the event manager subsystem of the SIEM
and was only capable of performing pattern matching queries for
metadata fields contained within events stored within the event
database. However, despite this limitation, the “traditional” ap-
proach performed a greedy query and all records returned would
contain data in any metadata fields that were not blank. The sec-
ond approach to creating alerts leveraged the AIE subsystem.

The AIE subsystem presented several advantages over the tradi-
tional approach, but also had several key limitations. Advantages of
the AIE system over the traditional approach included the ability to
conduct statistical baselining as well as the ability to create a se-
ries of conditions that must be met to trigger an alarm. Addition-
ally, the AIE subsystem was able to extract data from either logs
or events. Logs represented the purest form of data in the SIEM
and consisted of a copy of the free text message sent to the SIEM
as well as parsed and normalized metadata fields extracted from
said message. A classification label was still assigned to log data,
however generating an alert from log data was not possible in the
traditional approach; only event data could be leveraged to gener-
ate traditional alarms. Events were often comprised of one or more
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logs and contained an additional metadata tag used to describe the
event called a “common event name.” The intent of converting logs
into events was to allow for innocuous or chatty logs to be imme-
diately archived and decrease the amount of data the alarm engine
would need to travers to generate alerts. The AIE engine could con-
vert one or more logs into intermediary events, as was described
in the previous section of this paper.

The primary limitation of the AIE subsystem was that it did not
perform greedy queries and would only produce alerts or events if
all metadata fields contained within conditional statements were
present within log or event data. This meant that the AIE subsys-
tem was prone to a high false positive rate if intermediary events
were not created prior to attempting to implement more advanced
correlation rules or conditional statements in series. Additionally,
if a query succeeded, only the fields requested would be returned.
If a log or event that satisfied alert criteria contained additional
metadata fields, not contained within the AIE conditional state-
ments, this data would be omitted from the final alert resulting
in the need for analysts to perform additional manual queries to
retrieve context for the alarm.

Despite its limitations in capabilities for advanced correlation
logic, the “traditional” approach was ideal for aggregating data
from multiple events or alarms into a single consolidated notifica-
tion sent to analysts. This complemented the AIE subsystem well
in that it provided a mechanism for implementing greedy data
retrieval of related events, while the AIE subsystem provided the
ability to construct intermediary events and apply custom clas-
sification labels. Alerts generated using the traditional approach
contained a summary of all distinct values for every metadata
field and could be grouped by one or more “aggregate” fields that
needed to be identical across records.

The most simplistic implementation of event fusion was to cre-
ate a “traditional” alarm that queried for the presence of any event
with the “alarm” sub-phase classification, then combine related
events based on identical values in the natural aggregate field for
the phase the “alarm” label belonged to. The default labels de-
picted in Fig. 6 unfortunately lacked such alarm labels, or the level
of detail necessary to implement the metadata aggregation scheme
described in the previous section of this paper.

Ultimately, the two-staged process of leveraging the AIE subsys-
tem to perform intermediary event construction and using the tra-
ditional alarm approach to aggregate metadata fields was adopted
as the preferred method to alert construction. The use of novel
classification labels associated with the hybrid model was essen-
tial to proper event construction and aggregation when using this
approach.

6. Testing and evaluation of the novel SIEM configuration

Other works have established evaluation frameworks to comare
disparate SIEM systems Safarzadeh et al. (2019). However, the data
environment available to this study predominantly relied upon a
specific SIEM plaftorm, namely LogRhythm. As such, the evaluation
and testing performed in this work was limited to implementing
the novel framework in just one platform and did not implement
comparative frameworks such as the one devised by Safarzadeh
et al. (2019)

A sophisticated network security laboratory environment was
designed to evaluate the efficacy of the SIEM configuration modi-
fied with a novel ontology and is depicted in Fig. 14. Two identical
laboratory environments were constructed with the single variable
between deployments being modifications to the SIEM database
used to detect security events. This section focuses on the design
of the laboratories and the details of the experiment for which
they were used.

6.1. Laboratory network design

A virtual network was constructed to evaluate baseline and
enhanced SIEM configurations. Two separate but identical virtual
environments were constructed, with the exception that the Lo-
gRhythm SIEM system in one environment was configured with
vendor recommended default correlation rules and the other envi-
ronment contained a LogRhythm SIEM system enhanced with ad-
ditional classification fields reflecting the hybrid kill-chain model.

