BONUS OBJECT BUYER’S GUIDE p.25 ® MODELING & DESIGN WITH- JAVA p.59

JOURNAL OF

OBJECT- ORIENTED

 _The Benefits of Triggers
.ﬂ“&}%ﬁé‘ \pproaches uj JJf f"JJ 1[0}

J ;B&E.L‘/ Q‘JL 'J.;L‘JE tr’a' J (,J

. PLUS |

~ Automating Design Pattern

 Applications '
| i JAMES RUMBAUGH
.JJJU/ 0 Fuse 'l'/rurl The keys to modeling
| ““MAU Nopment

ANDREW KOENIG
An interface for
>EN Methodolo} iy - \ examining directories

PUGH & LALONDE /
Smalitalk and Interne
intranet applicgli ns

.G_et' ready for Object Expo / Java Expo p.s

s de-
sl must
lation-
ps, in-

cted as
analy-
1at are
ien the
ts may
pass all
, a tool
start to
msand
10dels.

subset
sdel se-
lection
-t items
unting
tructed
edtoa
gheach
tviews.
¥ a sys-
ats that
stem.
model,
tems of
einthe
dapar-
v; views
versing:
yme se-
should
ents.
subsys-
me way
thing of
ning all
owever,
ss these
has “all
smith is
ally part
1gs that
[

ISoftware
5 1996.

Addison-

sigs.com

R RRRRRRREEEEEEEESSEEEEm

David W. McKeown & Hossein Saiedian

Department of Computer Science,
University of Nebraska at Omaha
Omaha, NE 68182-0500,
hossein@cs.unomaha.edu

Triggers for object-oriented

database systems

Abstract

Triggers are a special form of stored procedure that are auto-
matically executed by a database-management system when
specific conditions concerning data arise. Triggers can be used
to maintain referential integrity, maintain derived or redundant
data, ensure sequence rules, maintain mutually exclusive and in-
clusive rules, maintain data-dependent values, and access do-
main-restriction data. The implementation of triggers is an ac-
tive database concept that recently has been incorporated into
many commercial relational databases. As relational database
manufacturers augment their databases with object-oriented
capabilities, the concept of triggers in an object-oriented database
environment raises concem. Some object-oriented purists believe
triggers violate the property of object encapsulation, since trig-
gers can directly alter an object’s state rather than using the ob-
Jject’s methods. Additionally, it is believed that all of the tasks that
triggers are traditionally used for can be accomplished by ob-
Ject methods. This article counters the aforementioned beliefs
and describes the benefits that triggers will provide to object-
oriented databases.

their systems by incorporating triggers into their
products. The decision to implement triggers was an
easy decision for relational DBMS vendors to make
because triggers provided active, real-time monitor-
ing capabilities to their systems—features today’s so-
phisticated DBMS users demand. However, the de-
cision to implement triggers in object-oriented
database systems (OODBMS) is not without oppo-
sition. OODBMSs allow users to define both the
structure of complex objects and the operations
(called methods) that can be applied to these objects.
One of the principal qualities of any object-oriented
system is encapsulation, which requires an object’s
state (called attributes) should only be altered by the
object’s methods. Many object-oriented purists view
the implementation of triggers in an OODBMS to
be a violation of the encapsulation principal, since
the actions that triggers might take involve direct
manipulation of the object’s data rather than ac-
cessing the data through the object’s methods. The

management systems, i.e., systems that can modify data or

carry out actions without being directly requested to do so
by users or external application programs. This can be contrasted
with traditional database management systems (DBMS) that are
passive and execute queries or transactions only when explicitly
requested to do so by a user or an application program.!> Many
terms may be used synonymously for triggers in the DBMS arena;
for example, production or forward-chaining rules, event-con-
dition-action (ECA) rules, situation-action rules, monitors, or
alerters. Triggers, or more precisely DBMS trigger subsystems,
allow users to define conditions or invariants on the data in the
DBMS and specify actions to be taken if events occur that result
in a violation of one or more of the specified conditions. For ex-
ample, a user of a trigger-capable DBMS could define a trigger on
an inventory table that sends a reorder notification to the pur-
chasing department when an inventory item drops below a cer-
tain threshold. Many relational DBMSs vendors have enhanced

T riggers originated in and are the heart of active database

purpose of this article is to refute this notion by presenting a case
for implementing triggers in an OODBMS.

Although the argument against the implementation of trig-
gers may at first glance seem quite reasonable, an in-depth study
into the topic must be conducted before making a final deci-
sion. An examination of how triggering systems are implemented
must be conducted. The benefits and drawbacks of triggering
systems must be determiined without respect to the encapsulation
principal. If triggers provide functionality to DBMS users that
cannot be provided by OODBMS methods, it must be docu-
mented. The benefits and drawbacks of enforcing strict encap-
sulation in an OODBMS must be examined. The effects of im-
plementing triggers in the OODBMS must be explored with
respect to encapsulation. Other breaches of encapsulation in
OODBMSs and techniques for dealing with the violation have to
be investigated. This article seeks to address all of these concerns
and recommend a course of action concerning the implemen-
tation of triggers in OODBMSs based on the findings.

