
Information Security Journal: A Global Perspective, 22:55–67, 2013
Copyright © Taylor & Francis Group, LLC
ISSN: 1939-3555 print / 1939-3547 online
DOI: 10.1080/19393555.2013.783952

An Analytical Study of Web Application
Session Management Mechanisms and

HTTP Session Hijacking Attacks
Shellie Wedman, Annette
Tetmeyer, and Hossein
Saiedian
Department of Electrical
Engineering Computer Science,
University of Kansas, Lawrence,
Kansas, USA

ABSTRACT The HTTP protocol is designed for stateless transactions, but many
Web applications require a session to be maintained between a Web browser and
a server creating a stateful environment. Each Web application decides how its ses-
sion is managed and needs to be able to trust the session identifier. However, it is
possible for sessions to be hijacked, and an intruder can gain unauthorized access
to the hijacked session. The purpose of this paper is to provide an analysis of cur-
rent session management mechanisms and examine various hijacking techniques.
The primary issues that will be addressed pertain to session management and the
importance of securing the creation, deletion, and transmission of a session token.
We provide a broader view of the session hijacking threat environment by analyzing
existing Web application implementations to help demonstrate the need for session
hijacking prevention. We will identify the session management areas that are targeted
by attackers and will identify and examine various attacks that can lead to a session
being hijacked.

KEYWORDS internet security, session management, session hijacking, HTTP
programming, web browser vulnerability

Address correspondence to Hossein
Saiedian, Department of EECS,
School of Engineering, University
of Kansas, Lawrence, KS 66045, USA.
E-mail: saiedian@eecs.ku.edu

1. INTRODUCTION
The threat of hijacked Hypertext Transfer Protocol (HTTP) sessions is a seri-

ous problem for Web applications. Three security risks are identified in the Open
Web Application Security Project (OWASP Foundation, 2010b) Top 10 application
security risks for 2010 that can lead to a session being hijacked:

• Broken authentication and session management (A3),
• Cross-site scripting (A2), and
• Cross-site request forgery (A5).

OWASP provides a risk-ranking methodology for each of the Top 10 applica-
tion security risks, which include likelihood factors for attack vectors, weakness
prevalence, weakness detectability, and a technical impact factor. Figure 1 is the

55



FIGURE 1 OWASP Top 10 application security risk factor summary for 2010 (OWASP Foundation, 2010b) (color figure available
online).

risk factor summary for the security risks as determined by
OWASP (2010b).

Broken authentication and session management ranks
among the worst technical impact with a severe rating.
Cross-site scripting and cross-site request forgery are both
ranked the highest in security weakness prevalence (very
widespread and widespread, respectively) but with moder-
ate technical impact. All three of these risks can lead to a
session being hijacked.

Vamosi (2009) describes several malware examples that
have exploited a banking system’s session management.
One example given is the botnet Clampi; it waits for
a user to log in to his or her bank account. After a
valid session has been created, Clampi takes over the ses-
sion by impersonating the legitimate user. The user has
no knowledge that this attack has taken place. Another
example (Vamosi) is the Trojan horse URLZone; it allows
the attacker to hijack sessions by spoofing bank pages.
Both are real life examples of a sophisticated hijacking for
financial gain.

There are two types of sessions within the context of
a Web application: browser (client) session and HTTP
session. A browser session is managed by the client’s
computer. It begins when the browser is opened and termi-
nates when the browser is closed (Shklar & Rosen, 2009).
In contrast, the HTTP session is managed by the server,
not the client or browser, and it provides a way to link
the browser session to the server session (Shklar & Rosen).
A Web application’s HTTP session is “established to rec-
ognize requests that belong together and to associate these
requests with (session) data stored at the server” (Jovanovic
et al., 2006, p. 2). Both sessions described above are
required because HTTP is a “stateless” protocol; this means
that “once an initial communication exchange between a
client and a server is completed, the connection between
them is dropped” (Berghel, 2002). Since HTTP does not

support sessions, the Web application must devise a way to
implement and manage sessions.

1.1. Objectives
The main objective of this work is to provide a survey of

session management threat environment. This survey will
collect and examine the known problems and solutions to
such problems. To complete the survey, the following issues
will be addressed:

• What areas of session management are targeted in a
session hijacking attack?

• What are the different types of attacks currently defined
that lead to session hijacking?

• What are the mechanisms currently available to devel-
opers to secure against this type of attack?

• How are various Websites currently implementing ses-
sion management? Provide a brief analysis to determine
if Websites are insecure and show the threats involved in
session management.

The next section reviews and analyzes session man-
agement. It is important to understand the mechanisms
involved in session management before examining differ-
ent hijacking attacks.

