
14 CROSSTALK The Journal of Defense Software Engineering July/August 2009

Software products are increasingly being
deployed in complex, potentially dan-

gerous products such as weapons systems,
aircraft, and medical devices. Software
products are critical because failure in
these areas could result in loss of life, sig-
nificant environmental damage, and major
financial loss. This might lead one to
believe that care would be taken to imple-
ment these software products using
proven, reproducible methods. Unfortu-
nately, this is not always the case.

In 1994, a Standish Group study [1]
found that 53 percent of software projects
failed outright and another 31 percent
were challenged by extreme budget over-
runs. Since that time, many responses to
the high rate of software project failures
have been proposed. Examples include
the SEI’s CMMI®, the ISO’s 9001:2000 for
software development, and the IEEE’s J-
STD-016.

One feature that these software devel-
opment standards have in common is that
they all impose requirements traceability
practices on the software development
process. Requirements traceability can be
defined as “the ability to describe and fol-
low the life of a requirement, in both a
forward and backward direction” [2]. This
concept is shown in Figure 1.

Although many facets of a software
project can be traced, the focus of this
article is on requirements traceability;
therefore, the term traceability is used to
refer to requirements traceability through-
out. See Figure 2, which provides an alter-
native view to Figure 1.

Research has shown that inadequate
traceability is an important contributing
factor to software project failures and
budget overruns [3]. As a response, there
has been an outpouring of research and
literature on the subject of traceability,
and many organizations have been striving
to improve their traceability practices.
These efforts have not been in vain. In
2006, The Standish Group updated their
1994 study [4], showing that only 19 per-

cent of software projects failed outright
with another 46 percent challenged by
budget overruns. The improvement since
1994 is clearly shown in Table 1 (see page
16); however, room for growth remains.

Although the importance of traceabil-
ity seems to be well-accepted in the soft-
ware engineering industry, research sug-
gests that many organizations still do not
understand the principles of traceability

and are struggling with implementing
traceability practices in the software devel-
opment life cycle [5]. Perhaps the biggest
need is for a better understanding of why
traceability is important and the challenges
facing its implementation. This article
attempts to address this need by studying
the factors that make traceability impor-
tant, and discusses the challenges facing
traceability practices in industry.

The Importance of
Traceability
Requirements traceability has been
demonstrated to provide many benefits to
organizations that make proper use of
traceability techniques. This is why trace-
ability is an important component of
many standards for software develop-

ment, such as the CMMI and ISO
9001:2000. Important benefits from trace-
ability can be realized in the following
areas: project management, process visi-
bility, verification and validation (V&V),
and maintenance [6].

Project Management
Traceability makes project management
easier by simplifying project estimates. By
following traceability links, a project man-
ager can quickly see how many artifacts will
be affected by a proposed change and can
make an informed decision about the costs
and risks associated with that change.
Project managers can also utilize traceabili-
ty to assist in measuring project progress.
As requirements are traced to code and
later to test cases, management can estimate
the project completion status based on how
many requirements have been traced to
artifacts created later in the development
cycle. This information can be used to esti-
mate the schedule for a project during
development and can be used to assess risk.

Process Visibility
Traceability offers improved process visi-
bility to both project engineers and cus-
tomers. Through traceability, each project
engineer has access to contextual informa-
tion that can assist them in determining
where a requirement came from, its
importance, how it was implemented, and
how it was tested. Traceability can also be
viewed as a customer satisfaction issue. If
a project is audited or in the case of a law-
suit, traceability can be used to prove that
particular requirements were implemented
and tested. The availability of this infor-
mation also increases customer confi-
dence and satisfaction because it reassures
customers that they will receive the prod-
uct that they requested.

Verification and Validation
The most significant benefits provided by
traceability can be realized during the V&V
stages of a software project. Traceability
offers the ability to assess system function-
ality on a per-requirement basis, from the

Why Software Requirements 
Traceability Remains a Challenge 

Why do so many challenges exist in traceability practices today? While many of these challenges can be overcome through
organizational policy and procedure changes, quality requirements traceability tool support remains an open problem. After
discussing the basics of software requirements traceability, this article shows why neither manual traceability methods nor
existing COTS traceability tools are adequate for the current needs of the software engineering industry.

