o Criteria for QA

The
Global Authority

on Object
The Journal of Object-Oriented Programming Development

October 1997 Vol. 10, No. 6

Ensuring successful

ring & Training

® Your Updated Guide to 280+ Providers
® Tips for Maximizing Your Investment

B g

Keys to Java Migration

Andrew Koenig
Closing in on the
C++ Standard

Non Kim
RDB “Universal” Servers
leing Real ORDBs a Bad Name

’ fLonibR" Pugh jluating Persistent
o e "9 5"99"" with Object Systems

i Reviving Functional
U5 $0/Can $12/'nﬂ $13 i Decomposition in 00D

Get Ready for G++ World, San Jose, November 3-7 ¢

Z
i
=
— I
i
GH
¢

: “

R
j 0

Kalyani Chennupati and Hossein Saiedian

Department of Computer Science, University of Nebraska at Omaha
Omaha, Nebraska, 68182-0500
email:hossein@cs.unomaha.edu

An Evaluation of Object Store
Management and Naming Schemes in
Persistent Object Systems

ABSTRACT

Persistent objects survive a program activation and outlive the
application that creates them. Other applications may make
use of persistent objects either just to use them or to manip-
ulate them. In such a case, a mechanism is needed to allow
access to the existing passive persistent objects. A naming
mechanism allows access to the persistent ohjects so that
they can be retrieved between applications or between ses-
sions of the same application that created them. The object
store organization that is used to manage the objects in the
persistent store is also important because it influences the ac-
cessing of the persistent objects. This article discusses the
various mechanisms for accessing and retrieving persistent
objects used locally or remotely. The different Object Store
Organizations used in some persistent environments are also
dealt with. The different schemes used for Persistent Object
Store organization and accessing and retrieving objects are
discussed with respect to their basic concepts, their merits,
and their weaknesses, if any. The discussion will be based on
comparison and the choice of one scheme over the others in
a persistent environment. There is no one unique choice based
on the schemes and therefore the article will deal with differ-
ent persistent environments, their underlying principles, and
the scheme that best fits each environment. Pointer swizzling,
another important area of study in persistent systems, is also
briefly discussed concerning the issues and the importance
of swizzling. We evaluate the naming and object store man-
agement schemes in different persistent environments.

language do not extend beyond the activation of the pro-

gram that created them. On the other hand, persistent ob-
jects survive a program activation and outlive the application
that creates them. The real world’ can be modeled in program-
ming languages using transient memory, whereas it can be mod-
eled in databases using persistent memory. That is, the data that
are associated with the program variables do not survive past the

The lifetimes of data or objects in a traditional programming

20 JOOP

OCTOBER 1997

execution of the program that created them, whereas the data
that are associated with a database typically survive long past the
execution of the program that created them.8 The persistent ab-
straction is designed to provide an underlying technology for
long-lived, concurrently accessed, and potentially large bodies
of data and programs. A few examples of such systems are
CAD/CAM systems, office automation, CASE tools, software en-
gineering environments, and object-oriented database systems.
In an object-oriented database environment, the objects that are
created also fall under the category of persistent objects.
Persistence, in general, means that certain program components
survive the termination of the program. These components,
therefore, have to be stored permanently in secondary storage
that is also called the persistent store.

In a database environment we can distinguish two different
components that can be made persistent. These are objects and
variables. In some object-oriented data models, like the GOM,
Sort, or Object Types can also be made persistent.® In this arti-
cle we consider the objects as being provided with persistence.
The persistent objects may be created by an object-oriented
database. Once the persistent objects have been created, they are
stored in the non-volatile memory or the persistent store. Other
applications or other sessions of the application that created the
objects may make use of these objects either to make use of their
values or to manipulate them. These persistent objects must
therefore be retrieved from the persistent store in order for an
application to make use of them. This retrieval can be done by
using a naming mechanism or by using some linkage mecha-
nism. Therefore, the design and implementation of the mecha-
nisms that support persistence must also address the important
issue of how to retrieve a persistent object. .

Another issue that is important from the perspective of re-
trieving objects is pointer swibzzling.9 Pointer swizzling is a tech-
nique that is used for optimizing the access to persistent objects
that are resident in main meémory other than in the secondary
memory or persistent store. The persistent pointers in the form
of unique object identifiers are transformed or swizzled into main
memory pointers or addresses. Although a detailed discussion of

dian

maha
-0500
a.edu

» data
st the
1t ab-
iy for
odies
§ are
reen-
tems.
atare
jects.
nents
ents,
orage

erent
sand
iOM,
iarti-
ence.
:nted
2y are
dther
d the
‘their
must
or an
ne by
acha-
echa-
rtant

of re-
tech-
djects
1dary
form
main
on of

e v

PERSISTENT OBJECT SYSTEMS

firstRect vi v6 v7 V12 firstRect secondRect
secondRec V2 v8 vi V5 v7 v10
v3 v9 v2 v6 v8 vil
va v10 v3 v9 v12
v5 vit va
Page 1 Page 2 Page 3 Page 1 Page 2

Figure 1. Physical clustering.

the different techniques of pointer swizzling is beyond the scope
of this article, a brief overview of the concept is called for.

