
International Journal of Secure Software Engineering, 5(4), 31-47, October-December 2014 31

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT
While software security has become an expectation, stakeholders often have difficulty expressing such ex-
pectations. Elaborate (and expensive) frameworks to identify, analyze, validate and incorporate security
requirements for large software systems (and organizations) have been proposed, however, small organizations
working within short development lifecycles and minimal resources cannot justify such frameworks and often
need a light and practical approach to security requirements engineering that can be easily integrated into
their existing development processes. This work presents an approach for eliciting, analyzing, prioritizing
and developing security requirements which can be integrated into existing software development lifecycles
for small organizations. The approach is based on identifying candidate security goals using part of speech
(POS) tagging, categorizing security goals based on canonical security definitions, and understanding the
stakeholder goals to develop preliminary security requirements and to prioritize them. It uses a case study to
validate the feasibility and effectiveness of the proposed approach.

A Tagging Approach to Extract
Security Requirements in
Non-Traditional Software
Development Processes

Annette Tetmeyer, Department of Electrical Engineering and Computer Science, University of
Kansas, Lawrence, KS, USA

Daniel Hein, Automotive OEM, Garmin International, Olathe, KS, USA

Hossein Saiedian, Department of Electrical Engineering and Computer Science, University of
Kansas, Lawrence, KS, USA

Keywords:	 Application Development, Part Of Speech (POS) Tagging, Requirement Engineering Process,
Security Requirements, Software Security

1. INTRODUCTION

Software security is a complex, evolving
problem that can be significantly improved
by integrating security requirements into the
early stages of software development rather
than correcting security flaws after release

(Allen, Barnum, Ellison, McGraw, & Mead,
2008). However, traditional software devel-
opment life cycle (SDLC) processes tend to
focus attention on functional requirements
leaving non-functional requirements, such as
security, as an aside or afterthought. This results
in security requirements that are added later
(McGraw, 2005) in the development cycle or

DOI: 10.4018/ijsse.2014100102

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

32 International Journal of Secure Software Engineering, 5(4), 31-47, October-December 2014

worse, after the product has been released in
response to security events, market response,
or regulatory demands.

There are several reasons for the reac-
tionary response to software security. First,
software engineers have a difficulty in build-
ing secure software due to a lack of software
security awareness, training and education
(Viega, 2005). Additionally, decisions about
security may simply have been made based
on the technology and capabilities available at
the time the system was developed (i.e., early
infrastructure systems). Finally, project cost
constraints may focus resources on delivering
functional requirements over non-functional
requirements, such as security. Regardless of
the reasons for this reactionary response to
security, both software engineers and business
stakeholders are becoming increasingly aware
of software security needs.

Recent news reports of highly publicized
data breaches have increased general awareness
of the need to integrate security into software
during development. In response, legislation
at the state and federal level has also been
increasing as the need for privacy and security
becomes apparent. Such increased legislation
is evidenced by the fact that nearly all states
have enacted either security1, or data breach2
notification legislation. In general, software
engineers have reacted to increased public
awareness and legislative pressures by adding
security mechanisms to existing systems on an
ad hoc basis to mitigate risk. While subsequent
mechanism based mitigation is a useful (and
sometimes necessary) approach when address-
ing new, evolving, or previously unknown
security risks, the approach often results in
isolated, add-on countermeasures that are not
cohesively integrated into the resulting system
and its design. Money and time may be lost as
software engineers work to prevent additional
bugs as they retrofit existing systems with added
security mechanisms.

However, if the security risk existed prior
to development, then a security requirement
could have addressed the risk by building secu-
rity into the system from the start. In this case,

implementing security mechanisms does not
address the core problem that security require-
ments need to be integrated into software from
the start, not mitigated later. The emerging field
of security requirements engineering (SRE)
seeks to address the special needs of integrat-
ing security requirements into the software
development process.

1.1. Security Requirements
Engineering

When it comes to specifying security require-
ments, stakeholders have different expectations.
Integrating software security into development
requires eliciting security requirements along
with other requirements. From the business
stakeholder viewpoint, software requirements
are an extension of business goals that stakehold-
ers wish to implement in a software product.
Business goals generally represent desired
functionality, but may also imply general secu-
rity needs based on limited security knowledge
that business stakeholders possess. Using these
goals, the software requirements engineer must
elicit functional and non-functional require-
ments. However, a hurdle to eliciting security
requirements is the difficulty that stakeholders
and software engineers have with explicitly
expressing security needs. Security may again
be expected, but verbalizing specific security
requirements may be difficult. The combination
of vague security goals and limited security
specific resources often results in a requirements
specification which may not include security
specific requirements.

To remedy the lack of software security,
requirements engineering approaches have been
proposed to aid in the development of security
requirements. Security requirements should be
elicited and developed along with functional
requirements and should be included as part
of the software requirements specification.
Best practices, enumerations, methodologies
(Hallberg & Hallberg, 2006; Romero-Mariona,
2009; Mead, Hough, & Stehney, 2005), models
(Luckey, Baumann, Méndez, & Wagner, 2010;
McGraw, Migues, & West, 2012) and elicita-
tion techniques (Ingoldsby, 2009) have been