Microsoft operating systems were selected as the basis for the
majority of virtual systems within the laboratory network due to
security analysts’ familiarity in conducting forensics investigations
based on Microsoft technology as well as a more robust library
of default SIEM correlation rules designed for Microsoft systems.
Services hosted on Microsoft systems included: directory services,
email hosting, web services, and a SQL database. A suite of McAfee
anti-malware products was deployed to endpoints to provide an-
tivirus and host based intrusion prevention system data via a cen-
trally managed server. A pfSense virtual machine was deployed to
serve as a virtual layer three device, necessary for network traffic
shaping, as well as a platform to host open source security tools
including: Snort IDS, Squid proxy, and network based firewall ca-
pabilities. All Microsoft endpoints were configured with host-based
firewall settings to provide an additional layer of security beyond
network based filtering as well as provide supplementary data for
correlation with data provided by network centric sensors. Audit
policy settings on all Microsoft endpoints were adjusted to pro-
vide additional forensic details omitted by default configuration
settings, such as logging network traffic denied by host-based fire-
walls or process creation.

6.2. Attack experiment design

Real world security breaches do not always reflect every stage
represented by the hybrid kill-chain model. As such, a custom
scenario was devised to stimulate sensors and ensure coverage
of all seven stages. This scenario combined traditional reconnais-
sance and probing techniques, indicative of opportunistic attacks,
as well as targeted attacks typical of advanced persistent threats.
Table 1 depicts the types of actions that were performed during
the attack scenario.

6.3. Detection rate comparison

The modified SIEM ontology outperformed the baseline SIEM
ontology in alert metrics with a 96% true positive detection rate
by generating an alert for 25 out of 26 test scenarios. The baseline
SIEM ontology and LogRhythm default rule set had a 26.9% detec-
tion rate with alerts generated for 7 out of 26 of the test cases.
Additionally, the modified ontology generated aggregate alerts with
metadata from multiple events for 76% of alerts (19 of 25). The re-
maining six alerts were associated with singular events where no
additional data was available for aggregation.

It is worth noting the difference in alert volume in addition to
improvements in the true positive rate. The baseline SIEM gener-
ated 83 alerts during the evaluation, however they were only as-
sociated with 7 of 26 test cases. An open vulnerability assessment
system (OpenVAS) vulnerability scanner test case resulted in nearly
half of the baseline SIEM alerts with 41 separate alerts. Conversely,
the modified SIEM generated five alerts during the same test case,
containing aggregate metadata from 401 correlated events, and 46
alerts from all test cases. This data indicates the ability to aggre-
gate data via a logical identifier metadata field proved to be an ef-
fective mechanism for decreasing alert volume. A detailed compar-
ison of alerts between the baseline and modified SIEMs are listed
in Table 2.



B.D. Bryant and H. Saiedian/Computers & Security 94 (2020) 101817

17

Table 2
Comparison of baseline and modified SIEM alert performance: Alert comparison.
Test |Case Name Baseline |Baseline |Modified |Modified |Raw
case Alarms |Events |Alarms Events Logs
1|Nmap Port Scanning 0 0 1 100| 87
2|SMB Scan 0 0 0 0| 76
3|0pen Vas Vulnerability Scan 41 41 5 401(4158
4|Phishing Email 1 1 1 1l 92
5|Suspicious Download 0 0 1 1| 25
6|Unauthorized Software Installation 0 0 2 18| 105
7|Python Reverse Shell 0 0 2 3| 344
8| Privilege Escalation New Local Admin 3 3 1 6| 997
9|Remote Desktop From Kali to Windows 0 0 2 3| 174
10|Disable anti-virus 0 0 1 3| 86
11 |Launch Meterpreter Reverse Shell 18 18 1 1| 106
12|Hash Extraction 0 0 1 3| 55
13|Network Share Creation 0 0 3 6| 33
14|Internal Reconnaissance Tools 0 0 1 1| 54
15|Pass the Hash to Webserver 0 0 3 27| 80
16|Copy SQL Database 0 0 2 8| 250
17 |Privilege Escalation New Local Admin 1 1 2 23| 61
18|Remote Desktop Workstation to Webserver 0 0 4 11| 353
19|Internal Data Transfer Webserver to Workstation 0 0 1 2| 64
20|Pass the Hash to Webserver 0 0 1 1| 51
21|Privilege Escalation New Local Admin 1 1 1 8| 64
22|Copy Email Database 0 0 1 12| 131
23|Remote Desktop Workstation to Email Server 0 0 4 10| 204
24|Internal Data Transfer Email Server to Workstation 0 0 1 5/ 80
25|External Data Transfer Workstation to Kali 18 18 1 1| 56
26|Audit Log Purging 0 0 3 11| 304
ALARM ID: 119670
ALARM DATE: G005 PVi(UTC-06:00) Central Time (US & Canada)
FIRSTEVENT DATE: | 6:01:07 PM(UTC-06:00) Central Time (US & Canada)
LASTEVENTDATE: | 5:01:07 PM(UTC-06:00) Central Time (US & Canada)
EVENT COUNT: 1
DIRECTION: Unknown
CLASSIFICATION: Suspicious

COMMON EVENT:

PRIORITY: 75.00
ORIGIN HOST: X X X.143.235.17
IMPACTED HOST: X % %X.15.204.183

AIE: Shun List Allowed

Fig. 15. Typical email alert generated by baseline SIEM.