— — May 1997 -

Triggers

TRIGGERS Triggers have been defined many ways in the
DBMS literature. Graham? defines triggers as rules that fire in re-
sponse to a change of state. The same literature further defines
triggers to be procedures that are attached to data structures and that
fire when the structure is accessed. Triggers are special cases of
methods that are activated by changes to the state of the data rather
than by user or application-program requests. Bertino and Martino?
define triggers as actions that are automatically-executed by the
system when specific conditions concerning data arise. Sybase
Inc.12 defines triggers as a special form of stored procedure that
goes into effect when a user gives a change command, such as in-
sert, delete, or update to a specified table or column. Owens and

— — —_—

The decision to implement
triggers in object-oriented
database systems is not
without opposition.

Adams!! define triggers as actions to be taken whenever an SQL
statement affects a table and, equally significant, at a specified time
or state within the SQL statement’s life cycle. Kotz, Dittrich, and
Mulle® define triggers as a special concept that integrates “reac-
tions” into the DBMS. Compared to mere actions, a reaction ad-
ditionally encompasses the cause for and/or the timing of the ac-
tion. Trigger concepts in the DBMS arena allow for database
operations that, conditionally or unconditionally, succeed other
database operations. '

By carefully examining the previous definitions of triggers,
a more concise definition of triggers can be constructed: Triggers
are conditions defined on data in a DBMS (of any variety) that,
when satisfied, initiate arbitrary actions (perhaps in terms of
stored procedure) to be carried out. This is the definition that will
be used for the purposes of this article.

TRIGGER IMPLEMENTATION' Typically, triggers are
implemented in a separate subsystem of the DBMS. The trigger
subsystem is generally a component of a larger rule-processing
subsystem. Much like a query-processing subsystem in a DBMS,
the trigger/rule subsystem consists of one or more processes that
run constantly in the system as demons. Demons are necessary to
allow real-time monitoring and processing of rules. These demons
detect when certain events have occurred, evaluate conditions,
and initiate arbitrary actions associated with the conditions. Ad-
ditionally, the trigger/rule subsystem allows users and applica-
tion programs to maintain rules. Maintaining rules involves
defining, modifying, activating, deactivating, and deleting rules
and their corresponding stored procedures.s

16

Joop - — S

A number of techniques exist for the implementation of trig-
gers in DBMSs. A very simplistic approach is being taken by
many commercial relational DBMS manufacturers, such as
Sybase and Oracle, for implementing triggers.11>12 The imple-
menters of this technique realize that database modification
transactions (insertions, updates, and deletions) are the means
by which the database is taken from one consistent state to an-
other. Therefore, this technique provides for condition checking
and triggered actions only when database modification events
occur. As this article will further discuss, this simplistic tech-
nique furnishes only a subset of the active database capabilities
possible through triggers.

At the conceptual heart of triggers and active databases is the
event-condition-action (ECA) model. Several other models, such
as the rule triggering system model!4 and the event/trigger mech-
anism,® can be thought of as being synonymous to the ECA model
and will be for the purposes of this article. Triggers and active
databases are centered around the notion of rules. Rules are defined

by users, applications, or database administrators and specify de-

sired active behaviors. In their most abstract form, rules consist of
three parts: events that cause the rule to be triggered, conditions
that are checked when the rule is triggered, and actions that are ex-
ecuted when the rule is triggered and its condition is true. From the
three components of a rule, the ECA model emerged. A thorough
summary of each of the three components follows.

The first component of the ECA model is the event. As stated
earlier, the event specifies what causes the rule to be triggered.
There are many useful triggering events that have been discussed
in literature and implemented individually in one or more
DBMSs, such as data-modification, data-retrieval, temporal, and
application-defined events. Data-modification events might be
specified as one of the three SQL data-modification operations—
insert, delete, or update—on a particular table. In an OODBMS,
a modification event might be specified as the creation, dele-
tion, or modification of a particular object. It might also be
specified as the execution of a particular object method that
modifies the state of the object. Data-retrieval events can be
specified as those operations that query a table in a relational
DBMS, fetch an object in an OODBMS, or extract data from an
object in an OODBMS. Temporal events specify that a rule
should be triggered at an absolute time, at a repeated time, or at
periodic intervals. Application-defined events allow an applica-
tion to declare an external event (e.g., a fire alarm being pulled)
that occurs outside of the DBMS. In addition to the above events,
the combination of single events into composite events and the
ability for events to pass parameters to the rule’s condition and/or
action would be both extremely desirable features of any event-
monitoring subsystem.