Dr. Hossein Saiedian
The University of Kansas 

Andrew Kannenberg
Garmin International 

® CMMI is registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.

“Through traceability,
each project engineer

has access to contextual
information that can

assist them in
determining where a

requirement came from,
its importance, how it
was implemented, and
how it was tested.”



Why Software Requirements Traceability Remains a Challenge 

July/August 2009 www.stsc.hill.af.mil 15

origin through the testing of each require-
ment. Properly implemented, traceability
can be used to prove that a system complies
with its requirements and that they have
been implemented correctly. If a require-
ment can be traced forward to a design arti-
fact, it validates that the requirement has
been designed into the system. Likewise, if
a requirement can be traced forward to the
code, it validates that the requirement was
implemented. Similarly, if a requirement
can be traced to a test case, it demonstrates
that the requirement has been verified
through testing. Without traceability, it is
impossible to demonstrate that a system
has been fully verified and validated.

Maintenance
Traceability is also a valuable tool during

the maintenance phase of a software pro-
ject for many of the same reasons that it is
valuable for project management. Initially
defined requirements for a software pro-
ject often change even after the project is
completed, and it is important to be able
to assess the potential impact of these
changes. Traceability makes it easy to
determine what requirements, design,
code, and test cases need to be updated to
fulfill a change request made during the
software project’s maintenance phase.
This allows for estimates of the time and
cost required to make a change.

Challenges in Requirement
Traceability
In spite of the benefits that traceability
offers to the software engineering indus-

try, its practice faces many challenges.
These challenges can be identified under
the areas of cost in terms of time and
effort, the difficulty of maintaining trace-
ability through change, different view-
points on traceability held by various pro-
ject stakeholders, organizational problems
and politics, and poor tool support.

Cost
One major challenge facing the imple-
mentation of traceability is simply the
costs involved. As a system grows in size
and complexity, capturing the requirement
traces quickly becomes complex and
expensive [7]. Because of this, the budget
for a project implementing traceability
must be greater than that of a project
without it. However, a project implement-

Backward from
Requirements

Forward to
Requirements

Backward from
Requirements

Forward to
Requirements

Year Failed Projects Challenged Projects Successful Projects 

1994 53% 31% 16%
2006 19% 46% 35%

System 
Requirement

Software 
Requirement

Design
Element

Code Module Test Case

005-00150-
80#00505

005-00150-
85#00112

Airspeed
Calculation 

calculate_airspeed() tc_103.doc

005-00150-
80#00506

005-00150-
85#00234

Airspeed
Display 

display_airspeed() tc_125.doc

Back
Req

Fo
Req

Requirement Origin
(e.g. Customer,

Industry Standard,
Project Engineer,

etc.)

m
s

s

Project Artifact
(e.g. Design

Document, Source
Code, Test Case,

etc.)

m
s

s

Back
Req

Fo
Req

Specified
Requirement

Requirements

Requirements

Requirements Design Testing Code

E
vo

lvin
g

V
ersio

n
s

Pre-Requirements
Traceability

Post-Requirements
Traceability

Users/Clients

Figure 1: A View of Software Requirements Traceability

Backward from
Requirements

Forward to
Requirements

Backward from
Requirements

Forward to
Requirements

Back
Req

Fo
Req

Requirement Origin
(e.g. Customer,

Industry Standard,
Project Engineer,

etc.)

m
s

s

Project Artifact
(e.g. Design

Document, Source
Code, Test Case,

etc.)

m
s

s

Back
Req

Fo
Req

Specified
Requirement

Requirements

Requirements

Requirements Design Testing Code

E
vo

lvin
g

V
ersio

n
s

Pre-Requirements
Traceability

Post-Requirements
Traceability

Users/Clients

Figure 2: An Alternative View of Software Requirements Traceability



Process Replication

16 CROSSTALK The Journal of Defense Software Engineering July/August 2009

ing traceability is far less likely to incur
major budget overruns because traceabili-
ty can detect project problems early in the
development process when they are easier
and cheaper to correct.