In a persistent environment, an object could refer to another
object or objects. A persistent environment could also involve the
use of complex objects where an object is composed of one or
more objects. This highlights the importance of the issue of how
these persistent objects are stored in the persistent store. The way
in which the persistent objects are stored in the persistent store
influences the speed with which they can be retrieved. Therefore,
the storage of the persistent objects in the persistent store is also
an important area of consideration in a persistent environment.

In this article we deal with the persistent storage organization
of the objects, and the retrieval mechanisms of the objects from
the persistent store. Pointer swizzling, which is a measure to opti-
mize the access to persistent objects in main memory via convert-
ing references to main memory pointers, is also discussed brieﬂy.
Thereare anumber of persistent environments/architectures that
use one technique or the other. Therefore the area of persistent
store organization and the retrieval of the objects from the persis-
tent store is not a closed one with respect to the existing mecha-
nismsavailable. The purpose of this article is to emphasize the im-
portance of the persistent store organization and the retrieval of
the objects. These two importantareasina persistent environment
are discussed by using a few persistent environments as the basis.

The rest of the article is organized as follows. The section ti-
tled “Persistent Object Store Organization” deals with the per-
sistent store organization and describes the different mechanisms
used in a few persistent environments. The section “Accessing
and Retrieving Objects” deals with the retrieval mechanisms of
the objects from the persistent store. The section “Pointer
Swizzling” deals with the concept of pointer swizzling. The sec-
tion called “Evaluation” presents the discussion of several schemes
used for object store as well as for retrieving the objects and an-
alyzes theér advantages and/or pitfalls. The final section concludes
the article.

PERSISTENT OBJECT STORE ORGANIZATION

An application that needs a persistent object has to finally ob-
tain it from the persistent object store. In an environment that
uses persistent objects, an object can refer to other objects. When
an application program refers to an object which in turn refers
to other objects, the object store organization plays an impot-
tant role in the speed of retrieval of the persistent objects: A mech-

Figure 2. Logical clustering.

anism that clusters related objects can lead to faster retrievals.
IK16 and the O2 system? use such a mechanism to organize their
object store for faster retrieval. Objects, in the case of complex
objects, can be grouped together according to their physical char-
acteristics, i.e., objects that are instances of the same class can be
grouped together. On the other hand, objects can also be grouped
based on logical considerations. Complex objects and their ref-
erenced objects can all be grouped together. Consider the ob-
jects firstRec and secondRec of type rectangle referring to objects
v1,v2, v3, v4, v5, v6 and v7, v8, v9, v10, v11, v12 respectively of
type vertex. Grouping can be physical (Fig. 1) or logical (Fig. 2).

The objective oficlustering is to group the objects that are co-
referenced in physical memory. This grouping should eventu-
ally ensure the minimization of the number of I/O operations,
which is critical for data intensive applications like CAD/CAM
applications. The object management systems in a persistent en-

" vironment have to ensure effective management of large num-

bers of objects. Many of the complex object database systems
support the concept of object identity and object identifier. A
navigation operation involves following the object identifier to
access the referenced object. Navigation is therefore an essential
operation when dealing with complex objects. The navigation
operation is difficult to implement efficiently because every nav-
igation opera;cion inherently causes one disk access operation.
This increases the access time of the complex object. This
inefficiency is due to the fact that logical connections among the
objects are completely independent of the physical organization
of the obj‘ects in general, and the navigation operation among
those objects causes a lot of random accesses on persistent stor-
age devices.?

Consider a complex object rectangle that has six objects of
type vertex, alength variable and a breadth variable. Thus, a com-
plete description of a rectangle consists of seven objects. If the
rectangle object with id1 and the vertices with id2, id3, id4, id5,
id6, and id7 are scattered throughout the pages on the disk, then
a total of seven disk accesses are required to fetch the complete
rectangle representation into main memory. If all the objects re-
side on one page, then only one page access is needed. This leads
to a savings of a factor of six. Therefore, the savings with respect
to access time increases when the logically related objects fit into
a single page. Besides, less buffer space is wasted in main mem-
ory and the percentage of objects on a page needed by an appli-
cation is high. Clustering those objects that are accessed together

OCTOBER 1997 JOOP 21

PERSISTENT OBJECT SYSTEMS

in an application increases this percentage and, hence, increases
performance. The main motivation behind the clustering of ob-
jects is, therefore, improved performance during access of logi-
cally related objects.

Object-oriented databases that rely on physical object identifiers
commonly apply a simple clustering mechanism that exploits user
hints.® The user can indicate where a newly created object is to be
placed when using this strategy. This is mostly done by allowing
the user to specify another object in whose proximity the newly
created object is to be stored. This is a disadvantage because the
user has to solve the complicated clustering problem. Besides, if
the object in whose proximity the newly created object is to be
placed is stored on a page on which the newly created object does
not fit anymore, there will be no control over the clustering.

A clustering mechanism should provide a means to place log-
ically connected objects as close to each other as possible on disk
memory so that the number of disk accesses is reduced. In the
following subsections we discuss the variotis methods that are
used for clustering in various persistent environments.