2. SESSION MANAGEMENT
Belani (2004) describes session management as the

“techniques employed by Web applications to transpar-
ently authorize a user for every HTTP request without
having the user repeatedly login.” Essentially, the session
has “the same significance as the user’s original credentials”
(Jovanovic et al., 2006, p. 2). These session management
techniques are exploited by attackers to trick the server into

S. Wedman et al. 56



performing functions using hijacked credentials. The three
areas within the session management process that will be
analyzed are:

• Session token creation and deletion,
• Session token transmission, and
• Session token verification.

Each of these areas will be reviewed below.

2.1. Session Token Creation and
Deletion

HTTP session token creation and deletion are key ele-
ments to determining the hijacking window. The goal is to
minimize this attack window period. The window can be
viewed to be as long as the user is actively and inactively
using the Website. Another way to state this is:

– SD − SC = Aw
– SD = Session Deletion/Invalidation Time
– SC = Session Creation time
– Aw = Hijacking Attack Window

Session token deletion is the act of invalidating a token.
Deletion occurs by the browser and the server. Actions that
could lead to an HTTP session being destroyed are:

• Server session inactive timeout event,
• User logging out of Website,
• Technical difficulties which result is a session discon-

nect, and
• Browser session closed ( this only invalidates the browser

side of the session; the server session might still be valid
which will be addressed later in the paper).

HTTP session token creation is the act of assigning a token
to an authenticated user. This is performed by the server.
Examples of when a session is created are:

• First visit to site,
• Explicitly logging into Website, and
• Entering a more secure area of a Website.

An example of the session inactive timeout being imple-
mented with a short interval was found at a banking
Website. The banking session timed out after 10 minutes
of inactivity, and the following message was displayed for
the user:

As part of our strict commitment to online security, we auto-
matically terminate your secure online session after an extended
period of inactivity. This prevents unauthorized users from
accessing your account information. It’s just one of the many
ways we strive to protect you and your personal information
online.

The session cookie was still present on the user’s computer,
even after server session timeout. The session cookie is not
recognized by the server; therefore, the user must be re-
authenticated before accessing his or her account again.
This indicates that specific HTTP session token is inactive
on the server and therefore cannot be used in a hijacking
attack. Table 1 offers a comparison between Website cate-
gory and server timeout period. This timeout period is for
inactivity only. The Websites that make financial transac-
tions have a smaller session inactive period than sites that
only store personal information.

After analyzing how Websites implement the log-out
functionality, some sessions are invalidated only on the
server, but the session cookies are not deleted from the
browser. The session cookie will still be submitted with
each page request after logging out, but the server deter-
mines that it is invalid and does not link session data to
the ID. This enforces the point that the browser session is
not implicitly linked to the server session. Figures 2 and 3
demonstrate this finding using a low-level security Website.
Figure 2 is the JSESSIONID cookie while logged into the
Website, and Figure 3 is the JSESSIONID cookie after log-
ging out of Website. The values of both are the same, and

TABLE 1 A comparison of website categories and timeout periods

Website category Connection type Timeout period

Banking – account summary https 10 minutes
E-commerce https 30 minutes
Social networking site (logged in) http Long – specific time unknown
University (student account) https 30 minutes
E-commerce checkout https 10 minutes
Email account (logged in) https Long – specific time unknown
Parental control Website https Over 2 hours – specific time unknown

57 Web Application Session Management



FIGURE 2 JSESSIONID cookie after logging into Website.

FIGURE 3 JSESSIONID cookie after logging out of Website.

the cookie was not deleted from browser even though it is
invalid on the server.

The browser invalidates cookies based on the max-age
attribute. When this cookie attribute is set to −1 it indi-
cates a browser session cookie. This cookie will be deleted
once the browser session is closed. Internet Explorer
8 shares a session between tabs and browser instances
(Tulloch, Northrup, & Honeycutt, 2010). It is important
to note that the browser session is not closed until all
instances of the browser are closed, not just the tab run-
ning the Web application. That is, the session cookie stays
active when the tab is closed if the browser application is
still running. The Web application can be re-opened and
the session will still be valid; the user will still be logged in.
Another important note is that the browser session does
not implicitly communicate with the server session and
vice versa: the server is not notified when a browser session
is closed, and the browser session is not notified when the
server session is closed. This is important to note because
the browser session might appear closed to the user because
he or she is asked to log in again to access the site, but the
previous HTTP session can still be hijacked because the
server considers the previous session token active.

2.2. Session Token Transmission
The second area of session management to analyze is

session token transmission. How tokens are implemented
affects the way they are transmitted. Visaggio and Blasio

(2010) state two of the main mechanisms for implement-
ing session tokens are cookies and URL rewriting.

The first mechanism mentioned is the use of cook-
ies. Vinod et al. (2008) describe some basic best practices
for developers to follow when using cookies for storing
the session token (Table 2). Cookies are transmitted via
the HTML response and request headers in name/value
pairs (Shklar & Rosen, 2009). The browser stores the
transmitted cookies and includes them in all appropriate
server requests. The browser determines which requests
are appropriate by matching the requesting server domain
and URL path to the stored cookies domain and URL
(Shklar & Rosen).