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 5(4), 31-47, October-December 2014 33

proposed that are intended to better integrate
security requirements into early phases of de-
velopment. Each of these approaches may be
useful when developing security requirements,
but may be primarily appropriate for large orga-
nizations. The Security Quality Requirements
Engineering (SQUARE) Methodology (Mead,
Hough, & Stehney, 2005) is comprehensive
and regimented. However, the sheer volume
of pages in the SQUARE overview may be
more documentation and rigor than is gener-
ally accepted by agile practitioners in small
organizations. The Usage-Centric Security
Requirements Engineering (USeR) Method
(Hallberg & Hallberg, 2006) extracts security
requirements using Voice of Customer (VOC)
quality techniques, but only provides minimal
direction on developing requirements, and
then shifts attention to security mechanisms.
Another method rooted in quality require-
ments is the Extended Activity-Based Quality
Model (eABQM; Luckey, Baumann, Méndez,
& Wagner, 2010). A key concept of eABQM is
that well defined requirements in conjunction
with a security requirements repository will
promote requirements reuse. As a type of qual-
ity requirements, the eABQM models security
requirements. This approach does not provide
specifics for security requirements elicitation
from existing requirements, but instead focuses
on developing security requirements based on
project parameters. Organizations well versed in
security terminology, or with existing security
modeling parameters, are more likely to benefit
from this approach than a small organiza-
tion seeking a method for quick and efficient
security requirements elicitation. Secure and
Usable Requirements Engineering (SURE;
Romero-Mariona, 2009) aims to aid developers
who may be lacking in security training. The
process adopts activites from misuse cases
and CLASP3-- comprehensive lightweight ap-
plication security process, and splits its focus
between two stages: security requirements and
security testing. The security requirements stage
models steps to evolve security statements to
security needs to security requirements, but
does not include specific details on how to

achieve these activities. USeR and SURE have
appealing aspects in that they evolve security
requirements by extracting security needs from
general requirements statements. The general
concept of extracting requirements based on
implied security statements should improve
security requirements engineering and is desir-
able in a new approach. The Building Secuirty
In Maturity Model (BSIMM), developed by Mc-
Graw, Chess, Migues, and West, gives overall
guidance in improving security initiatives for
an organization via activities carried out as part
of various domains within BSIMM’s Software
Security Framework (SSF). Activities relevant
to requirements (in SSF’s intelligence domain),
include using standards and attack models to
supplement requirements elicitation. However,
these recommended activities stand alone with-
out specific guidance on their detailed execu-
tion (i.e., they are not prescriptive).4 McGraw
describes BSIMM as a “descriptive model”
rather than providing “prescriptive guidance”
(McGraw, Migues, & West, 2012). Therefore,
BSIMM does not provide enough detail to be
used primarily for security requirements elicita-
tion and development.

The drawback to most of these approaches
is that they require security expertise and
resources that may be impractical to deploy
in small, agile organizations. We characterize
these organizations as having fewer than 25
members on the software development team,
working within software development lifecycles
on the order of months, juggling multiple proj-
ects at one time, and using or moving towards
the use of agile methods (i.e., Scrum). Small,
highly competitive software producers may see
themselves as embracing agile development
without specifically following a prescribed
agile methodology (Ramesh, Cao, & Basker-
ville, 2010). These organizations may define
themselves as agile because they see themselves
as flexible and lean as well as embracing key
tenets of agile philosophy. Close interaction of
stakeholders, the ability to respond to evolving
requirements and balancing documentation with
delivering the product are key characteristics
of these organizations. Regardless of whether

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

34 International Journal of Secure Software Engineering, 5(4), 31-47, October-December 2014

an organization is following a specific agile
methodology, the impact on the process of
requirements engineering is different for agile
leaning organizations than those following
traditional development methods.

1.2. Agile Requirements
Engineering

Agile requirements engineering is different
than traditional requirements engineering.
Traditional requirements engineering includes
sequential activities for eliciting, modeling,
defining, and validating requirements that
culminate in written documentation such as
a software requirements specification. The
requirements process is completed early in
software development with the intent that
only minor modifications are made after later
stages of development commence. In contrast,
agile requirements engineering processes are
iterative and integrated throughout the software
development lifecycle.

In an agile process, requirements are
expected to evolve continually. While agile
requirements engineering activities include
the same activities as traditional approaches
(Paetscsh, Eberlein, & Maurer, 2003), these
activities do not have the same heavy up-front
focus. Researchers have identified the following
practices associated with agile requirements
engineering (Ramesh, Cao, & Baskerville,
2010; Cao & Ramesh, 2008):

•	 Face-to-face communication over written
specifications

•	 Iterative requirements engineering (require-
ments emerge throughout development)

•	 Manage requirements change through
constant planning

•	 Extreme requirements prioritization (i.e.,
continual prioritization)

•	 Prototyping
•	 Review meetings and tests

Of these practices, continual prioritiza-
tion, face-to-face communication and iterative
requirements engineering are most relevant to

capturing the evolving requirements that are
characteristic of agile processes.

Ramesh et al further characterizes minimal
documentation as one of the main challenges
to iterative requirements engineering (Cao &
Ramesh, 2008).

Traditional requirements engineering can
be document heavy and include the creation of
a formal software requirements specification.
Agile requirements engineering does not mean
that no written requirements are produced, but
instead that the type of documentation varies
by organization. For example, “agile leaning”
organizations may use a request for proposal
(RFP) or feature list that functions as a pre-
liminary requirements artifact. Requirements
elicitation is undertaken using these preliminary
artifacts, just as it is in traditional processes, and
may include traditional elicitation techniques
as well as techniques associated with agile de-
velopment (such as storyboarding). However,
agile elicitation processes are not exhaustive
and the expectation is that requirements will
continue to evolve iteratively as the software
is developed. Since agile organizations place
less emphasis on “perfecting” requirements, the
preliminary requirements artifact may be used to
draft software requirements in a non-traditional
form such as user stories. Regardless of the
type of requirements documentation produced,
there is still some form of written requirements
that are used for customer approval as well as
ongoing development. The main consideration
is to focus on producing requirements in a work-
able format rather than spending precious time
writing documentation.