Clustering strategies in the O2 system
The O2 system is set up as a server and a network of worksta-
tions. The object manager that manages the persistent objects is
built on top of the Wisconsin Storage System (WiSS).4In O2 ob-
jects are uniquely identified by objectidentifiers. The objects are
mapped to records and the records, in turn, are identified by
unique Record IDentifiers. The Record IDentifiers describe the
physical address of the records. WiSS, which provides the basic
support for persistence, allows records to be stored near one an-
other, thereby offering the possibility of clustering.

In 02, the clustering mechanisms rely on inheritance and the
structural information given by the object types. All the

of the logical clusters is unlimited and is composed of a root ob-
ject and a set of objects grouped with it. As the objects are mapped
to records in 02, the physical clusters are composed of a set of
records. The physical clusters are mapped to a memory page. For
a given class the best placement trec has to be found so that the
clustering is the most effective one. To do this, the most frequently
performed operations in the database are taken into account. O2
uses a clustering algorithm that implements the complex objects
with inheritance. The clustering algorithm is a greedy pattern
matching algorithm with no page splitting.

Clustering in the IK system
IK is an object-oriented platform, the main aim of which is to
simplify the development of distributed and persistent applica-
tions. In IK all objects are created and accessed in a single and
uniform manner. IK follows the general architecture and model
as defined in ESPRIT project Commandos.? In IK, the object
space includes all the objects in the persistent store and all the
other objects that exist within the application address space. The
global names are assigned to objects when their references are
sent between applications. The objects are grouped in such away
that object graphs cross address spaces under a single global
name. IK assigns objects to clusters at runtime and hides, as much
as possible, the object’s graph under a single global name.
Objects are assigned to clusters such that clusters have only
a single globally known object called the head object. The body
of the cluster is composed of all the objects that are only reach-
able through the head object. Therefore, the whole cluster is
identified by a global name of its head object and the objects be-
longing to the cluster body do not need a global name because
they are only referenced within the cluster. In IK the persistent

components of the object are not clustered together.
Instead, grouping strategies are defined which take the
operations performed in the database into account. The
02 system uses clustering strategies based on static clus-
tering, which are based on the concept of placement
trees.2 The type structure of a class in the O2 system
may be represented as an infinite tree. A placement tree
is any finite sub-tree that is extracted from this infinite
tree. A clustering strategy for the system classes is a set

of placement trees. For a particular class hierarchy, there =
could be a number of placement trees based on which []
objects call which other objects. The best placement tree Tire

is to be chosen to have the best possible clustering of
complex objects. Clustering is transparent to the user
of the O2 system. Thus, the placement trees can be
modified at any time without affecting the programs.
Consider a complex object of type Car that refer-
ences objects of type Tire, Engine and Parts, where Tire
further references an object of type Material. The ob-
jects are placed in logical clusters using the placement

Car Parts Tire
[] [] []

! ."ag 7
[] {} {}

Engine ‘ Material

[]

Parts

trees associated with the class of which they are in-
stances as shown in Figure 3. O2 assumes that the size

22 JOOP

OCTOBER 1997

Figure 3. An example of a Placement Tree.

>t ob-
ipped
set of
e. For
at'the
1ently
it. 02
bjects
ittern

11s to
plica-
eand
nodel
object
all the
e.The
les are
.away
global
much

e only
: body
reach-
ster is
cts be-
ecause
sistent

rial

, |

PERSISTENT OBJECT SYSTEMS

store is supported by a set of storage servers. A generic runtime
library (GRL) linked with each application cooperates with the
persistent store to support the global object space. The GRL keeps
track of all global names known by the application in a table that
is called the globally Known Object Table (KOT). Initially, each
object in the KOT is considered to be the head of the new clus-
ter. The graph of each object is traversed. The visited objects are
tagged with the mark of the head object. If an object is tagged by
different marks, it is proroted to a new cluster head. After mak-
ing all objects reachable from the KOT with a cluster head mark,
objects with the same mark are grouped together.

Clustering in Arjuna

Arjuna is an object-oriented programming system that permits
the creation of fault-tolerant, distributed applications.s Arjuna
uses different classes for its programming. The class ObjectState is
responsible for maintaining a buffer into which the instance vari-
ables constituting the state of the objects can be saved. To man-
age and locate ObjectState instances, Arjuna employs an object
store called Kubera. This object store is implemented by a class
called ObjectStore. The ObjectStore class is, hence, responsible for
the organization of the object states in persistent store. The
ObjectStore class uses a combination of two approaches for the ac-

tual organization. One approach considers that all objects could -

be maintained in a contiguous portion. of persistent store. The
other method considers clustering objects to improve the speed
with which a set of common objects is activated.

The identity of an object is considered a function of the class
of the object. The name of the class can, hence, be used to struc-
ture the object store organization. Arjuna uses a method where
objects that are instances of the same class can be maintained to-
gether. The name space of the object store can, therefore, be par-
titioned, which improves the speed to locate a passive state of an
object. Complex objects can also be retrieved by this mechanism.
For complex objects Arjuna uses the concept of implementing the
entire logical object store as a collection of individual object stores,
one for each class of objects, each containing all the passive states
of instances of that class. If each ObjectStore is a persistent object,
then all objects and classes will be reachable using the object store
that contains the passive states of the object store objects.