6.4. Alert forensic value comparison

The primary motivation for developing the new SIEM ontology
was to provide a mechanism for the aggregation of pertinent and
related metadata into alert notifications to decrease the investiga-
tive effort associated with explaining security alerts. The baseline
SIEM ontology combined 47 OpenVAS test case alerts into a sin-
gle email containing 7154 words. It was not obvious which meta-
data field was used to correlate these events, since none of the

fields were common across all 47 alerts. The email batching pro-
cess merely listed alerts, rather than combining them in a logical
manner. Only 41 alerts were generated within the analyst GUI con-
sole during the OpenVAS scan test case, indicating six additional
alerts must have been aggregated from previous scan activity. It
appears this aggregation was most likely performed based on the
large increase in alerts generated within a short time frame dur-
ing the scan, resulting in combination based on temporal proxim-
ity, rather than through metadata correlation. Many of the alerts
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Fig. 16. Email alert generated by modified siem depicting log aggregation and framework phase attribution.

in the batch of 47 alerts generated during the OpenVAS scan
correctly identified abnormal net-work connections to the Win-
dows 7 host W7host with IP address 10.13.201.94, as was repli-
cated during the scan; however, no additional information was
provided to indicate which computer(s) were attempting to com-
municate with the workstation, nor what aspect of the commu-
nication was considered abnormal. An analyst would be required
to review all 47 alerts generated in order to identify the attack-
ing machine or the scope of the probes conducted within the
network.

Ten of the alerts in the pool of 47 correctly identified the at-
tacker machine as the origin host with IP address 172.16.0.3, but
it was not obvious what actions this host was conducting within
this batch of alerts. One alert indicated a machine with IP address
172.16.0.3 was suspected of being associated with a system com-
promise or lateral movement, but there were no metadata arti-
facts associated with the alert to indicate how the conclusion was
reached. In reality, the attacker had not yet successfully compro-
mised a machine at this point.

Four of the 47 batched alerts indicated suspicion of a port scan,
but only one of these four alerts indicated both the source and
destination machines associated with the port scan activity. The
remaining three alerts only indicated the targeted machine. Figs.
15-17 compare email alerts generated by the baseline SIEM config-
uration and the modified SIEM with extended classification labels.

Modified SIEM ontology email alert analysis In contrast to the 47
batched alerts generated by the base-line SIEM ontology, the mod-
ified SIEM ontology accurately identified the scan activity with a
single alert. This was achieved by aggregating metadata fields from
multiple events within the alert. The event field within the alert
shows that 92 related events were combined. All alert notifications
generated in the baseline configuration were comprised of a single
event, even when batched. The modified SIEM alert title, depicted
in the email subject line, identified the event as being associated
with suspected reconnaissance activity and the aggregate field for
correlation was the origin host field. The origin host, was correctly
identified as the Kali Linux machine with IP address 172.16.0.3.
The entire list of targeted machines was provided within the alert.
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Fig. 17. Email alert generated by modified siem depicting log aggregation.

Supporting metadata, including port numbers and names for ag-
gregated events, were also provided.

Alert forensic value conclusions

The modified SIEM alerts provided considerably more corre-
lated data than the baseline SIEM alerts. As a result, security ana-
lysts were more likely to receive enough information to draw con-
clusions regarding the nature of the activity, requiring fewer man-
ual queries to validate their hypothesis. The alerts presented us-
ing the baseline SIEM configuration often required a considerable
amount of analysis of similar alerts to determine what data was
actually detected and what data may warrant additional investiga-
tion. From a forensic perspective, the data contained in the modi-
fied alerts was superior to the data contained in the baseline SIEM
alerts.