One method of dealing with the high
cost of traceability is to practice value-
based requirement tracing instead of full
tracing. Value-based requirement tracing
prioritizes all of the requirements in the
system, with the amount of time and
effort expended on tracing each require-
ment depending on the priority of that
requirement [7]. This can save a significant
amount of effort by focusing traceability
activities on the most important require-
ments. However, value-based tracing
requires a clear understanding of the
importance of each requirement in the
system; it may not be an option if full trac-
ing is a requirement of the customer or
the development process standards used
for the project.

Alternatively, the high costs of trace-
ability can be approached with the attitude
that the costs incurred will save much
greater costs further along in the develop-
ment process due to the benefits that
traceability offers to software projects.
This method does not solve the problem
of the high costs of traceability imple-
mentation, but it promotes a healthy atti-
tude towards managing costs for the entire
duration of a project instead of merely
looking at the short term.

Managing Change 
Maintaining traceability through changes
to the system is another significant chal-
lenge. Studies have shown that change can
be expected throughout the life cycle of
nearly every software project [8, 9].
Whenever such changes occur, it is neces-
sary to update the traceability data to
reflect these changes. This requires disci-
pline on the part of those making the
change to update the traceability data,
which can be costly in terms of time and
effort when the changes are extensive.

Unfortunately, strong discipline in main-
taining the accuracy of traceability is
uncommon, leading to a practice of disre-
garding traceability information in many
organizations [10].

Dealing with change and its impact on
traceability is a difficult prospect. Some
COTS tools offer assistance with identify-
ing the impact of change on existing
traceability data; however, a lot of manual
time and effort is still required to update

the traceability data [11]. Alternatively,
training can help users understand the
importance of discipline in maintaining
traceability data when changes occur.
Focusing on the long-term benefits of
traceability instead of the short-term costs
can help an organization sustain a healthy
attitude toward the costs of maintaining
traceability data amidst change.

Different Stakeholder Viewpoints
A contributing factor to poor support for

traceability may be the fact that many dif-
ferent viewpoints regarding traceability
exist, even among different project stake-
holders. These different viewpoints exist
primarily because current software engi-
neering standards typically require trace-
ability to be implemented but provide lit-
tle guidance as to why and how it should
be performed [5].

Project sponsors and upper manage-
ment often view traceability as something
that needs to be implemented merely to
comply with standards [12]. This leads to
a desire to spend as little time as possible
on traceability because the benefits out-
side of standards compliance are not well
understood. This viewpoint will likely
conflict with that of project engineers
familiar with the importance of traceabili-
ty who will want to ensure that the trace-
ability performed is complete and correct.
Perhaps the best way to deal with the
problem of different stakeholder view-
points on traceability is to create an orga-
nizational policy on traceability to apply
uniformly to all projects. Because the stan-
dards requiring traceability are vague,
organizations have a lot of leeway in get-
ting their own procedures in place for
implementing traceability. This can reduce
the amount of confusion about traceabili-
ty and leads to more consistent viewpoints
among the stakeholders involved.

Organizational Problems
Organizational problems also provide a
significant challenge to the implementa-
tion of traceability. Many organizations
view traceability as a mandate from spon-
sors or a tool for standard compliance
[12]. Typically, these organizations do not
have a commitment to comprehensive
traceability practices. This leads to an ad-
hoc practice of traceability, where trace-
ability data is created and maintained hap-
hazardly.

Lack of training poses another chal-
lenge [2]. Many organizations do not train
their employees regarding the importance
of traceability and traceability is not
emphasized in undergraduate education.
This can lead to resentment on the part of
those tasked with creating and maintaining
traceability information. They may view
the added workload as impacting their
productivity due to a staff ’s insufficient
understanding of why traceability is
important.