The class ObjectStore is, hence, responsible for maintaining
the physical location of all ObjectState instances in persistent
store. Each ObjectState instance is a persistent object whose pas-
sive state is maintained by another ObjectStore instance that is
considered to be the root of the object store. To locate an object,
the object store for the class of that object would be located us-
ing the root object store. This scheme enables users to create their
own object stores to manage any classes that they may define.

Other clustering strategies

Kato and Masuda® have proposed a scheme to notably accelerate
the navigation operation among a sea of complex objects by in-
creasing the number of effective objects per disk page. They use a
scheme where some attribute values of the referenced objects are

kept cached within the page in which the referencing object is
placed. According to the authors, the navigation from the refer-
encing object to the referenced objects requires only one disk ac-
cess. This scheme, called persistent caching, is an implementation
technique for complex objects with object identity. The authors
performed an analytical performance evaluation that showed a
significant performance gain in navigation using this scheme.
Shannon and Snodgrass' have introduced a new approach
to clustering in a persistent object store called semantic cluster-
ing. The clustering is to be specified by the programmer. The
mechanism that they propose uses dustering by partial closure,
i.e., a subset of the attributes of the referenced objects is used for
clustering. The objects are then fragmented in a controlled fash-
ion by splitting the attributes across page segments. The order-
ing of segments on persistent store is tised to ‘redtlce I/0 times
when accessing the referenced objects. The authors show that by
using the tools and environment that they used, semantic clus-
tering is faster than other forms of clustering by 20 to 35 per-
cent. This kind of clustering mechanism has its greatest disad-
vantage in the fact that the programmer has to specify the
clustering, which can become very tedious. Besides, because the
scheme uses fragmentation for the objects, more disk space is
required to store cross pointers between the segments.

ACCESSING AND RETRIEVING OBJECTS

A system that supports persistence has to provide a mechanism
by which the users of the system can name, and subsequently ac-
cess an existing persistent resource. The simplest way of doing
this is through the use of the file system naming mechanisms used
in traditional operating systems like UNIX, where the persistent
resources are the files. The symbolic names, which are character
based, are used to access the files in the UNIX operating system.
In a similar fashion, objects that are persistent resources can be
accessed by symbolic names at the user level or the application
level. These symbolic names are to be mapped to the system level
niames to finally access and retrieve the objects in the persistent
system. Arjuna uses such a naming scheme to refer to.objects that
are created using a tool it provides. IK uses different levéls of ob-
ject naming. The global names of the objects are used to find the
objects on the persistent store. Persistent objects can also be ac-
cessed by links or references. The underlying concepts of these
two schemes for accessing persistent objects are discussed below.

Object naming

To access a persistent object that is stored in the persistent store
ina persistent environment, an application can rhake use of sym-
bolic names. These symbolic namies are then to be mépped to
the system level or the architecture level names to finally access
the objects. We discuss two naming schemes that are used in
different persistent environments. The naming mechanisms in
Arjuna and the IK system are detailed below. Both the systems
are for distributed and, persistent applications.

Object Naming in Arjund. Arjuna adopts a three part naming

OCTOBER 1997 JOOP 23

PERSISTENT OBJECT SYSTEMS

scheme, as described below, which enables the persistence mech-
anism to locate an object with a network of nodes. In Arjuna, the
persistent resources are instances of classes that are constructed
using the tools it provides. The passive forms of the objects that
are constructed therefore have to be retrieved from the object store
in order for the application to use them. To provide ari acceptable
user interface to an application that accesses persistent objects,
symbolic names cari be used at the user level that can be mapped
to the system level naming mechanisms, Arjuna uses a scheme
where a fully quantified name of an object can be considered to
consist of three parts: instance name, class name, and node name.
The instince name is the object inl which the application is inter-
ested. The class name forms the class of which the object in ques-
tion is an instance. The node name specifies the node in the dis-
tributed network where the object is actually stored. The users of
the system do not have to be aware of this fully quantified nam-
ing scheme. A name server could map the partially quiantified
names supplied by the user to an equivalent fully quantified name.

Arjuna provides a class called ArjunaName that supports a
string based naming scheme. This class is provided to the user
of the system. To identify an existing persistent object, an in-
stance of ArjunaName has to be declared which is then used as
an argument to the actual object instance declarationi. An ex-
ample of this is shown below. In this example, an existing in-
stance of the class WorkSheet called FileDetails is accessed through
the identifiet ClearSheet in the application:

WorkSheet ClearSheet (new ArjunaName (FiléDetails));

According to this scheme, if the pefsistent object does not exist,
then it is created at the node in the system where the application
is running. In a situation where there are multiple objects exist-
ing on different nodes with the same name, then any one may
be selected. To access a specific persistent object, the name can
be further quiantified. The following code is used to access an in-
stance of the WorkSheet class on a node called bayou:

WorkSheet ClearSheet (new ArjunaName (FileDetails, bayou));

However, this scheme will require the user to know on which
node in the system the object in which he is interested is stored.
The class AI]unaN ame in Arjuna implernents a mapping mech-
anism that relies on access to a name server. The name server mairn-
tains all the information to locate the object. The partla]ly quantified
names supplied by users of the system are used to locate the ob-

ject. Before doing so, the ArjunaName object fills the fields for the

fully quantified names that were not specified by the user.