The second mechanism for implementing session
tokens is URL rewriting. URL rewriting method takes
place when the server appends the session token to the
end of all HTML links. The following URL example
demonstrates URL rewriting:

http://www.xxx.com/.../search/newresults.jhtml;jsessionid=
HUQ43LOI4TRS2CSGBIYMVCQ?searchType=city

The jsessionid is appended to all URL’s before the request
parameters. If cookies are disabled in the browser, the
application server normally switches to URL rewriting to
maintain the session (Fain, 2011). After trying various
Websites, the majority gracefully require cookies to be
enabled, not supporting URL rewriting. However, some
of the Websites analyzed did not handle disabled cookies
gracefully and continued to function but in an unstable
way. Supporting URL rewriting functionality in a Website
could lead to session hijacking if the user decides to copy
and paste the URL into an email. For example, if the
user posts the previously stated URL that includes the
jsessionid, then an attacker can easily click on the posted
URL and join the user’s session. This is assuming that
the Web application has no other security mechanisms in
place to validate sessions. Furthermore, the browser his-
tory, cache, and bookmarks use the URL string to revisit
Web pages. If the session token is included in the URL, it
would also be saved. When using a public computer, any-
one using the computer could potentially gain access to
that session. Beginning with version 8, Internet Explorer
offers a new option of InPrivate browsing that inhibits
browsers from capturing and saving sensitive information
(Tulloch, Northrup, & Honeycutt, 2010). This relies on
the user to configure the browser to run in this mode.
It does not help the Web application in determining if a
session has been hijacked.

S. Wedman et al. 58



TABLE 2 Best practices when using cookies (Vinod et al., 2008)

Best practice for
cookies How it works Why it helps

Use SSL protocol Secures the transmission by encrypting
data.

If a request packet is captured and SSL is used,
then the data will be encrypted. If not it will
be in clear text. Figure 4 is an example of a
captured packet not using SSL.

Use nonpersistent
(session) cookies

The max-age attribute on a cookie is used
to create a nonpersistent cookie. When
this attribute is omitted during cookie
creation, then the browser will delete the
cookie upon session termination
(Tappenden & Miller, 2008).

If the cookie is persistent and has a long
max-age period, then the session stays valid
for a longer period and gives an attacker a
larger window to guess a valid session token.

Use secure cookies The secure attribute for a cookie indicates
to the browser that the cookie should
only be transmitted using a “secure”
channel such as HTTPS (Tappenden &
Miller, 2008).

Creating a secure cookie will stop an attacker
from capturing an HTTP packet and being
able to view the session token in clear text.

Use HTTP Only cookies The http only attribute of a cookie is used
by the browser to determine if the
document object within any embedded
JavaScript should be granted access to
this cookie and its associated values
(Tappenden & Miller, 2008).

The http only attribute will be discussed in the
cross-site scripting section. It protects the
cookies from being accessed by scripts
running on the WEb page.

FIGURE 4 A screen shot of a captured packet that displays the jsessionid in clear text for a Website (color figure available online).

2.3. Session Token Verification
The third vulnerable area within session management is

the verification of the session token sent by the browser
to the server. This verification is done by the Web
server container. Within the application server Tomcat
6, “statefulness will only work if the client returns that
identifier back to the server, for each request that is part
of that conversation. When each new request is received,
a server attempts to locate this identifier, and use it to
look up the conversational state associated with this client”
(Chetty, 2009). Java, for example, has an implicit session
object available to the controller code. This object is cre-
ated for each request and is automatically populated with
the session data that is tied to the session ID in the request.

Additional security mechanisms found on an
e-commerce site that protects against a session being
hijacked is requiring the person to re-login before per-
forming higher level security functions such as checking
out of a store. E-commerce sites have added the func-
tionality of saving credit card information to make it
easier for the user to purchase items, but this creates
potential problems if a session is hijacked. One Website
combats this issue by requiring the credit card number to
be re-entered if the shipping address for the order is new
to the account. Figure 5 displays this security policy as
presented to the user at the time of purchase.

Another issue to address is the “Remember Me” feature.
Figure 6 displays this functionality as you would see it on
a Website. The Remember Me functionality extends the

59 Web Application Session Management



FIGURE 5 Security message display on an e-commerce site at time of purchase (color figure available online).

FIGURE 6 Keep me logged in functionality of a Website (color
figure available online).

user’s session for a longer period of time. The Website that
offers this functionality displayed in Figure 6 actually sets
the cookie value to be valid until 2021. Figure 7 displays
the cookie values after logging in not using this feature.
The cookie will expire when the entire browser is closed
and the user will be required to log back in on next visit.
Figure 8 displays the cookie values after logging in using
this feature. The cookie will expire after 10 years. The user
will not need to log in on their next visit to this site when
using the same computer.