Politics can also play a role. Individuals
may be concerned that traceability data
will be used against them in performance
reviews or as a threat to their job security
[13]. This issue can arise because the indi-
vidual who captures a piece of traceability

Backward from
Requirements

Forward to
Requirements

Backward from
Requirements

Forward to
Requirements

ar Failed Projects Challenged Projects Successful Projects 

4 53% 31% 16%
6 19% 46% 35%

System 
Requirement

Software 
Requirement

Design
Element

Code Module Test Case

005-00150-
80#00505

005-00150-
85#00112

Airspeed
Calculation 

calculate_airspeed() tc_103.doc

005-00150-
80#00506

005-00150-
85#00234

Airspeed
Display 

display_airspeed() tc_125.doc

Back
Req

Fo
Req

rement Origin
. Customer,
try Standard,

ect Engineer,
etc.)

m
s

s

Project Artifact
(e.g. Design

Document, Source
Code, Test Case,

etc.)

m
s

s

Back
Req

Fo
Req

Specified
Requirement

Requirements

Requirements

Requirements Design Testing Code
E

v
o

lv
in

g
V

e
rs

io
n

s

equirements
ceability

Post-Requirements
Traceability

rs/Clients

Table 2: Example Traceability Matrix

“If an organization
has clear traceability
policies in place and
provides training on

how to comply
with these

policies, it is likely that
traceability will be
implemented in a
thorough manner

consistent with policy.”

Year Failed Projects Challenged Projects Successful Projects 

1994 53% 31% 16%
2006 19% 46% 35%

System 
Requirement

Software 
Requirement

Design
Element

Code Module Test Case

005-00150-
80#00505

005-00150-
85#00112

Airspeed
Calculation 

calculate_airspeed() tc_103.doc

005-00150-
80#00506

005-00150-
85#00234

Airspeed
Display 

display_airspeed() tc_125.doc

y y

Table 1: Comparison of the Standish Group’s 1994 and 2006 Results



Why Software Requirements Traceability Remains a Challenge 

July/August 2009 www.stsc.hill.af.mil 17

information is usually not the one who
makes use of it later. Those involved with
creating and maintaining traceability data
may feel that they are helping others to
look good while reducing their own pro-
ductivity.

The easiest way to correct organiza-
tional problems related to traceability is
through the use of policy and training. If
an organization has clear traceability poli-
cies in place and provides training on
how to comply with these policies, it is
likely that traceability will be implement-
ed in a thorough manner consistent with
policy [12].

Poor Tool Support
Poor tool support is perhaps the biggest
challenge to the implementation of trace-
ability. Even though the International
Council on Systems Engineering (INCOSE)
has a survey (see [14]) that lists 31 differ-
ent tools claiming to provide full traceabil-
ity support, traceability tool penetration
throughout the software engineering
industry is surprisingly low. Multiple stud-
ies have found the level commercial trace-
ability tool adoption to be around 50 per-
cent throughout industry [15, 16]. The
majority of the remaining companies uti-
lize manual methods (such as manually
created traceability matrices for imple-
menting traceability), and a small percent-
age develop their own in-house traceabili-
ty tools.

Problems With Manual Traceability
Methods
Traceability information can be captured
manually through utilizing techniques
such as traceability matrices. A traceability
matrix can be defined as “a table that illus-
trates logical links between individual
functional requirements and other system
artifacts” [8]. Since traceability matrices
are in tabular form, they are typically cre-
ated using a spreadsheet or a word pro-
cessing application’s table function and are
independent of the artifacts from which
they’ve captured traceability information.
An example traceability matrix is shown in
Table 2.

Unfortunately, manual traceability
methods are not suitable for the needs of
the software engineering industry. In [17],
the authors found that the number of
traceability links that need to be captured
grows exponentially with the size and
complexity of the software system. This
means that manually capturing traceability
data for large software projects requires an
extreme amount of time and effort.