An area of overlap in traditional and agile
development methodologies is the emphasis
on functional requirements and a lack of focus
on non-functional requirements such as secu-
rity. Agile focuses on quickly implementing
functional requirements, not non-functional
requirements. Approaches to handling non-
functional requirements in agile development
are “ill-defined” and approaches “need to
include more explicitly the handling of non-
functional requirements” (Paetscsh, Eberlein, &
Maurer, 2003). Clearly, to reduce later rework,

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 5(4), 31-47, October-December 2014 35

requirements should be developed as early as
possible during development. The overhead of
spending large amounts of development time
up-front to produce requirements can be sig-
nificant if requirements are missed at the start.
Security requirements may be initially over-
looked since they are viewed as non-functional
requirements and may not be well understood by
all stakeholders. A certain amount of expertise
and training is required to begin to understand
security.5 These organizations need a security
requirements engineering approach that has an
appropriate scope and does not require expert
security resources. The approach must also be
easy to incorporate into the regular require-
ments specification activities by specifically
addressing requirements elicitation.

2. SECURITY REQUIREMENTS
ELICITATION

We propose a security requirements elicita-
tion approach that is part of the requirements
elicitation phase of the software development
lifecycle. The approach can be used for tradi-
tional software development processes by any
size of development team, but is particularly
applicable for small organizations following
an agile development philosophy that is fast
paced and iterative in nature. The approach is
not targeted to a specific agile development
method, such as Scrum, but can be followed
during requirements elicitation activities for any
development method. Small organizations with
less than 25 personnel on the development team
(business analysts, requirements engineers,
developers, testers, project managers, quality
assurance, etc.) and who are in the early stages
of building a software security initiative are
the ideal target organization. The activities in
the approach are designed to take advantage
of existing resources and artifacts to improve
the elicitation of security requirements without
imposing significant time or resource burden
on the organization. The approach can be re-
peated, and previous results enhanced, to take

advantage of the iterative nature of a typical
agile development method.

Preliminary functional requirements arti-
facts are used as inputs to the process and can
be used in many forms. Artifacts should be
in text based electronic file formats in order
for automated scanning to take place. Typical
requirements artifacts are formal or informal
software requirements specifications (SRS),
user stories, use cases, RFPs, or other busi-
ness documents outlining software functional
requirements. These documents will be re-
ferred to as preliminary requirements artifacts
throughout the approach description. After
undertaking the activities in the approach, draft
security requirements are output. The security
requirements elicitation approach activities are
defined as follows:

•	 Identify candidate security goals
•	 Categorize security goals based on security

principles
•	 Understand stakeholder goals and develop

preliminary security requirements
•	 Prioritize preliminary security requirements

Each activity defines inputs, roles, tech-
niques, and output (see Figure 1). Inputs are
requirements related artifacts. Roles are the
development team and business stakeholders
responsible for each activity. Techniques are ap-
plied to accomplish each activity and to develop
security requirements. The final output for the
approach is a prioritized security requirements
artifact. Figure 2 illustrates the activities of the
security requirements elicitation approach. The
four key activities are sequential with iterations
within each activity as needed. The output
from each activity becomes the input for the
subsequent activity. While overlap may occur
between activities, each activity was chosen
to signify a progression from unidentified or
implied security requirements to defined and
prioritized security requirements. The follow-
ing sections will demonstrate the activities in
the approach.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

36 International Journal of Secure Software Engineering, 5(4), 31-47, October-December 2014

2.1. Identify Candidate
Security Goals

Identifying security requirements can be dif-
ficult if stakeholders have difficulty expressing
security related needs. Business stakeholders
may imply the need to protect assets based
on the limited knowledge of vulnerabilities
and threats which leads to ambiguity when
expressing security needs. The result may be
requirements written with security terminol-
ogy that implies security requirements but that
are not explicitly defined. Development team
stakeholders, such as the requirements engineer,
developers, and testers, may also have difficulty
extracting implied security requirements if they
are not security experts. A small development
organization is likely to have limited security
experts dedicated to development and needs to
efficiently and effectively work with business
stakeholders to extract security requirements.

If security terminology can be captured, can-
didate security goals can be identified that
with further analysis can be used to develop
security requirements. The identify candidate
security goals activity is intended to discover
implied security requirements based on the
use of security terminology embedded within
preliminary requirements.

A method that can be used to extract mean-
ing from natural language is part of speech
(POS) tagging. Online review opinion mining
is an area of active research that uses POS
tagging to extract sentiment or opinion from
textual online reviews (Jindal & Liu, 2008;
Mukherjee & Liu, 2012). The goals of online
review opinion mining and extracting security
requirements are similar. Natural language input
contains meaning or sentiment that may not
be easily inferred. Human experts and manual
review methods are required to build a set of
words or phrases that are meaningful based

Figure 1. Input, roles, techniques and output

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 5(4), 31-47, October-December 2014 37

Figure 2. Security requirements elicitation approach

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

38 International Journal of Secure Software Engineering, 5(4), 31-47, October-December 2014

on the desired end result. Word frequency and
proximity of terms analysis are common tech-
niques used in opinion mining that may also be
useful to security requirements elicitation. If the
term “password” is frequently used, there may
be an underlying security requirement related to
the use of the term. If the terms “security” and
“encryption” are located within close proximity
of each other, then the terms may be associated
with each other and could reveal an underly-
ing security requirement. In order to capture
implied security requirements, security terms
within preliminary requirements artifacts can
be tagged and follow-up analysis performed
to determine if security requirements can be
developed.