Object Naming in the IK System. In IK; which is 4 distributed
anid persistent eénvifonment, every object can be referenced by
every other object ini the system umformly Because of this, unique
and long lived names are required to access and retrieve the ob-
jects. The IK platform includes a Name Server to assign and de-
assign the user-defined names, which are readable character

24 JOOP

OCTOBER 1997

strings, to global names. The collection <user-name, global-name>
tuples constitute the Eternal Root. These pairs are held in the
form of links and not as small databases. This allows the user to
see the object names as normal file names in their directories.

" Because IK is a decentralized system, a globally unique tag is
assigned to each node, which can then be combined with locally
generated values to create globally unique identifiers. IK also uses
the unique tag as a hint to the location where the object is most
probably found. In IK, the storage setver is where the objects are
finally stored: The storage server can hence be used as a location
hint to access an object in it. IK, therefore, assigns globally unique
tags only to storage servers and requires the application’s GRLs
to request global names from thie storage servers where the ob-
ject will eventually be stored. If an object migrates from the de-
fault server, a forward pointer is left behind.

IK has location algorithms that dare protocols between the ap-
plication’s GRL and the storage server that actually finds the ob-
ject when the global name of the object is given to it.

Accessing objects via links

Morrison et al.' deal with persistent programming environments
that allow software engineering environments to be completely
supported within the persistent environment. Thus, each software
environment component or activity can take advantage of the per-
sistent system. According to the authors, persistent linkage that
allows persistent objects to be included in the binding process can
be used in combination with other properties like referential in-
tegrity and Strom typing to improve the construction and use of
software engineering environments. The term refers to the refer-
ence to an object in the persistent environment. Once alink to the
persistent object is established, the object remains accessible via
the link as long as the link exists. This leads to the referential in-
tegrity of the links. The use of links with referential integrity in-
creases the safety of the system. Instead of referring to the objects
by some nanﬁing convention, anonymous links that have a close
analogy with the i-node numbers in the UNIX operating system
can be used. Another advantage of using links over names, ac-
cording to the authors, lies in the fact that since access to the ob-
jects is independent of the naming scheme, any number of nam-
ing schemes, inclhding_zero, may be layered on top of the linking
graphs fot the convenience of the user. The user need not know

the depth of the naming scheme. One disadvantage of the use of

links over names is the reduction in flexibility when dealing with
the persistent system. This is due to the fact that the decisions
about which particular objects to access are made earlier.

~ The use of such links to persistent objects has a number of
applications in the area of software engineering: It helps in sim-
plifying the programming model, in version control, in conﬁgu—
ration management, and i in documentation. Hyper-programs
and hyper-texts can be bound to the software applications due
to links provided in such persistent systems.

POINTER SWIZZLING
Pointer swizzling is the conversion of database objects between

lame>
in the
ser to
ries.

tag is
ocally
0 uses
most
‘ts are
;ation
nique
GRLs
1e ob-
1e de-

1eap-
1e ob-

mnents
letely
tware
e per-
e that
ss can
al in-
1se of
refer-
to the
le via
alin-
ty in-
bjects
close
/stem
s, ac-
€ ob-
nam-
aking
know
1se of
rwith
sions

ver of
sim-
figu-
rams
s due

ween

I ———

PERSISTENT OBJECT SYSTEMS

an external form of object identifier and-an internal form of di-
rect memory pointers. This concept can be used in most of the
persistent environments. The main motivation behind pointer
swizzling is to speed up manipulation of memory resident data.
Swizzling is used in some object-oriented databases, persistent
object stores and persistent and database programming language
implementations.” Swizzling is also relevant to object stores and
object servers, as applications using a store or server might benefit
from converting objects from the store/server format to a faster
in memory format.

Eliot and Moss? designed and performed experiments to eval-
uate the different schemes of pointer swizzling and to predict
their performances. The Mneme object store was used as a plat-
form for the performance evaluation. Swizzling generally saves
time if enough computations are done Wit_h the swizzled objects.
Therefore, if an application visits objects only once or only a few
times, swizzling is unlikely to help. This is because swizzling in-
volves conversions to and from memory. However, swizzling
does not result in orders of magnitude impacts on performance.
Hence, it is reasonable to choose a swizzling scheme based on
factors other than performance. The cost of swizzling is found
to go up when the object size is increased and when there are a
number of pointers to be considered and swizzled. The collec-
tion of objects that are used by various applications running on
the persisfenﬁ system determines the extent to which swizzling
can be beneficial. The decision of whether swizzling is desirable
can hernice be made based on the collection of objects.

The pointer swizzling techniques can be classified into three
main areas on the basis of how swizzling is actually achieved.
The three techniques are as follows:

® In-place and copy swizzling. In this scheme the objects in which
the pointers are swizzled remain on their pages (in-place) on
which they are resident on secondary storage or are copied
(copy) into a separate object buffer. In-place swizzling requires
that all the swizzled pointers contained in an entire page be re-
stored or un-swizzled when the page is written back to sec-
ondary storage. Under copy swizzling, the objects are moved
or copied from their pages into the object buffer and pointers
are swizzled dnly in these copies. Copy swizzling, hence, is a
better choice over in-place swizzling.