Email alert volume comparison

The baseline SIEM configuration generated 2364 alerts during
experiment period, averaging 100 alerts per day. Conversely, the
modified SIEM configuration generated eight alerts from the con-
tinued experiments, averaging one alert per day. The decreased
alert volume may be attributed to the decreased number of de-
tection rules configured between the two deployments. The mod-
ified SIEM had less than a third of the rules of the baseline SIEM,

and 99% fewer alerts when test data was not being generated. The
baseline SIEM rules generated an average of 0.78 alerts per rule per
day, while the modified SIEM rules generated an average of 0.025
alerts per rule per day. In light of the modified rule set’s improved
true positive detection rate, it is determined the decrease per alert
rule rate during non-testing conditions reflects a decreased false
positive rate.

6.5. SIEM rule complexity comparison

The baseline SIEM rule set consisted of 128 correlation rules
while the modified SIEM rule set consisted of 39 rules. This was
achieved by segregating rules into separate groups consisting of
specific event queries and aggregate alarm queries, while the base-
line SIEM configuration used only specific queries. The decreased
number of queries required to detect threat actions is assessed to
be an improvement over the base model due to the assumption
that fewer administrative actions will be required by SIEM engi-
neers to maintain the system. Additionally, the queries contained
within the modified SIEM rule set hierarchy were generally less
complex than the baseline rule when compared side by side.
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Fig. 18. Modified SIEM rule constructed using static indicators to generate an “internal reconnaissance classified event.

Baseline SIEM rule complexity analysis Many baseline SIEM rules
leveraged statistical analysis rules implementing a baselining or
learning logic block and a threshold comparison logic block. The
baselining stage constructs a dynamic list of unique values during
the learning period, which is configured to be seven days by de-
fault, and generates an average number of unique values observed
by host. The threshold stage searches for deviations from the base-
line. One such rule searched for more than five unique processes
running in memory beyond the average determined by the base-
line. This rule consumed approximately 17% of the memory allo-
cated to the Advanced Intelligence Engine service running on the
SIEM.

Some baseline SIEM rules were based off of the multi block ap-
proach, intended to observe a series of discrete events and gener-
ate alerts based on “if this then that” logic blocks. However, these
types of rules suffered from several limitations. The first prob-
lem with these rules was their inability to tolerate the absence
of an expected event in the rule chain. For instance, a rule de-
signed to indicate system compromise by triggering an alarm if
an administrator logon event with Windows event ID 4672 oc-
curred following several failed logon attempts would fail to trig-
ger if no administrator logon event with Windows event ID 4672
was logged by the target system. However, there may be several
indicators of an administrator logging on to a system, which may
need to be evaluated, especially if the target system was not con-
figured to explicitly log privileged system accounts. A whitelist
of known administrator accounts could be used as a reference
for analysts to verify administrative access for instance. Using a
whitelist/blacklist instead of the Windows event 4672 event would
require the creation of an additional SIEM rule, as there is no
elegant mechanism for informing the SIEM that a 4672 event

and a whitelist/blacklist of administrator account names are equal
events.

The second limitation of the traditional “if-this-then-that” logic
approach with the basic SIEM structure is the requirement for
strict sequencing of events. SIEM engineers are required to make
several different correlation rules anticipating every possible com-
bination of adversary actions in order to trigger complex rules. To
further complicate matters, data from multiple systems may vary
with incorrectly synchronized system times between data sources.
This could create the illusion that events occurred out of order, and
confound correlation rules based on strict sequencing.

Modified SIEM rule complexity analysis. Unlike the baseline SIEM
rules, modified SIEM rules implemented a multistage approach and
leveraged intermediary events to satisfy rule conditions. Event cri-
teria in each stage mapped to static lists of indicators observed
while using the novel framework during investigations, rather than
a baselining mechanism. Using a static indicator list removed the
need to implement a memory intensive baselining and threshold
establishment. For example, a modified rule designed for detect-
ing rogue processes was configured to generate an event within
the SIEM event database for any process name observed but not
listed on the static list of approved processes. The memory re-
sources consumed by a modified SIEM rule query were negligible
and reported as 0% of the total resources available to the Advanced
Intelligence Engine process running on the SIEM. This is a marked
improvement over the baseline SIEM rule constructed to perform
the same function.

Additionally, since the modified SIEM was expanded to include
several new descriptive classification labels, rules could be con-
figured to categorize observed logs as either interesting events,
or alerts requiring analyst triage. Unlike the baseline SIEM rules,



B.D. Bryant and H. Saiedian/Computers & Security 94 (2020) 101817

21

{0/ x|

Log Observed
The Rule Block will signal when the specified logs are
observed.

Data Source
Advanced Intelligence Engine Events

Pri Criteri
Classifications : Lateral Movement Alarms

Log Sources
All Log Sources

Group By
Account
Impacted Host
MPE Rule

|Re|am Fields '

Account = Account

Time Limit
This Rule Block must be satisfied within:
1 minute
Begin evaluating this Rule Block:
0 seconds
after the prior Rule Block is satisfied.