One way this area can be exploited is if the user’s com-
puter is physically accessible to an attacker such as at a
workplace or using a public computer. This functionality
enables the session to stay active even when the browser
is closed. This functionality also leaves the server’s session
object valid for a much longer period of time. Websites
that require a higher level of security usually do not imple-
ment the Remember Me feature (Mitchell, 2010). When
inspecting a variety of Websites that would be categorized
as requiring lower levels of security, most do offer this
feature.

The next section examines specific hijacking attacks and
analyzes the session management areas they exploit.

3. SESSION HIJACKING ATTACKS
Session hijacking attacks exploit the session manage-

ment process in a way that an attacker avoids the authoriza-
tion and verification of a Web application by impersonat-
ing a valid and verified user. This happens when an attacker
captures a user’s session token. There are various ways an
attacker is able to achieve this. This section reviews a vari-
ety of different hijacking attack types and ways to protect
against them.

3.1. Session Prediction
Session prediction is when an attacker is able to predict

a valid session token. This exploits the first session manage-
ment area of session token creation. When a session token
is created in a nonrandom way, an attacker can analyze
the Web application’s cookies, giving the attacker a greater
chance of predicting valid sessions. Figure 9 demonstrates a
predictable session cookie. The BFSESS cookie has a value
of ‘Y.’ This indicates that there is a session for the user, but
there is no session ID cookie created.

The Website that generated the BFSESS cookie also
stores the user name and password in another cookie.
There are two concerns with this approach to session man-
agement: session prediction and storing of unencrypted

FIGURE 7 Screen shot of the Website cookie focusing on the “Expires” date when the Remember Me feature is not used during login.

S. Wedman et al. 60



FIGURE 8 Screen shot of the Website cookie focusing on the “Expires” date when the Remember Me feature is used during login.

FIGURE 9 Session cookie with the value of ‘Y.’ (color figure
available online).

passwords in cookies. Vinod et al. (2008) secure cod-
ing standards state that Web applications need to ensure
that random numbers or numbers that are not easily
guessed should be used as the session token. Using JBoss
as an example, it allows for configurable session creation
algorithms, but the default is MD5. SessionID length
is configurable, but the default value is 16 characters.

Using the default implementation should provide a strong
enough sessionID that prevents session prediction. Using
ASP.NET, for example, a valid session ID is the only data
that need to be captured and forged by the attacker. If the
attacker can predict or capture a valid session ID, he or she
can use that session state (Esposito, 2004).

3.2. Session Fixation
Session fixation attacks happen when tokens are not

regenerated between an HTTP and HTTPS transmis-
sion. Attackers are able to obtain the session token by
intercepting a non-secure HTTP transmission (Visaggio &
Blasio, 2010). Figure 10 demonstrates how a basic ses-
sion fixation attack occurs. A new session token is created
when a user first visits a Web application. After logging
into the Web application, the session token stays the same.
Therefore, the attacker could capture the session token,
JSESSIONID, from the less protected area of the Web
application.

When URL rewriting is being used for session
management, it is easier for a user to give away a session

FIGURE 10 Diagram of how a session fixation attack occurs (Mularien, 2010) (color figure available online).

61 Web Application Session Management



FIGURE 11 Section of an email message with a link containing the jsessionid (color figure available online).

ID without realizing it. The scenario was described ear-
lier of when a user copies a URL into a message board.
If URL rewriting is implemented, then the session ID is in
plain view for an attacker to use. This can lead to a big-
ger issue if a session token is created in a nonsecure page
and not regenerated upon login. The user might think
he or she is sharing basic information about a product
and then later log in to a personal account. If the ses-
sion token is not regenerated, the attacker has hijacked
the session and has access to sensitive personal informa-
tion. An alternate way a fixation attack could occur is if
the attacker posts or emails a URL with the session iden-
tifier appended. Figure 11 is from an actual spam email
that has the jsessionid appended to the URL. The user,
upon clicking on a link with the session ID appended,
would potentially start using the attacker’s session. The
user is tricked into using the attacker’s session. This spe-
cific version of a fixation attack could be stopped if the
Web application checked more information in the request
header. For instance, the origin or host variables will dif-
fer from the attacker’s, and the Web application could
detect the hijack. Another countermeasure identified by
Mularien (2010) and OWASP (2011a) for session fixation
is to simply regenerate session tokens after login or when
switching from http to https and vice versa.

Based on an informal survey of a variety of sites, most
do not regenerate session IDs. The only Website that did
regenerate the session ID was a banking Website. The
session cookie was generated during login, and it was
configured to only be transmitted on encrypted connec-
tions. The five e-commerce Websites analyzed appeared
to be generating a session ID upon first visit and not
regenerating it after login. The other Websites analyzed
do not fall into these two categories but do have a login
and seem to not regenerate session IDs after login. These
results are based on cookie analysis only. Figures 12 and
13 demonstrate this issue with one of the Websites ana-
lyzed. Figure 12 displays the cookie that is created by the
Website before logging in. All pages are displayed using

FIGURE 12 ASP.NET_SessionId cookie created when
browsing Website not logged in (color figure available online).