® Eager and lazy swizzling. Bager swizzling guarantees that all the
pointers that are in main memory are swizzled. On the other
hand, lazy swizzling swizzles pointers only on demand. In lazy
swizzling, therefore, a pointer is not swizzled until the object it
refers to is accessed via this particular pointer. No pointer is swiz-
zled in vain in the case of lazy swizzling. On the other hand, lazy
swizzling has to handle swizzled and un-swizzled pointers at run-
time. Hence, if a low percentage of pointers that are loaded into
main memory are actually used to access the object they refer-
ence, then lazy swizzling is a better choice over eager swizzling,

® Direct and Indirect swizzling. When direct pointer swizzling is used,

the swizzled attribute contains a direct pointer to the referenced
in-memory object. Under indirect swizzling there is one indirec-
tion in which the attribute contains the pointer to a descriptor,
which then contains the pointer to the referenced ijéct.

Lazy swizzling costs more than eager swizzling and this was also
seen through experiments performed on the Mneme object store.”
Similarly, copy-swizzling costs more than in- place swizzling, for
objects of the same size, when the objects are updated. But, this
differenceis not too much. Hence, thé authors conclude that when
there is adequate main memory, copy swizzling is a better choice
overin-place swizzling. This isbecause copy swizzlingallows much
more general transformations between disks and memory formats.

" The costs or benefits of swizzling depend to a large extent on
an application’s use of the objects. In this regard, the size of the
objects is important. A partlcular persistent system may use swiz-
zling, or it may not. This may be decided based on additional is-
sues beyond performance issues.

The details of pointer swizzling techniques and the system ta-
bles that need to be maintained to perform the pointer swizzling
have been studied in Object Database Management Systems
(ODBMSs) by Vadaparthy.!” In the case of ODBMSs data is re-
trieved from the persistent store. This data is processed by using
some operation defined in the host language, which could be
C++, and the data is stored back into the persistent store.18 Hence,
even in ODBMSs every kind of proéessing requires translation
back and forth. Such translations can be time-consuming if the
frequency of application of the ‘operation is high. Hence persis-
tent pointers are used to a large extent in ODBMSs. Toi improve
the performance of main memory accesses, a similar concept of
pointer sw1zzhng can be used in such systems.

EVALUATION

In this section we evaluate thé different schemes for persistent
object store organization and accessing the persistent objects that
have been discussed in this article. As we have already mentioned,

there are a number of persistent environments based on the un-
derlying architectures that are used to implement the persistent.
systems. The persistent environment can be centralized or dis-
tributed. The treatment of persistent systems is, therefore, differ-
ent, and is based on the environment that is present. In this arti-
cle we have mainly dealt with the persistent' environments of the
02 system, Arjuna, IK system, and a few other persistent envi-
ronments. The first three are object- oriented platforms support-
ing a distributed environment and per51stent applications.

Itis 1mportant in a persistent env1ronment thata per51stent
object or logically grouped objects in the system can be retrieved
easily and at a fast rate from the persistent store. The persistent
store organization, therefore, contributes to the performance of
retrieving the objects from the persistent store. In this article we
have emphasized the importance of clustering objects in the per-
sistent store. This clustering can be physical clusteﬁng or logi-
cal clustering. Physical clustering groups objects that are instances
of the same class together, whereas logical clustering generally

OCTOBER 1997 JOOP 25

PERSISTENT OBJECT SYSTEMS

considers the inheritance characteristics of the class of which the
objects are instances. In a persistent environment objects can re-
fer to other objects leading to the concept of complex objects. In
such a situation, the idea of logical clustering of the objects on
the object store makes better sense than the concept of physical
clustering of the objects.

With logical clustering it is fair to say that the performance
of retrieving the complex objects from the object store will be
faster. This is because the referring object and the referred ob-
jects will surely be on one page of the persistent store. It may
happen that'a cluster might not fit into a page. In the O2 system?
when a placement tree leads to clusters whose average size is
"greater than the page size, such a tree is to be rejected. The best
placement tree is then to be found from those remaining.

Whatever scheme the persistent store uses, the users should
not need to worry about physical issues, i.e.,the clustermg in-
formation needs to be transparent to the user. In this regard, ob-
ject-oriented sysfems or databases that rely on physical object
identifiers and use user hints for their clustering mechanisms,
may lead to the difficult situation of the user having to deal with
the complex clustering problems. The scheme that is used by
Arjunas enables users to create their own object stores to man-
age any classes that they may define. While this will give the user
more ﬂexibﬂity to deal with the clustering mechanism directly,
it may lead to a complex situation. Therefore, this is not a very
good choice for the clustering mechanism.