For the identify activity, the requirements
engineer takes as input preliminary require-
ments artifacts for tagging. These artifacts can
be draft software requirements specifications
(SRS), request for proposals (RFPs), or other
requirements specification artifacts that will be
used to generate the final software requirements
specification. Artifacts are scanned for com-
monly used security terminology. Generating
commonly used security terms can be left up
to the knowledge of the requirements engineer
or a dictionary of security terminology can be

used if available. Discovered security terminol-
ogy and the location within the requirements
artifacts are tagged for additional review. After
all artifacts have been tagged, the requirements
engineer reviews the requirements artifacts and
identifies candidate security goals. Scanning and
tagging of artifacts can be manually conducted
or an automated tool can be utilized.

Candidate security goals (CSG) are general
requirements written with implied security
needs that may be developed into security
requirements. For example, a functional require-
ment (FR) containing the term “password” could
be written as in Box 1.

The safety of passwords seems like a
reasonable requirement, but is still vague and
does not reveal the underlying concern of the
business stakeholders. Further examination of
the requirement might yield information related
to using passwords to protect the system from
unauthorized access to information by using
encryption mechanisms. The requirements en-
gineer would generate a CSG such as in Box 2.

The identify activity continues until all can-
didate security goals are identified and output as
an artifact for the categorize activity. Although
it may be tempting to jump to further analysis
of the identified candidate security goals at this

Table 1. FMEA Analysis of security requirements

Failure Effect Severity Occurrence Detection RPN

unauthorized access data viewed 3 7 9 189

unauthorized access data stolen 9 4 9 324

unauthorized access data corrupted 5 4 4 80

Standard Impact and Rating Scale for Severity, Occurrence or Detection

Severity: 1 (insignificant) - 10 (catastrophic)
Occurrence: 1 (extremely unlikely) - 10 (inevitable)
Detection: 1 (absolutely certain to detect) - 10 (certain not to detect)

Box 1. Functional requirement containing the term “Password”

FR–1: Passwords will be encrypted to ensure password safety.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 5(4), 31-47, October-December 2014 39

stage, the role of the requirements engineer is to
solely identify the candidate security goals at this
stage. The categorize activity conducted next is
designed to include additional stakeholders in a
collaborative manner to analyze the candidate
security goals.

2.2. Categorize Security Goals
Based on Security Principle

Candidate security goals identified from the
previous activity are used as input for the
categorize activity. The requirements engineer
can assess the goals for quick categorization
to facilitate efficient communication and then
work with business stakeholders to review

Table 2. Security terminology statistics

Artifacts Containing the Security Term

Security Term Number of Artifacts Percentage of Artifacts Frequency of
Security Term

security 38 88.4% 551

access 34 79.1% 416

password 20 46.5% 237

authentication 15 34.9% 30

risk 15 34.9% 30

encryption 12 27.9% 20

authorized 10 23.3% 146

audit 7 16.3% 28

https 7 16.3% 14

permission 7 16.3% 86

privileges 6 14.0% 24

authenticate 5 11.6% 5

certificate 5 11.6% 205

encrypt 5 11.6% 12

certificates 4 9.3% 85

logon 4 9.3% 8

malicious 4 9.3% 8

deny 2 4.7% 3

authorize 0 0.0% 0

Total Artifacts 43

Box 2. Candidate security goal

CSG-1: The system shall protect against unauthorized access by requiring encrypted user passwords.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

40 International Journal of Secure Software Engineering, 5(4), 31-47, October-December 2014

all tagged requirements artifacts. Business
stakeholders should be educated on general
security principles to improve the review and
to improve the security education of all stake-
holders. The key difference between the iden-
tify and categorize activities is that additional
stakeholders are included in a collaborative
environment for additional analysis. The
requirements engineer leads the activity but
also aids in educating business stakeholders on
general security principles. During this activ-
ity, each security goal is categorized based on
a security principle (SP) in order to facilitate
additional stakeholder elicitation. Security
principles provide a common language and
understanding to improve stakeholder education
and communication. Confidentiality, integrity,
and availability principles (also referred to as
CIA) are the key security principles, but other
principles (e.g., non-repudiation) can be defined
as well.6 These three security principles may be
defined as in Box 3.

If a CSG cannot be categorized, additional
elicitation and analysis can be iteratively un-
dertaken among stakeholders. If the CSG still
cannot be categorized after additional iterations,
it will fail the activity and the CSG will be
discarded. CSGs are broad in definition at this
point and will be further refined in subsequent
activities.

2.3. Understand Stakeholder
Goals and Develop Preliminary
Security Requirements

Using the refined security goals from the cat-
egorize activity, the requirements engineer and
business stakeholders seek to further understand
the implications of the security goals. This
allows the requirements engineer to further

understand the business needs in order to
develop preliminary security requirements.
Additional artifacts such as policies and regu-
lations are also used as input to this activity.
The requirements engineer chooses techniques
and tools to further elicit information from the
business stakeholders. Face-to-face or virtual
meetings are a good choice of techniques for
generating discussion. The choice of tools is
likely to be influenced by the requirements
engineer but could include generating misuse
or abuse cases, attack trees, or other security
related modeling tools. Whereas the categorize
activity may be conducted in one session, the
understand activity may require multiple ses-
sions with various stakeholders to complete.
This allows different groups of stakeholders to
work efficiently on specific tasks and collaborat-
ing as needed. The output from this activity is a
set of preliminary security requirements based
on the CSGs. Continuing with the previous
example, the activity generates a preliminary
security requirement (PSR) from CSG-1 such
as in Box 4.

The development of PSRs demonstrates the
further refinement from implied to well-defined
security requirements. The output PSRs are used
as input for the prioritize activity.

2.4. Prioritize Preliminary
Security Requirements

Preliminary security requirements need to
be prioritized to generate prioritized security
requirements. Regardless of the type of re-
quirements generated, lists of requirements
tend to begin with a list of “wants” instead of
“needs”. Since it is not feasible to implement
all requirements, the key goal of the prioritize
activity is to whittle down the list of PSRs.