FIGURE 13 ASP.NET_SessionId cookie after logging into
Website (color figure available online).

the HTTP protocol. Figure 13 displays the same cookie
after logging into the Website. The login page uses HTTPS
and, after logging in, the subsequent pages use HTTP.
The ASP.NET_SessionId cookie value is the same for both
cookies; therefore, this session ID was not regenerated
going from HTTP to HTTPS.

3.3. Cross-Site Scripting Attacks
Cross-site scripting (XSS) attacks happen when an

attacker is able to embed malicious scripts on a Web page.
XSS is a potential problem for any Website that displays

S. Wedman et al. 62



untrusted user input. CERT (2000) states that Website
developers can prevent these types of attacks from occur-
ring by “filtering and encoding Web page input.” This
means that all user input should be encoded and fil-
tered to not allow for embedded scripts to be displayed
and executed on a Web page or stored in a database
for later display. There are well-tested filtering functions
already available to programmers. Enterprise Security API
(ESAPI) is a Web application security control library
offered by OWASP. The ESAPI framework includes default
implementations of input validation controls. There are
three different types of XSS attacks defined by OWASP
(2010a):

• Stored,
• Reflected, and
• DOM injected.

Each type will be described in the following subsections.

Store XSS

Stored XSS is when the malicious script is entered into
a form and saved into the Web application’s database. This
malicious script is then potentially displayed for an admin-
istrator or general site user. This can only happen if the
input is not filtered and the output is not sanitized. The
response Web page presented to the user would then exe-
cute the java script in the same domain as the Web page;
that is, the malicious script is able to avoid restrictions
in the same origin policy. The same origin policy is the
core security policy in place for browser-side programming
languages such as JavaScript. It limits scripts from access-
ing information from other domains (White, 2009). The
script must be embedded into the Website to avoid this
restriction. The user has no knowledge or warning that
a script is running because the browser thinks the script
is legitimate. With an embedded script, the attacker can
easily obtain the user’s cookies for that domain by call-
ing the document.cookie function. Once the script has the
cookies, it can transmit them to the attacker. If the ses-
sion token is saved as a cookie, the attacker has captured
the session and is able to perform a hijacking attack.
The damage caused by this attack dramatically increases
if an administrator is the one who runs the malicious java
script. The httponly cookie attribute previously mentioned
was defined by Microsoft as a deterrent to XSS attacks
(Tappenden & Miller, 2008). Figure 11 is an example of a
cookie with this attribute set. This attribute tells the client

container that the cookie cannot be accessed through a
script. IE8 incorporates a XSS filter, but it initially caused
more vulnerabilities. Microsoft Security Bulletin MS10-
002 said that there were seven vulnerabilities reported
and the most critical ones had to deal with XSS attacks
(Microsoft, 2010).

Reflected XSS

A reflected XSS attack is when the malicious script is
reflected off a web server and sent to a victim. If a Web
application displays part of the input in an error message,
a malicious script could be reflected back to a victim. The
browser would run the script without the victim knowing
it. Reflected attacks can be sent to a victim through email
or another Web page (OWASP, 2010a).

DOM Injected XSS

A Document Object Model (DOM) based attack occurs
when the embedded script modifies the client’s DOM
environment. The DOM defines the logical structure of
Web page documents. Any HTML or XML elements can
be defined in the DOM. A DOM attack can add, delete,
or modify elements in the DOM tree on the client side.

3.4. Cross-Site Request Forgery
Cross-site request forgery (XSRF) attacks happen when

the user’s browser session is exploited and a Web transac-
tion is forged (Kerschbaum, 2007). Jovanovic et al. (2006)
explains a XSRF attack as exploiting the trust that a Web
application has with an authenticated user. Figure 14 helps
to explain this attack. The user visits the attacker’s Website
or Web page that has the embedded malicious script while

FIGURE 14 Kerschbaum (2007) offers this depiction of
interactions during XSRF attack (color figure available online).

63 Web Application Session Management



FIGURE 15 Screen shot of a Website’s csrftoken cookie (color
figure available online).

also having a session open with the attacked site. The
cross-site request forgery attack takes place using the user’s
established session to forge a transaction without the user’s
knowledge. The attacked site thinks the request was sent
by the user, but it was actually sent by the script from the
attacker’s Web site or a XSS embedded script.