' Arjuna uses a combination of physical and logical clustering. In
Arjuna, objects that are instances of the same class are maintained
together. For complex objects, the entire logical group of objects is
ixnpleniented asa collection ofindividual object stores, oneforeach
class of objects. With this scheme, we cannot ensure that a logical
group of objects are as close together as possible to minimize the
disk accesses. Hence, the retrieval time or the performance of the
retljie\}al may not be the best. More than one disk access may be re-

quired in order to get the logically grouped objects into the main.

memory. Ifmore than one pageisrequiredin suchacase, then there
could be the possibility of a higher numbef of page faults.

The O2'system,'® on the other hand, uses a clustering mech-
anism that relies on the inheritance and the structural informa-
tion given by the object types. Instead of clustering all the com-
ponents of the object together, grouping strategies are defined.
Placement trees are obtained which take the operations per-
formed in the database into account. This will ensure that the
logically grouped objects are as close to each other as possible
when the best placement tree is chosen.

" The IK objec;t—(v)riented16 persistent system uses a clustering
strategy somewhat similar to that found in the O2 system. In this
systen, objects are assigned to clusters and each cluster has a
singly known object called the head object that is similar to the
referencing object of the O2 system. Using the head object, the
referenced objects can also be retrieved. Hence, the referenced
objects do not need a unique identifier for their retrieval from
the object store. The clusters are created by using the KOT and
therefore it takes some time to create the clusters initially.

26 JOOP

OCTOBER 1997

The naming mechanisms used in Arjuna and the IK systems

are somewhat similar in that they use symbolic names for the ob-
jects to be accessed. These symbolic names are mapped to the sys-
tem level names to retrieve the objects from the persistent store.
Both the systems are distributed in nature. Arjuna uses a three-
part naming mechanism that forms the fully quantified name of
the object in the distributed network. The user may just specify the
partially quantified name to the system to retrieve an object. The
Name Server on Arjuna maps the partially quantified name of the
objecttoits equivalent, fully quantified name. The userisnot con-
cerned with such a conversion. This gives flexibility to the user and
he need not know on which node the object is actually located.
* The use of links, with referential integrity in place of names, to
access the objects on the persistent store in persistent systerns can
be taken advantage of when we are dealing with software engineer-
ing applications. This scheme can be used in programming envi-
ronments. The concépt of pointer swizzling that improves the per-
formance of accessing the persistent objects that are already in main
memory has also been discussed in this article. The pointer swiz-
zling schemes, besides being used for faster main memory accesses
of the objects, can also be used for faster accesses of objects from
the persistent store along with the use of clusters. Pointer swizzling
can also be extended to various programming environments.

The inclusion of persistence in a'prograrvnming language is to
provide a total interactive programming environment. The first
language to use the idea of persistence was probably APL. The
addition of persistence to PS-Algol showed that the principle
could be extended to a variety of languages that support a heap.!
Some languages, like Pascal, have been extended with object-ori-
ented features to provide a p0551b1e foundation for persistence.
The idea of persistence was later adopted by Smalltalk.>
Programming languages like C++ can be extended to support per-
sistence as seen in object-oriented database systems.?® Laurent
Silveriol® explains how it is possible to make polymorphic ob-
jects in C++ persistent. Shilling!5 presents basic algorithms for
storing and retrieving persistent object instances, and explores
the trade-offs between various mechanisms for providing incre-

‘mental persistent objects in C++. There are a variety of ways to

augment a language like C++ with persistence.!! Park et al. pre-
sent a technique called forced inheritance for prowdlng orthog-
onal persistence in C++.13 Hence, the area of persistent systems
is gaining popularity not only in research areas, but also in com-
mercial areas. Extending persistence to the present programming
languages is a challenge and an interesting area for further study.

CONCLUSION

We have dealt with three of the important aspects of persistent
systems in this article. The aspects are: persistent store organi-
zation, schemes to access persistent objects that are present in
the persistent store, and pointer swizzling. Various clustering
mechanisms pertaining to different persistent environments have
been dealt with. The choice of logical clustering over physical
clustering is a better one to improve the performance of access-
ing and retrieving persistent objects from the persistent store.

stems
1€ ob-
1€ sys-
store.
three-
me of
ifythe
t. The
ofthe
tcon-
arand
ted.
1es, to
1S can
ineer-
envi-
eper-
main
Swiz-
cesses
from

zzling

eisto
e first
. The
wciple
ieap.t
t-ori-
‘ence.
talk.s
t per-
urent
¢ ob-
1s for
lores
ncre-
1ys to
. pre-
thog-
stems
com-
ming
tudy.

stent
gani-
mt in
ering
‘have
ysical
cess-
ore.

S —

PERSISTENT OBJECT SYSTEMS

Various naming mechanisms and the use of links to access
persistent objects have also been discussed. The use of symbolic
names at the user level to access the objects is a great advantage
because the user need not know how the persistent system names
and stores the objects. The use of pointer swizzling to improve
the performance of retrieval of objects already in main memory
is an important concept. Concerning this, future work could in-
volve the use of the pointer swizzling scheme in programming
languages which have been extended with persistence.

References

1. Atkinson, M., et a/. “An Approach to Persistent Programming,” The Computer
Journal, 26(4):360-365, 1983.

2. BenzakenV., and C. Delobel. “Enhancing Performance in a Persistent Object Store:
Clustering Strategies in 02," The Fourth International Workshop on Persistent
Object Systems, pp. 403—412, 1990.