Log Observed
The Rule Block will signal when the specified logs are
observed.

Data Source
Log Manager Logs

1 min 2 mins

Classificationls : Lateral Movement Alarms
Internal Reconnaissance
Remote Access

Log Sources
All Log Sources

Group By
Account
Impacted Host

MPE Rule

OK Cancel

Fig. 19. Correlation rule for log aggregation via subplane classification.

where sophisticated attack detection required a series of multi
block rules to account for all possible indicators of compromise; for
instance one multi block rule for administrator logon events with
Windows event 4672 and another multi block rule for administra-
tor logon events detected by a whitelist/blacklist. Expanded clas-
sification labels allowed for one rule to be created to label any
logs observed with one of several characteristics of an administra-
tor logon as privilege escalation activity. This rule could include
the presence of a Windows 4672 log, a specific account name on a
whitelist/blacklist, the system account running a user process, ad-
ditions to certain security groups, a network device known ven-
dor/default account etc.

Once all indicators of “privilege escalation” activity were as-
signed the appropriate label by the first log classification rule, a
second rule could then search for any “privilege escalation” labeled

events within a certain time frame, or suspicious subplan activ-
ity that would not normally generate alarms in isolation. This sim-
ple two stage construction method effectively replaced the need to
make an exhaustive and convoluted series of every possible per-
mutation of privilege escalation events within the SIEM. Further-
more, this labeling and greedy query approach provided an elegant
solution to aggregating similar events, with compatible meta data,
was not dependent upon strict event sequencing, nor was it sus-
ceptible to false negatives due to system time drift.

Fig. 18 depicts a modified SIEM correlation rule being created
to detect processes associated with internal reconnaissance activ-
ity. The newly created classification label of “internal reconnais-
sance” will be applied to the newly created event. Multiple meta
data fields will be populated within the newly created event for
future correlation such as: account name, event rule title (stored
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as MPE rule), data source name, process name, command argu-
ments (stored as URL) and impacted host (the dereferenced host
name and IP address resolved by the SIEM database). Fig. 19 de-
picts a multi block rule designed to aggregate suspicious events,
such as the one created by the previous rule, with other similarly
classified events if a high confidence alert is generated within the
“lateral movement alarm” classification.

Investigation framework analysis The pool of resident security
analysts at the MSSP was used to evaluate the efficacy of the novel
framework during investigations. Benefits noted from this evalua-
tion include:

« Identification of potential false negatives due to data omission
or errors in programmatic SIEM correlation logic. Newly created
multistage rules were less likely to fail to generate alarms based
on missing data, poorly configured data sources, or improperly
configured “group by” meta data fields.

Improved communication between analysts, SIEM engineers
and stakeholders. The new framework provided a mechanism
for describing and contextualizing alerts generated by the SIEM
in a manner that was shared across the entire SIEM user base;
analysts, engineers and clients. Additionally, the phased struc-
ture of the framework allowed for predictive analysis of po-
tential preceding or expected future events based on observed
alerts.

Operational process efficiency gains due to reduction in redun-
dant queries. More descriptive alert names and aggregate data
contained within alarms provided analysts with additional in-
formation useful in developing recommendations to clients. Ad-
ditionally, clients were less likely to request additional informa-
tion from analysts, thus reducing the requirement for manual
queries or investigations.

7. Conclusions

The modified ontology appears to be an improvement over the
baseline SIEM ontology in every dimension measured in this pa-
per. The modifications resulted in a drastic reduction in the num-
ber of alerts that provide little forensic value to analysts. Addition-
ally, the amount of data provided on a per alert basis was greatly
improved through the novel aggregation mechanism of pairing the
modified log ontology classification labels with identity metadata
fields specific to each kill-chain phase. Though the primary moti-
vation for the modified log ontology revolved around alert forensic
value, marked improvements in SIEM resource consumption were
noted following the implementation of simplified correlation rule
queries. Additionally, it is assessed that simpler correlation queries
will result in decreased administrative effort to maintain the SIEM
system. These improvements are assessed to have improved the
mean time required to detect security events based on the follow-
ing factors:

« Increased visibility during network security attacks through im-
proved detection rate (roughly 70% improvement in number of
test cases detected).

« Increased number of metadata fields contained within alerts
generated.

« Decreased total alert volume.

» Decreased effort required by engineers to deploy detection
rules.

» Decreased system resource requirements preventing potential
processing bottlenecks.
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