Manual traceability methods are also
vulnerable to changes in the system. If

changes occur to any elements captured in
the traceability data, the affected portions
of the traceability data must be updated
manually. This requires discipline and a
significant amount of time and effort
spent on link-checking throughout the
traceability data. Because of this, it is easy
for manually created traceability data to
become out-of-sync with the current set
of requirements, design, code, and test
cases.

Manual traceability methods are also
prone to errors that are not easy to catch.
Errors can arise from simple typographic
mistakes, from inadvertently overlooking a
portion of the traceability data (such as an
individual requirement), or from careless-

ness by the individual capturing the data.
Because traceability artifacts for large pro-
jects are often hundreds or even thou-
sands of pages in length, such errors are
difficult to detect when depending on
manual methods for error checking.

Because of these disadvantages, manu-
al traceability methods are not suitable for
anything other than small software pro-
jects. Ralph R. Young stated: “in my judg-
ment, an automated requirements tool is
required for any project except tiny ones”
[18]. Similarly, Balasubramaniam Ramesh
(in [12]) found that traceability is error-
prone, time-consuming, and impossible to
maintain without the use of automated
tools. The why would nearly 50 percent of
software companies use manual traceabili-
ty methods? Is it because they are all

developing tiny projects? This is highly
unlikely. In 1994, Orlena Gotel and
Anthony Finkelstein [2] found that manu-
al traceability methods were preferred in
the industry due to shortcomings in avail-
able traceability tools. It is apparent that
this problem still exists today because
manual traceability methods are still pre-
ferred by a significant percentage of soft-
ware organizations.

Problems With COTS Traceability
Tools
Regrettably, currently existing COTS
traceability tools are not adequate for the
needs of the software engineering indus-
try. Studies have shown that existing com-
mercial traceability tools provide only sim-
plistic support for traceability [5].
Surprisingly, the tools that are available do
not fully automate the entire traceability
process; instead, they require users to
manually update many aspects of the
traceability data. This has led some
researchers to conclude that poor tool
support is the root cause for the lack of
traceability implementation [19].

COTS tools are typically marketed as
complete requirements management
packages, meaning that traceability is only
one added feature. The traceability fea-
tures usually only work if the project
methodology is based around the tool
itself. Unless the project is developed
from the ground up using a particular
tool, the tool is unable to provide much
benefit without significant rework.
Support for heterogeneous computing
environments is also lacking.

Although most tools support the iden-
tification of impacted artifacts when
changes occur, they typically do not pro-
vide assistance with updating the traceabil-
ity links or ensuring that the links and
affected artifacts are updated in a timely
manner [17]. This means that even when
tools are used, the traceability information
is not always maintained, nor can it always
be trusted to be up-to-date and accurate.
This problem is exacerbated by the fact
that tools typically only allow primitive
actions to be taken (in regards to trace-
ability).

Another issue with tools is that they
often suffer problems with poor integra-
tion and inflexibility. This has led at least
one researcher to conclude that existing
traceability tools have been developed
mostly for research purposes, and that
many projects are still waiting for tools
that do not require a particular develop-
ment or testing methodology [15].

Cost is another major disadvantage.
Although the licensing fees vary per tool,

“ ...the number of
traceability links that
need to be captured

grows exponentially with
the size and complexity
of the software system.

This means that
manually capturing

traceability data for large
software projects

requires an extreme
amount of time

and effort.”



Process Replication

18 CROSSTALK The Journal of Defense Software Engineering July/August 2009

the price tends to be thousands of dollars
up front, per license, in addition to yearly
maintenance fees. Because of this, the
cost of using COTS tools is often prohib-
itive, even for fairly small teams. Such
tools are also decoupled from the devel-
opment environment, meaning that
important traceability information—such
as code modules that implement require-
ments—may not be available [20]. For this
reason, Ramesh concluded that COTS
tools have “very limited utility in capturing
dynamic traceability information” [12].