Upon analysis, some Websites also create a csrftoken
cookie (Figure 15 is a screen shot of a csrftoken cookie).
This cookie is valid for one year, so when logging out and
re-logging in the csrftoken remains the same. This cre-
ates a large window for an attacker to discover the value.
The token is created and used in a double submit cookies
technique to prevent CSRF attacks, which is a form of syn-
chronized token pattern. OWASP (2011b) describes the
double submit cookie technique as sending the csrftoken
two different ways when submitting forms on a Website:
the token is required to be sent in the form as a hidden
value and as a cookie, and the values must match or it is
a possible CSRF attack. Since a CSRF attack is unable to
view the cookies from a Website because of the same ori-
gin policy, it is practically impossible for the attacker to
submit the form with the csrftoken value set to match the
cookie. OWASP (2011b) states that including authenti-
cated session identifiers in HTTP parameters may increase
the overall risk of session hijacking, but developers are still
encouraged to use a synchronizer token pattern to help
prevent CSRF attacks. OWASP has a CSRFGuard project
which is a java library that implements a variant of the syn-
chronizer token pattern. This guard performs the csrftoken
check to ensure the form token matches the session csrfto-
ken. If the tokens do not match, the request may be denied
access (OWASP, 2011c).

Kerschbaum (2007) offers another solution to XSS.
This solution forces all Web activity to originate at an entry
page for a Website. All other pages are referred to as regular

pages. Once a user enters the Website, a session is created.
The regular pages ensure that the session is valid and that
the referrer header is set to their Web application. If the
referrer header does not match, the user is redirected to an
entry page to reestablish authenticity. The assumption for
this technique is that the referrer header cannot be forged.
Assumptions like this present a weakness in the strategy.

3.5. Man in the Middle
A man-in-the-middle (MITM) attack occurs when an

attacker is able to impersonate a legitimate server. The
attacker acts as the MITM and receives all traffic from
the client and forwards it to the legitimate server and vice
versa. Figure 16 (modified from Xia and Brustoloni 2005)
shows the sequence for a MITM attack. The Web client
thinks it is communicating with the Web server, but it
is really communicating with the MITM server that for-
wards the request to the Web server. The Web server sends
the response to the MITM server, which has the ability to
repackage it and forward it to the Web client.

This type of attack is successful with HTTP and
HTTPS transmissions. If the MITM connects with the
Web server using HTTPS, then it could read the response
and forward it to the Web client using HTTP. The user
would have to be aware that HTTPS is not being used.
Another scenario is if the MITM server connects with the
Web client using HTTPS and the user overrides the secu-
rity warnings. This would allow the untrusted certificate
to be used with the client. The attacker would be able
to decode the information sent from the client’s Web and
encode the information and forward it to the Web server
using the Web server’s certificate. Xia and Brustonloni

FIGURE 16 MITM attack sequence (color figure available
online).

S. Wedman et al. 64



(2005) describe this attack and have created a prevention
method. The technique helps prevent an attacker from
becoming a MITM but does not help with recognizing
a MITM server. The focus of this technique is end-user
education. The education relates to stopping the user from
making simple mistakes by displaying more information
to a client container before the user makes potentially dan-
gerous actions. One advantage to this technique since it
is implemented in the client container is that it covers
all Web applications, legitimate and malicious. This is a
good addition to prevention, but it does not address coding
practices to detect an impersonator.

4. SESSION SECURING MECHANISMS
Developers can secure sessions against the previously

addressed hijacking attacks using a variety of mechanisms.
A comprehensive overview of all securing mechanisms is
beyond the scope of this paper, so only a small sampling of
session securing tools and solutions will be reviewed in this
section.

4.1. Session Prediction Mechanisms
Session tokens should be generated using long randomly

generated numbers to deter prediction such as brute force
attack guessing. The user’s IP address can be stored to link
the session token to a specific connection assuming that
the attacker cannot use the same IP address. Both meth-
ods reduce the ability of an attacker to capture and forge
the session token without adding significantly to developer
complexity or overhead.

4.2. Session Fixation Mechanisms
Session token regeneration can mitigate session fixation

attacks in a variety of forms. Session tokens from legiti-
mate users should be regenerated when switching between
HTTP and HTTPS sessions. This mitigates the chance
that the session token has been intercepted and can be
used to hijack the session. Phishing or malicious URL posts
that include a session ID known to an attacker should also
be regenerated upon login. This eliminates the ability of a
malicious user to use the previous session ID. Session token
expiration mechanisms can be enforced at the web server
rather than relying on user timeout such as browser infor-
mation. Without token regeneration, developers should
employ mechanisms to check token header information.

4.3. Cross-Site Scripting
Mechanisms

Several commonly used browsers provide built-in XSS
mitigation tools. Internet Explorer 8 launched a XSS filter
that is enabled by default. If an exposure to XSS is detected,
then user will be alerted of the presence of a possible XSS
attack and can choose to proceed. Google Chrome also
launches a XSS Auditor which behaves in a similar manner
and is enabled by default. Both tools do not eliminate XSS
risk altogether, but they do provide enhanced security to
the end user. This approach is limited to browser versions
that support these tools, but not all computers are running
the most updated version of every browser. For example,
XSS filtering does not apply to Internet Explorer version
7 or earlier. Clearly, additional XSS mitigation strategies
are needed.