Box 3. Security principles

 SP-1 Confidentiality: protect against unauthorized disclosure of information
 SP-2 Integrity: protect against unauthorized modification or destruction of information
 SP-3 Availability: protect against disruption of access to or use of information of an information system

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 5(4), 31-47, October-December 2014 41

During this activity, the requirements engineer
continues to work with business stakeholders
to analyze the input PSRs. Recommended
analysis techniques are risk management tools
commonly used by the stakeholders to foster
familiarity and enhance communication. The
choice of tool should be efficient and effective to
meet the needs of a broad range of stakeholder
backgrounds. We will demonstrate a technique
not commonly used in software risk analysis,
Failure Modes and Effects Analysis (FMEA),
that can be quickly and intuitively applied to
the task of prioritizing PSRs.

FMEA is an analysis and decision making
tool often associated with quality and Six Sigma
methodologies. A failure mode is the manner in
which something might fail. Effects analysis is
the study of the consequences of these failures.
FMEA is used to identify, estimate, prioritize,
and reduce the risk of failure. As a software
engineering tool, FMEA is not widely used,
but has advantages over other analysis tools
in that it is easy to implement and can be used
by a broad audience. A requirements engineer
can use FMEA to elicit security related informa-
tion from stakeholders, prioritize the data, and
present an analysis of the risks associated. The
prioritized risks allow for informed decision
making to choose which actions to consider.
This approach is very useful to communicate
and clarify the impact of technical materials in
an easy to understand format.

FMEA begins by determining the modes
of failure and the effects of failure. Next, fail-
ures and effects are rated based on severity,
occurrence and detection. A standard scale for
severity, occurrence and detection can be ad-
opted as a starting point for FMEA analysis but
experienced FMEA users may wish to develop
more refined ratings scales. A standard scale

ranges from a low of 1 to a high of 10. The ASQ
(formerly American Society for Quality) pro-
vides an overview of FMEA and recommends
the following generic scales (ASQ, 2013):

•	 Severity: 1 is insignificant and 10 is
catastrophic

•	 Occurrence: 1 is extremely unlikely and
10 is inevitable

•	 Detection: 1 is absolutely certain to detect
and 10 is certain not to detect

Each rating between 1 and 10 should
include a definition or criteria to differentiate
between rankings. Standard FMEA scales are
readily available on the internet or the organiza-
tion can develop a custom set of scales. Finally,
ratings are used to calculate a risk priority
number (RPN). The RPN is calculated as the
product of the risk ratings:

RPN = (severity ranking)(occurrence rank-
ing)(detection ranking)	

Continuing from the previous activities,
Table 1 demonstrates analyzing the preliminary
security requirement related to unauthorized
access (PSR-1). Failure is unauthorized access
and the effect of this failure could be data that
is viewed, stolen or corrupted. The security
requirements engineer could generate a pre-
liminary table and follow-up with business
stakeholder or all stakeholders could be involved
at the start of analysis. Ratings for severity,
occurrence and detection are determined by
the stakeholders and the RPN is calculated.
The resulting RPN generates a prioritized
list of potential security requirements. In this
scenario, the risk of data being stolen due to

Box 4. Preliminary security requirement from CSG-1

PSR-1: The system shall protect the confidentiality and integrity of data from unauthorized access by requiring
encrypted user passwords.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

42 International Journal of Secure Software Engineering, 5(4), 31-47, October-December 2014

unauthorized access significantly outweighs
other effects. Stakeholders can either reject or
accept each scenario from the FMEA analysis
to determine if any of the RPNs are low enough
to be rejected. Each failure and effect can also
be split into separate security requirements and
further refined. Once accepted or rejected, the re-
quirements engineer and business stakeholders
will refine the preliminary security requirements
until a list of prioritized security requirements
has been generated. Assuming that the RPN
for this scenario is accepted and the PSR does
not require splitting, the PSR is converted to a
security requirement (SR) as shown in Box 5.

A sample template for the completed
security requirements elicitation approach is
shown in Figure 3.

3. POS SCANNING AND
TAGGING TOOL

The main input for approach is a set of pre-
liminary security requirements artifacts.
During the identify candidate security goals
activity, the requirements engineer must use
POS scanning and tagging. For a small set
of artifacts, the process can be accomplished
manually. However, the use of an automated
tool would improve efficiency, accuracy, and
analysis capabilities. For this study, the authors
chose to develop a software tool to scan and
tag text based documents as well as to gather
statistics on the processed artifacts. The first
step was to choose a set of security terminol-
ogy for scanning. Single terms (unigrams) were
chosen, but the tool could accommodate short
phrases. In addition, similar terms (“authorize”
vs. “authorized”) and plural terms (“password”

vs. “passwords”) can be accommodated by
employing stemming methods.

Once the security terms are defined, the
requirements artifact can be scanned and tagged
which will gather the location and frequency of
each term. A data set is output for each artifact.
Tagging aids with subsequent activities for
the approach by improving the navigation and
analysis within each artifact. Identification of
the location for a particular term or all terms
within an area of the document is also avail-
able for ease of analysis. The POS scanning
and tagging tool could be easily modified to
include proximity of tagged terms, particularly
for duplicate terms. Future versions of the tool
could include this feature to improve the ef-
ficiency of the approach.