Few solutions are available for the
problem of poor tool support for trace-
ability. Many organizations shun COTS
tools altogether due to their high cost and
inflexibility, instead making use of manual
methods such as traceability matrices.
Another approach—common among
organizations concerned with high-quality
traceability information—is to develop
elaborate in-house tools and utilities to
implement traceability [5]. Unfortunately,
this approach is not always feasible since
many organizations do not have the man-
power or the knowledge necessary to
develop such tools. Therefore, poor tool
support for traceability currently remains
an open problem.

Conclusions
This article has presented an introduction
to the benefits offered by traceability and
the challenges faced by the practice of
traceability in software projects today.
Traceability offers benefits to organiza-
tions in the areas of project management,
process visibility, V&V, and maintenance.
Traceability needs to be hardcoded into a
process to be replicated iteratively on
each and every project. Unfortunately,
many organizations struggle to under-
stand the importance of traceability,
meaning that these benefits often go
unrealized.

In spite of the benefits offered by
traceability, its implementation still faces
many challenges, especially in the areas of
cost, change management, organizational
problems, and poor tool support. The
lack of quality COTS traceability tools is
a significant challenge facing the imple-
mentation of traceability in the software
engineering industry today. These chal-
lenges lead many organizations to imple-
ment only as much traceability as is
required by their customers.

The challenges faced by traceability
are not new. Many of these challenges
can be mitigated by process and organi-

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
nicole.kentta@hill.af.mil.

COMING EVENTS

August 24-28
13th International Software Product

Line Conference
San Francisco, CA

www.sei.cmu.edu/activities/splc2009

August 31-September 4
17th IEEE International

Requirements Engineering Conference
Atlanta, GA

www.re09.org

September 9-10
2009 Unique Identification Forum

Orlando, FL
www.uidforum.com

September 21-24
4th Annual Team Software Process

Symposium
New Orleans, LA

www.sei.cmu.edu/tsp/symposium

October 4-9
ACM/IEEE 12th International
Conference on Model Driven

Engineering Languages and Systems
Denver, CO

www.modelsconference.org

October 18-21
MILCOM 2009

Boston, MA
www.milcom.org

October 19-23
International Conference on Software

Process Improvement 2009
Washington, D.C.
www.icspi.com

2010
22nd Annual Systems and Software

Technology Conference

www.sstc-online.org



Why Software Requirements Traceability Remains a Challenge 

July/August 2009 www.stsc.hill.af.mil 19

zational changes by groups interested in
improving their traceability practices.
Poor tool support for traceability remains
an exception; this is an area that is still an
open problem. Existing tools are costly
and provide only partial traceability sup-
port. This means that implementing
traceability is often tedious, requiring a
large amount of manual effort.

The lack of quality tools for imple-
menting traceability is not a technically
insurmountable problem. The solution
simply involves creating cost-effective
traceability tools that improve upon the
design and feature set of currently avail-
able tools. Such tools would serve to
greatly improve the practice of traceabil-
ity in the software engineering industry.u

References
1. The Standish Group. The Chaos

Report. 1994 <www.ibv.liu.se/content
/1/c6/04/12/28/The%20CHAOS
%20Report.pdf>.

2. Gotel, Orlena, and Anthony Finkel-
stein. An Analysis of the Require-
ments Traceability Problem. Proc. of
the First International Conference on
Requirements Engineering. Colorado
Springs, 1994: 94-101.

3. Dömges, Ralf, and Klaus Pohl.
“Adapting Traceability Environments
to Project Specific Needs.” Communi-
cations of the ACM 41.12 (2008): 55-
62.

4. The Standish Group. The Chaos
Report. 2006.

5. Ramesh, Balasubramaniam, and
Matthias Jarke. “Toward Reference
Models for Requirements Traceabili-
ty.” IEEE Transactions on Software
Engineering 27.1 (2001): 58-93.