3. Cahill, V., R. Balter, N. Harris, and R. Pina, Commandos Distributed Application
Platform, Springer-Verlag, New York, 1993.

4. Chou, H., D. DeWitt, R. Katz, and A. Klug. “Design and Implementation of the
Wisconsin Storage System,” Software-Practice and Experience, 15(10), 1985.

5. Cockshott, W. "Persistent Objects in Turbo Pascal,” Journal of Object-Oriented
Programming, 6(2):68—73, May 1993.

6. Dixon, G., G. Parrington, S. Shrivastava, and S. Wheater. “The Treatment of
Persistent Objects in Arjuna,” The Computer Journal, 32(4):323-332, 1989.

7. Eliot, J., and B. Moss. “Working with Persistent Objects: To Swizzle or Not 1o
Swizzle," IEEE Transdctions on Software Engineering, 18(8):657—673, 1992.

8. Kato, K., and T. Masuda. “Persistent Caching: An Implementation Technique for

CLIENT/SERVER |
continued from page 19

RDB servers” today. It does not mean that the market does not need
an ORDB that can deliver solutions to the issues of 1) managing
complex structured data in a highly scalable way, 2) managing ar-
bitrary data types in a highly scalable way, 3) directly supporting
object-oriented programming, or 4) an RDB that can deliver solu-
tions to the issues of unifying heterogeneous databases. Unfortunately,
however, today’s ORDB products are not ready for prime time.

One major technical challenge that ORDB vendors must meet
is to make their servers highly scalable. The single server-process
architecture, and a two-tier client-server architecture that ORDBs
support today is untenable. The servers must be made to run on
parallel computers (at least the Symmetric MultiProcessors), to
support at least a three-tier client-server architecture, and to man-
age terabytes of data and at least hundreds of simultaneous users.
Another key technical challenge for ORDB vendors is to inter-
face their ORDB servers with popular rapid application devel-
opment (RAD) tools and popular applications. These are the two
areas where ORDB:s fall sadly behind RDBs. Either ORDB ven-
dors shore up these deficiencies, or giant RDB vendors will slowly
but surely upgrade their servers to real ORDB servers, and up-
grade their RAD tools and applications to work with real ORDBs.
Regardless of who “gets there” first, ORDB is here to stay. Further,
once ORDBs deliver the four key benefits outlined herein, the ex-
istence of OODBs becomes precarious indeed. W

—_
—_

14.

15.

17.

18.

20.

Complex Objects with Object Identity,” /EEE Transactions on Software Engineering,
18(7):631-645, Jul. 1992

Kemper, A., and G. Moerkotte. Object Oriented Database Management, Prentice
Hall, Englewood Cliffs, NJ, 1994,

- Laurent, P., and V. Silverio. "Persistence in C++,” Journal of Object-Oriented

Programming, 10(4).41-46, 1993.

- Loomis, M. “Making Objects Persistent,” Journal of Object-Oriented Programming,

6(6):25-28, Oct. 1993.

- Morrison, R., et al. “Exploiting Persistent Linkage in Software Engingering

Environment,” The Computer Journal, 38(1):1-16, 1995.

. Park, C., K. Whang, I. Song, and S. Navathe. “Forced-Inheritance: A New Approach

to Providing Orthogonal Persistence,” Journal of Object-Oriented Programming,
9(1):65-71, Mar. 1996.)
Shannon, K., and R. Snodgrass. “Semantic Clustering,” The Fourth International
Workshop on Persistent Object Systems, pp. 389-402, 1990.

Shilling, J. “How to Roll Your Own Persistent Objects in C++,” Journal of Object-
Orfented Programming, 7(4):25-32, 1994,

.'Sousa, P., A. Zuquete, N. Neves, and J. Marques. “Orthogonal Persistence in a

Heterogeneous Distributed Object-Oriented Environment,” The Computer Journal,
37(6):531-541, 1994,

Vadaparthy, K. “Pointer Swizzling at Page Fault Time,” Journal of Object-Oriented
Programming, 8(7):12—20, Nov. 1995,

Vadaparty, K. “Persistent Pointers,” Journal of Object-Oriented Programming,
8(4):14-18, Jul. 1995,

. Velez, F,, etal. “Implementing the 02 Object Manager: Some Lessons,” The Fourth

International Workshop on Persistent Object Systems, pp. 131-138, 1990.

Vemulaparti, M., D. Sriram, and A. Gupta. “Incremental Loading in the Persistent
C+-+ Language,” Journal of Object-Oriented Programiming, 8(4):34—42, 1995.

8th Annuol

A

The Users Conference and Exhibition

November 3-7, 1997

DoubleTree Hotel
San Jose, California

Advanced Techniques for
Building Distributed Systems

Technical Chairs:

Robert C. Martin, editor, C++ Report

Douglas Schmidt, associate editor, C++ Report
James Coplien, AT&T Bell Labs

For more information see our ud on pys. 14-15

[Register by October 18" and Save $2@

SIGS

G werENers
Tel: 212.242.7515 » Fax: 212 242-7578
Email: conferences@sigs.com

OCTOBER 1997 JOOP 27