4. ANALYSIS AND FEASIBILITY
OF THE APPROACH

Analysis and feasibility of the proposed solution
should be taken into consideration given that we
are targeting small organizations practicing agile
development methods. Drawbacks to other ap-
proaches discussed in the background included
approach complexity, resources required and se-
curity expertise. For this approach, preliminary
requirements artifacts and a list of security terms
for tagging are required to begin the activities.
Minor training on security principles and FMEA
analysis (or another risk analysis approach) is
also required. The approach can mature with
the security expertise of stakeholders. These
features make the approach desirable for an
organization undertaking a software security
initiative with minimal upfront effort. The
approach is flexible and additional techniques
can be easily integrated if desired. Finally,

Box 5. Security requirement

SR-1: The system shall protect the confidentiality and integrity of data from unauthorized access by requiring
encrypted user passwords.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 5(4), 31-47, October-December 2014 43

the approach can be undertaken iteratively
to integrate with the existing agile software
development methods.

Tagging of terms can be easily automated
if preliminary requirements artifacts are in text
based files. Requirements developed using
a software development tool (such as JIRA)
may be exportable to a text file for automated
scanning or a utility may be available to find
security terms. In the case that requirements
are not captured electronically (note cards,

whiteboard), scanning and tagging of terms
will have to be done visually. For a small-
scale iterative project, the volume of require-
ments should be minimal and tagging can be
accomplished with minor impact on time and
personnel resources. To begin tagging, a list
of security terms should be determined. The
security terms can be determined by expert
judgment or from a glossary of software secu-
rity terms. For this approach, an initial list of
terms was chosen using the author’s judgment

Figure 3. Sample template for security requirements elicitation

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

44 International Journal of Secure Software Engineering, 5(4), 31-47, October-December 2014

based on experience and by reviewing security
specific software requirements available to the
authors (see Table 2). The list of security terms
is not exhaustive and can be modified to meet
the stakeholder’s needs. If tagging is not auto-
mated, using a concise list of terms minimizes
the resources needed as well. After an initial list
of security terminology was chosen, a set of 43
sample requirements artifacts were tagged for
the security terms. Scanning and tagging was
accomplished using a software tool developed
by the authors. The tool scanned text-based
requirements artifacts using the security terms.
A set of statistical data for each artifact was
output and data was compiled as shown in Table
2. Terms such as “security” and “access” were
found in a large percentage of artifacts (88.4%
and 79.1% respectively) and had the highest
frequency. “Password”, “authentication”, and
“risk” were found in over 35% of the artifacts.
The frequency of terms such as “security”,
“access” and “password” appears to indicate
implied security requirements even though most
artifacts lacked security specific requirements.

Once initial tagging is complete, the re-
quirements engineer will examine the tagged
artifact. It is likely that the number of tagged
items to examine can be reduced due to proxim-
ity of terms or false positives. In the example
used earlier, a functional requirement may have
been tagged for the term “password”.

“Password” is used twice in close prox-
imity and is therefore somewhat redundant if
the total number of tagged terms is considered
(see Box 6). In this case, both of these tagged
terms would be considered as one reducing the
amount of effort needed to review the artifact.
A false positive is a term that was tagged that is
not associated with security goals. An example
of a false positive might be associated with the

term “certificate”. There may be instances in
which the use of “certificate” has no relation to
security and could be eliminated from review.
Reducing the number of terms for review due
these reasons can be accomplished in a relatively
short time (and could be automated in the future)
and is feasible for a small organization.

The requirements engineer plays a key
role in all activities and other stakeholders are
involved in categorize, understand and prioritize
activities. These subsequent elicitation activities
require stakeholder meetings to develop security
requirements, but do not require significant
expertise or training. Conducting the FMEA
analysis will take minor training and startup time
to determine failure modes, expected effects and
appropriate scales to be used to calculate the
RPN. However, the process is easy to understand
by non-technical stakeholders and guidance
by the requirements engineer makes FMEA
analysis a feasible technique. Additional models
and techniques that are currently in use by the
requirements engineer are not excluded and
can also be included in the approach if desired.
Therefore, the proposed security requirements
elicitation approach is a feasible alternative
to other security requirements elicitation ap-
proaches for small organizations following
agile leaning development methods.

5. SUMMARY

This paper describes an approach for eliciting
security requirements using security term tag-
ging which can be implemented by small, agile
organizations. Key elements of the elicitation
approach are (1) identifying security goals, (2)
categorizing goals by security principle, (3)
understanding stakeholder goals to develop

Box 6. Functional requirement

FR–1: Passwords will be encrypted to ensure password safety.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 5(4), 31-47, October-December 2014 45

preliminary requirements and (4) prioritiz-
ing security requirements for inclusion into
the SRS document. Stakeholder roles, input
artifacts, techniques and output artifacts are
defined for each phase of the solution. The
approach outlines a basic structure that can be
easily implemented due to a flexible, iterative
design and minimal upfront resources required.
The approach should be incorporated into the
software development process during require-
ments elicitation in order to reduce cost and
rework at later stages of development.

A variety of preliminary requirements
artifacts can be tagged for security terms using
automated or manual methods. Tagging secu-
rity terms jump starts the elicitation process
and focuses efforts on specific areas of the
requirements artifact for further examination.
Review of tagged terms indicates that security
terms are typically grouped in close proximity
and duplicates can be identified and untagged.
False positives, or security terms that are not
associated with security goals, are also manually
untagged. The resulting set of tagged security
terms can then be analyzed using the approach.
A key component of prioritization is the imple-
mentation of FMEA analysis which has roots
in Six Sigma methodologies. FMEA analysis
has not commonly considered as an analysis
tool that can be used as part of the requirements
elicitation, but has advantages in that it is easy
to understand by non-technical stakeholders,
is quick and aids in prioritization of security
requirements. RPN results are based on rating
risk based on frequency, occurrence and detec-
tion each of which can be addressed individually
to reduce risk. The approach is flexible and the
scope of effort can be adjusted to accommodate
organizational resources for a software project.