6. Palmer, J.D. “Traceability.” Software
Requirements Engineering. Richard H.
Thayer and Merlin Dorfman, eds. New
York: IEEE Computer Society Press,
1997.

7. Heindl, Matthias, and Stefan Biffl. A
Case Study on Value-Based Require-
ments Tracing. Proc. of the 10th
European Software Engineering
Conference. Lisbon, Portugal, 2005:
60-69.

8. Wiegers, Karl. Software Requirements.
2nd ed. Redmond, WA: Microsoft
Press, 2003.

9. Boehm, Barry. “Value Based Software
Engineering.” ACM SIGSOFT Soft-
ware Engineering Notes 28.2 (2003).

10. Clarke, Siobhán, et al. Subject-
Oriented Design: Towards Improved
Alignment of Requirements, Design,
and Code. Proc. of the 1999 ACM
SIGPLAN Conference on Object-

Oriented Programming, Systems,
Languages, and Applications. Dallas,
TX: 325-329.

11. Cleland-Huang, Jane, Carl K. Chang,
and Yujia Ge. Supporting Event Based
Traceability Through High-Level
Recognition of Change Events. Proc.
of the 26th Annual International
Computer Software and Applications
Conference on Prolonging Software
Life: Development and Redevelop-
ment. Oxford, England, 2002: 595-
602.

12. Ramesh, Balasubramaniam. “Factors
Influencing Requirements Traceability
Practice.” Communications of the
ACM 41.12 (1998): 37-44.

13. Jarke, Matthias. “Requirements
Tracing.” Communications of the
ACM 41.12 (1998): 32-36.

14. INCOSE. “INCOSE Requirements
Management Tools Survey.” 2008
<www.paper-review.com/tools/rms/
read.php>.

15. Gills, Martins. “Software Testing and
Traceability.” University of Latvia.
2005 <http://www3.acadlib.lv/grey
doc/Gilla_disertacija/MGills_ang.
doc>.

16. Lempia, David L., and Steven P. Miller.
Requirements Engineering Manage-
ment. Proc. of the National Software
and Complex Electronic Hardware
Standardization Conference. Atlanta,
2006.

17. Cleland-Huang, Jane, Carl K. Chang,
and Mark J. Christensen. “Event-
Based Traceability for Managing
Evolutionary Change.” IEEE Trans-
actions on Software Engineering 29.9
(2003): 796-810.

18. Young, Ralph R. “Twelve Requirement
Basics for Project Success.” Cross-
Talk Dec. 2006.

19. Spanoudakis, George, et al. “Rule-
Based Generation of Requirements
Traceability Relations.” Journal of
Systems and Software 72.2 (2004):
105-127.

20. Naslavsky, Leila, et al. Using Scenarios
to Support Traceability. Proc. of the
Third International Workshop on
Traceability in Emerging Forms of
Software Engineering. Long Beach,
CA, 2005: 25-30.

About the Authors

Hossein Saiedian,
Ph.D., is currently a pro-
fessor of software engi-
neering at the University
of Kansas. Saiedian’s pri-
mary area of research is

software engineering and in particular
technical and managerial models for
quality software development. His past
research has been supported by the
National Science Foundation as well as
regional organizations. He has more
than 100 publications on a variety of
topics in software engineering and com-
puter science and is a senior member of
IEEE. Saiedian received his doctorate in
computing and information sciences
from Kansas State University.

The University of Kansas 
Electrical Engineering and 
Computer Science
University of Kansas
12600 Quivira RD
Overland Park, KS 66213
Phone: (913) 897-8515
Fax: (913) 897-8682
E-mail: saiedian@ku.edu

Andrew Kannenberg is
a software engineer at
Garmin International in
Olathe, Kansas. He
received a bachelor’s
degree in computer sci-

ence from South Dakota School of
Mines and Technology and his master’s
degree in information technology from
the University of Kansas.

Garmin International, Inc.
1200 E 151st ST
Olathe, KS 66062
Phone: (913) 397-8200
E-mail: andy.kannenberg

@gmail.com