Providing additional browser support has been pro-
posed by Louw and Venkatakrishnan (2009) by integrating
the BLUEPRINT tool with existing Web application.
BLUEPRINT was able to “demonstrate strong resistance to
attacks, excellent compatibility with web browsers and reason-
able performance overheads.” Athanasopoulos et al. (2010)
propose the xJS framework to mitigate XSS attacks with-
out disrupting the client browsing experience and with
minimal computational overhead.

4.4. Cross-Site Request Forgery
Mechanisms

Mechanisms to mitigate CSRF can be broken into
two categories: user and developer. User mechanisms are
relatively easy to implement but rely completely on end-
user education. Security unaware users may routinely leave
browser sessions logged in, save passwords, or access several
Websites at one time. Popular Web-based email appli-
cations may not default to strong security settings such
as disabling links and images. Complexity is minimal to
implement solutions for all of these cases but relies heavily
on end-user education and awareness to provide a more
secure environment that will mitigate CSRF hijacking
attacks.

Developers must focus on different CSRF mitigation
mechanisms. OWASP (2012) recommends countermea-
sures to reduce risk including adding “session-related
information to the URL” and POST requests to increase
hijacking attack complexity. Testing tools are available
from open-source, widely available sources, as well as
commercially developed tools.

65 Web Application Session Management



4.5. Man-in–the-Middle Mechanisms
Beyond end-user education, we were unable to find a

viable technique to prevent this type of attack. The server
establishes a valid session with the MITM and the MITM
establishes a valid session with the user. If this scenario is
able to happen, how is the Web application supposed to
determine that the session is with a legitimate user instead
of a MITM attacker? Mechanisms for securing sessions
against the hijacking attacks are summarized in Table 3.

5. CONCLUSIONS
The previous section reviewed a variety of HTTP

session hijacking attacks. Each specific attack presents new
challenges for Web developers to create secure code and
to protect against threats. Table 3 summarizes the vulner-
abilities discussed and techniques to minimize the risks.

Web application session management’s objective stated by
OWASP (2011a) is to ensure “authenticated users have a
robust and cryptographically secure association with their
session.” Therefore, if session management is required by
a Web application, then the responsibility to provide a
secure association with the session is inherently required.
This seems to be the key to preventing HTTP session
hijacking attacks.

The contributions of our work can be summarized as
follows: (1) Providing an overview of session management
and the security requirements of an application to create
and maintain a Web application session; (2) Identifying
various attacks that can lead to a session being hijacked
and providing brief descriptions on how these attacks take
place; (3) Consolidating and organizing related preven-
tion techniques for each type of attack; and (4) Analyzing
existing Web application implementations to help demon-
strate the need for session hijacking prevention.

TABLE 3 Summary of vulnerabilities reviewed in paper

Hijacking attacks Vulnerability Mechanisms

Session token creation
Session prediction Session token value 1. Generate session tokens using long randomly

generated numbers
2. Store IP address to link user connection and

session token
Session fixation Creation of session token on first visit

and keep token entire visit.
Re-generate token value after logging into

Website
Session token deletion

Session inactive timeout • Implement a shorter session timeout on servers
• Set cookie max-age to −1
• Communicate browser session timeout to server

session to help keep in sync
Browser session 1. Use of referrer header

2. Synchronizer token pattern (XSRF)
Session token transmission

Use of URL rewriting Require the use of cookies
Don’t allow for URL rewriting

Session token verification
Cross-site scripting (XSS) User input displayed in browser Input filter tool and output sanitizing tool

Use of http only cookies
Cross-site forgery (XSRF) Developers:

Synchronizer token pattern
Use of referrer header

End users:
Logging off and closing browser sessions up exit
Do not save or remember passwords
Segregate sensitive applications into separate

browser sessions
Use security features of Web-enabled email

environments to disallow HTML tags by default
Man in the middle (MITM) • End user education

S. Wedman et al. 66



5.1. Suggestions for Future Work
Future work in this area includes the following:

• Real time detection of a session hijacking attack. Security
through coding may not be enough since a hijacking
attack uses valid session tokens. A Web application needs
to identify if a user is legitimate. The key to detection
is accurately defining session hijacking signatures and
creating a real time engine to detect if a user is being
impersonated.

• Integration of session management into Web server and
browser applications. Such integration technology would
remove the need for individual Web applications to
implement session management.

REFERENCES
Athanasopoulos, E., Pappas, V., Krithinakis, A., Ligouras, S., Markatos,

E., and Karagiannis, T. (2010). xJS: Practical XSS prevention for
Web application development. Proceedings of the 2010 USENIX
Conference on Web Application Development, pp. 147–158.