Future work on tagging could improve
the approach. Frequency of terms, proximity
and associations between terms may be more
significant than developing a large dataset of
security terms. Expanding the terminology to
include short phrases of related terms should
also be explored to improve understanding of
security goals. The relationship between a com-
bination of terms and association with specific

security principles should be explored.7 Finally,
failure modes and effects analysis could be used
to automatically generate abuser stories which
are commonly used with agile development
elicitation and modeling techniques.

REFERENCES

Allen, J. H., Barnum, S., Ellison, R. J., McGraw, G.,
& Mead, N. R. (2008). Software security engineer-
ing: a guide for project managers. Addison-Wesley.

ASQ. (11/21/13). Failure Mode Effects Analysis
(FMEA). Available: http://asq.org/learn-about-quali-
ty/process-analysis-tools/overview/fmea.htmlhttp://
asq.org/learn-about-quality/process-analysis-tools/
overview/fmea.html

Cao, L., & Ramesh, B. (2008). Agile requirements
engineering practices: An empirical study. Software,
IEEE, 25(1), 60–67. doi:10.1109/MS.2008.1

Hallberg, N., & Hallberg, J. (2006). The Usage-
Centric Security Requirements Engineering (USeR)
Method. In Information Assurance Workshop (IEEE
2006) (pp. 34-41). doi:10.1109/IAW.2006.1652074

Ingoldsby, T. R. (2009). Attack tree-based threat risk
analysis. Retrieved from http://www.amenaza.com/
downloads/docs/AttackTreeThreatRiskAnalysis.
pdfhttp://www.amenaza.com/downloads/docs/At-
tackTreeThreatRiskAnalysis.pdf

Jindal, N., & Liu, B. (2008). Opinion spam and
analysis. In Proceedings of the international confer-
ence on Web search and web data mining, Palo Alto,
CA. doi:10.1145/1341531.1341560

Luckey, M., Baumann, A., Méndez, D., & Wagner,
S. (2010). Reusing security requirements using
an extended quality model. In Proceedings of the
2010 ICSE Workshop on Software Engineering
for Secure Systems, Cape Town, South Africa.
doi:10.1145/1809100.1809101

G. McGraw, “The Security Lifecycle-The 7 Touch-
points of Secure Software-Just as you can’t test quality
into software, you can’t bolt security features onto
code and expect it to become hack-proof Security,”
Software Development, vol. 13, pp. 42-43.

McGraw, G., Migues, S., & West, J. (2012). The
Building Security In Maturity Model. Available:
http://www.bsimm.com/http://www.bsimm.com/

http://asq.org/learn-about-quality/process-analysis-tools/overview/fmea.htmlhttp://asq.org/learn-about-quality/process-analysis-tools/overview/fmea.html
http://asq.org/learn-about-quality/process-analysis-tools/overview/fmea.htmlhttp://asq.org/learn-about-quality/process-analysis-tools/overview/fmea.html
http://asq.org/learn-about-quality/process-analysis-tools/overview/fmea.htmlhttp://asq.org/learn-about-quality/process-analysis-tools/overview/fmea.html
http://asq.org/learn-about-quality/process-analysis-tools/overview/fmea.htmlhttp://asq.org/learn-about-quality/process-analysis-tools/overview/fmea.html
http://dx.doi.org/10.1109/MS.2008.1
http://dx.doi.org/10.1109/IAW.2006.1652074
http://www.amenaza.com/downloads/docs/AttackTreeThreatRiskAnalysis.pdfhttp://www.amenaza.com/downloads/docs/AttackTreeThreatRiskAnalysis.pdf
http://www.amenaza.com/downloads/docs/AttackTreeThreatRiskAnalysis.pdfhttp://www.amenaza.com/downloads/docs/AttackTreeThreatRiskAnalysis.pdf
http://www.amenaza.com/downloads/docs/AttackTreeThreatRiskAnalysis.pdfhttp://www.amenaza.com/downloads/docs/AttackTreeThreatRiskAnalysis.pdf
http://www.amenaza.com/downloads/docs/AttackTreeThreatRiskAnalysis.pdfhttp://www.amenaza.com/downloads/docs/AttackTreeThreatRiskAnalysis.pdf
http://dx.doi.org/10.1145/1341531.1341560
http://dx.doi.org/10.1145/1809100.1809101
http://www.bsimm.com/http://www.bsimm.com/

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

46 International Journal of Secure Software Engineering, 5(4), 31-47, October-December 2014

Mead, N. R., Hough, E., & Stehney, I. I. T. (2005).
Security Quality Requirements Engineering.
Retrieved from http://www.sei.cmu.edu/library/
abstracts/reports/05tr009.cfmhttp://www.sei.cmu.
edu/library/abstracts/reports/05tr009.cfm

Mukherjee, A., & Liu, B. (2012). “Modeling review
comments,” in Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics,
Jeju, Republic of Korea (pp. 320-329).

Paetsch, F., Eberlein, A., & Maurer, F. (2003). Re-
quirements engineering and agile software develop-
ment. In Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2003. WET ICE 2003.
Proceedings. Twelfth IEEE International Workshops
on (pp. 308-313).

Ramesh, B., Cao, L., & Baskerville, R. (2010).
Agile requirements engineering practices and chal-
lenges: An empirical study. Information Systems
Journal, 20(5), 449–480. doi:10.1111/j.1365-
2575.2007.00259.x

Romero-Mariona, J. (2009). “Secure and Usable
Requirements Engineering,” presented at the Pro-
ceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering.
doi:10.1109/ASE.2009.81

Viega, J. (2005). Security - Problem Solved?
Queue, 3(5), 40–50. doi:10.1145/1071713.1071728
PMID:16467894

ENDNOTES
1 	 http://www.ncsl.org/issues-research/telecom/

overview-security-breaches.aspx
2 	 http://datalossdb.org/us_states

3 	 https://www.owasp.org/index.php/
Category:OWASP_CLASP_Project

4 	 BSIMM collects together common activities
and practices from several organizations be-
lieved to be the best examples of firms with
exceptional software security. Since there
are 112 activities in BSIMM, organizations
utilizing BSIMM are free to chose a subset
of activities that they feel most relevant.

5 	 Our experience backs this claim. Many manag-
ers and software developers do not understand
even some of the most well-known attacks
(e.g., stack smashing buffer overflow) and
do not understand the enabling factors that
allow such attacks to succeed. Additionally,
each development domain may have its own
concerns and regulations. For example, bank-
ing is much different than embedded consumer
electronics.

6 	 Non-repudiation may be related to keywords
such as ‘log’ or ‘trace’, in order to provide an
audit record. Non-repudiation was an essen-
tial part of an update system we developed.
The high level security goal was to prevent
insiders from abusing a tool that could be
used to jailbreak (root) Android phones. To
keep insiders honest, the system logged their
network username when they accessed the
tool. Their name was also used as a watermark
inside the update used for jailbreaking.

7 	 A complementary semantic ontology model is
available here: http://disi.unitn.it/~massacci/
Publications/MASS-MYLO-ZANN-07-ON-
TOBOOK.pdf The above model might be able
to provide additional context and keywords for
specific roles and the delegation of trust. The
primary advantage of this ontology is that it
enables modeling non-technical controls and
organizational policies along with those that
are technical in nature. As such, it looks at
the interactions between people and technical
systems required for overall security.

http://www.sei.cmu.edu/library/abstracts/reports/05tr009.cfmhttp://www.sei.cmu.edu/library/abstracts/reports/05tr009.cfm
http://www.sei.cmu.edu/library/abstracts/reports/05tr009.cfmhttp://www.sei.cmu.edu/library/abstracts/reports/05tr009.cfm
http://www.sei.cmu.edu/library/abstracts/reports/05tr009.cfmhttp://www.sei.cmu.edu/library/abstracts/reports/05tr009.cfm
http://dx.doi.org/10.1111/j.1365-2575.2007.00259.x
http://dx.doi.org/10.1111/j.1365-2575.2007.00259.x
http://dx.doi.org/10.1109/ASE.2009.81
http://dx.doi.org/10.1145/1071713.1071728
http://www.ncbi.nlm.nih.gov/pubmed/16467894
http://disi.unitn.it/~massacci/Publications/MASS-MYLO-ZANN-07-ONTOBOOK.pdf
http://disi.unitn.it/~massacci/Publications/MASS-MYLO-ZANN-07-ONTOBOOK.pdf
http://disi.unitn.it/~massacci/Publications/MASS-MYLO-ZANN-07-ONTOBOOK.pdf

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 5(4), 31-47, October-December 2014 47

Annette Tetmeyer is a Ph.D. candidate in computer science at the University of Kansas. Her
research interests include security requirements engineering, data mining, human computer
interaction, and engineering education. In addition to experience in private industry, she has
taught a variety of undergraduate and graduate engineering courses at the University of Kansas.
She received her MS in Computer Science from the University of Kansas (2013), her MS in Engi-
neering Management from the University of Kansas (1998) and BS in Mechanical Engineering
from Iowa State University (1993).

Daniel Hein is a senior software engineer at Garmin International where he works on handset
and PDA software for Garminfone™, Nüvifone™, Garmin Mobile XT™, and iQue™ series
products. Hein developed software for the iQue™ that controlled mixing and playback of music,
voice recordings, and navigation streams. Hein holds a M.S. in Computer Engineering from the
University of Kansas and a B.S. in Computer Engineering from Iowa State University, and is a
member of IEEE. Hein is currently working on his Ph.D. in Computer Science with emphasis in
Secure Software Engineering. Hein’s research interests include security, software engineering,
and machine learning.

Hossein Saiedian (Ph.D., Kansas State University, 1989) is currently an associate chair, director
of IT degree programs, and a professor of computing and information technology at the Depart-
ment of Electrical Engineering and Computer Science at the University of Kansas (KU) and a
member of the KU Information and Telecommunication Technology Center (ITTC). Professor
Saiedian has over 150 publications in a variety of topics in software engineering, computer
science, information security, and information technology. His research in the past has been
supported by the NSF as well as other national and regional foundations. Professor Saiedian
has been awarded a number distinguished awards, including the KU’s highly prestigious Kemper
award for excellence in teaching, the University of Nebraska’s awards in excellence in research
and excellence in teaching, and was ranked among the top-10 software engineering scholars
by the Journal of Systems and Software. At KU, he has graduated more than 65 MS and Ph.D.
students. Professor Saiedian is credited with a number of degree programs he has developed,
including the existing Master of Science in Information Technology (MSIT), and a new Bachelor
of Science in Information Technology (BSIT) at the University of Kansas. Professor Saiedian is
a member of the ACM, a senior member of the IEEE, and was among the first group to become
IEEE’s Certified Software Development Professional.

	Reference r1
	Reference r2
	Reference r3
	Reference r4
	Reference r5
	Reference r6
	Reference r7
	Reference r8
	Reference r9
	Reference r10
	Reference r11
	Reference r12
	Reference r13
	Reference r14
	Reference r15
	Figure f01
	Figure f02
	Table t1
	Table ta
	Table t2
	Table tb
	Table tc
	Table td
	Table te
	Figure f03
	Table tf