Belani, R. (2004). Basic Web session impersonation. Symantec. Available
from: http://www.symantec.com/connect/articles/basic-web-session-
impersonation

Berghel, H. (2002). Hijacking the Web. Communications of the ACM,
45(4), 23–27.

CERT/CC. (2000). CERT advisory CA-2000-02 malicious HTML tags
embedded in client Web requests. Available from: http://www.cert.
org/advisories/CA-2000-02.html

Chetty, D. (2009). Tomcat 6 developer’s guide. Birmingham, England:
Packt Publishing.

Esposito, D. (2004, October 11). Session hijacking. Dr. Dobbs Journal.
Fain, Y. (2011). Java programming 24-hour trainer (p. 444). Indianapolis,

IN: Wiley.
Jovanovic, N., Kirda, E., and Kruegel, C. (2006). Preventing cross-site

request forgery attacks. Securecomm and Workshops, August 28–
September 1.

Kerschbaum, F. (2007). Simple cross-site attack prevention. Third
International Conference on SecureComm 2007, pp. 464–472,
17–21.

Louw, M. T. and Venkatakrishnan, V. N. (2009). Blueprint:
Robust prevention of cross-site scripting attacks for existing
browsers. 2009 30th IEEE Symposium on Security and Privacy,
pp. 331–346.

Microsoft. (2010). Microsoft security bulletin MS10-002. Available from:
http://www.microsoft.com/technet/security/bulletin/ms10-002.mspx

Mitchell, S. (2010). Sams teach yourself ASP.NET 4 in 24 hours: Complete
starter kit (1st ed.). Indianapolis, IN: Sams.

Mularien, P. (2010). Spring security 3. Birmingham, England: Packt
Publishing.

OWASP Foundation. (2010a, October). Cross-site scripting (XSS).
OWASP Foundation. (2010b). OSWAP top 10 – 2010. The ten most

critical Web application security risks.
OWASP Foundation. (2011a). Session management. Available from:

https://www.owasp.org/index.php/Session_Management

OWASP Foundation. (2011b). CSRF prevention cheat sheet. Available
from: https://www.owasp.org/index.php/Cross-Site_Request_
Forgery_(CSRF)_Prevention_Cheat_Sheet

OWASP Foundation. (2011c). CSRFGuard project. Available from: https://
www.owasp.org/index.php/Category:OWASP_CSRFGuard_Project

OWASP Foundation. (2012). Testing for CSRF (OWASP-SM-005).
Available from: https://www.owasp.org/index.php/Testing_for_CSRF_
(OWASP-SM-005)

Shklar, L. and Rosen, R. (2009). Web application architecture: Principles,
protocols, and practices (2nd ed.). West Sussex, England: John
Wiley & Sons.

Tappenden, A. and Miller, J. (2008). A three-tiered testing strat-
egy for cookies. 1st International Conference on Software Testing,
Verification, and Validation, April 9–11.

Tulloch, M., Northrup, T., and Honeycutt, J. (2010). Windows 7 resource
kit. Redmond, WA: Microsoft Press.

Vamosi, R. (2009, November). New banking Trojan horses gain pol-
ish. PCWorld.com. Available from: http://www.pcworld.com/article/
182889/new_banking_trojan_horses_gain_poli-sh.html

Vinod, V., Anoop, M., Firosh, U., Sachin, S., Sangit, P., and Siddharth,
A (2008). Application security in the ISO27001 environment (pp.
207–209). Ely, UK: IT Governance Publishing.

Visaggio, C. and Blasio, L. (2010). Session management vulnerabilities in
today’s Web. Security & Privacy, IEEE, 8(5), 48–56.

White, A. (2009). Java script programmers reference. Indianapolis, IN:
Wiley.

Xia, H. and Brustoloni, J. (2005). Hardening Web browsers against man-
in-the-middle and eavesdropping attacks. WWW ‘05 Proceedings of
the 14th International Conference of World Wide Web, pp. 489–498.

BIOGRAPHIES
Shellie Wedman is an M.S. in Information

Technology candidate at the University of Kansas. Her
research interest is information security.

Annette Tetmeyer is a Ph.D. candidate in computer
science at the University of Kansas. Her research interests
include security requirements engineering, data mining,
human computer interaction, and engineering education.
In addition to experience in private industry, she has
taught a variety of undergraduate and graduate engineer-
ing courses at the University of Kansas. She received her
M.S. in Computer Science from the University of Kansas,
her M.S. in Engineering Management from the University
of Kansas, and her B.S. in Mechanical Engineering from
Iowa State University.

Hossein Saiedian (Ph.D., Kansas State University,
1989) is currently a professor in the Department of
Electrical Engineering and Computer Science at the
University of Kansas (KU) and a member of the KU
Information and Telecommunication Technology Center
(ITTC). Professor Saiedian’s primary area of research is
software engineering and information security.

67 Web Application Session Management



Copyright of Information Security Journal: A Global Perspective is the property of Taylor &
Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.