Conditions specify a database state to be checked once the
rule is triggered and before the action is executed. Useful condi-
tions in a DBMS include database predicates, database queries, and
application procedures. Database predicate conditions specify
that certain predicates must hold true in the database. For ex-
ample, a condition expressed as a predicate might state that the
salary for an employee must never exceed the salary for the man-

http://www.sigs.com

o B ¢ T o e - T TSV

el

el
fii

d;

€1

&

thi
thi
lat

re'd
?iﬂ

sir{

i S e]

WinA&D is the fast, easy
way to design software.
of trig- » o .) Successful software development requires an understanding of
- ager of a department. Conditions might also be specified as a what needs to be done, a plan for how to do it and a structured
<en by query that is to be executed and evaluated using the DBMS’ query approach to completing the job. WinA&D can help by
PCh 25 8 language. For example, a condition specified as a query might re- simplifying system analysis and requirements specification,
un;.)le-. trieve all data with-value below a certain threshold. The meaning automating popular modeling techniques for designing your
Cltonr | can either be that the condition is true if and only if the query software and generating source code from your design to give
means ‘ produces an empty answer, or that the condition is true if and you a head start on implementat}on. Throughout the process,
to an- only if the query produces a nonempty answer. Lastly, a rule con- extensive veriﬁcatipn reports will catch errors early and help
ecking dition might be specified as a call to a procedure written in an youlpredueSiaaua b peoduct
:e :::ﬁ a}ll)phcatlog programming language (e.%,lb.r;lt-elz)xceeded()), hicte Powerful capabilities are just one WinA&D advantage. It is
Bl e prqce ISR BIRAyAQ GRS al.ta S8 , very easy to use and includes an extensive set of examples and
Actions are executed when rules are triggered and a rule’s tutorials. MacA&D and WinA&D products can share
. condition evaluates to true. Actions useful in a DBMS fall into four documents, so your project team can use Macintosh, Solaris,
sis the categories: data-modification operations, data-retrieval opera- HP-UX, Windows 95 or Windows NT computers. You can
s, such tions, other database commands, and application procedures. select from OMT, Booch, Shlaer/Mellor, Coad/Y ourdon,
mech- In active relational DBMS modification, actions correspond to in- Fusion or Jacobson methods or pick and mix the best of each.
rnO('iel | sert, delete, or update operations. In an object-oriented active
G DS modfeton st mit b i cton ot | @ s arapisa vl
iify de- 5 tions ar; basicall . h . ; @ Object-Oriented Analysis & Design _SMAEUEESUEETUS
’ y queries on the DBMS. A relational DBMS . Create Design
Ren of might allow such rule actions to specify SQL select operations, @ Data, State and Task Modeling from Code!
ditions whereas an object-oriented DBMS might allow rule actions to @ Integrated Code Editing & Browsing .
o specify object fetches, or method calls that retrieve objects. A . e :
om the . . . @ Multi-User Dictionary & Requirements/Use Cases
rule action might allow any database operation at all to be]
)Jrough specified. Examples of some other DBMS operations that might @ Code Generation for C, C++, Delphi, SQL, etc.
be considered as useful actions include operations for data defini-
‘stated tion, operations for transaction control (e.g., commit), and op-
sgered. erations for granting and revoking privileges. Lastly, application
cussed procedures can be specified as rule actions. As such, a rule ac-
B tion might be specified as a call to a procedure written in an ap- f,;»f:i;f:::;w: o v
?1’ and plication programming language, where the procedure may or
ight be i may not access the database.10>13
ions— ! are
JBMS, APPLICATIONS OF TRIGGERS Triggers are used to ering
> dele- : ensure uniqueness or primary key constraints. If a tuple has a
so be | field or several fields that must be unique or act as a primary key,
'd that ! a trigger can be established that will ensure that inserted and up-
= be dated values are unique. Triggers are used to maintain the refer- E@‘Sﬁmw -
tional i ential integrity of tables with corresponding foreign tables. Trig- Wln A & D
oagatl ' gers are used in this scenario to disallow the insertion or S T
arule modification of a foreign key value with no corresponding ob- ORI
& or ot ject in'the foreign table. Additionally, instead of disallowing the op-
>plica- eration, a trigger could be specified that would automatically cre-
ulled) ; ate a default tuple in the foreign table for the foreign key. Because
Ui ; a value corresponding to the original foreign key would then ex- ®
nd the ; ist in the foreign key, referential integrity is ensured. Triggers are l n
and/or used to maintain not-null constraints. If a field must not contain
sisnty anull value, a trigger could disallow the insertion or updating of for Windows 95/NT
that field with a corresponding null value. Additionally, rather
lccoentihi(j ’lthan disa]lowir'lg the operation, the trigger could simply popu- Call for MacA&D or
ate the field with a non-null default value. winagDbrochuresor ~ JuXCe€l Software
es, aTld Triggers are used to maintain derived (data dependent) and/or fax 515-752-2435
fpeley redundant data. Derived data is data obtained by some sort of ma- info@excelsoftware.com 515-752-5359
o @ nipulation of other data in the database. For instance, any time the
1at the salary of an employee is changed in the employee table, it may be de- http://www.excelsoftware.com
A sirable to automatically update the salary expense accordingly in
Circle 207 on Reader Service Card
igs.com May 1997

Triggers

the expenses table. Redundant data is data maintained in more
than one table. For example, an individual can be both an em-
ployee and a student at a university. If the person’s address changes
in the student table it would be desirable to automatically update
the person’s address in the employee table and vice versa.

Triggers are used to maintain mutually exclusive and inclu-
sive rules. Mutual exclusion specifies that if data values occur
in one table they must not appear in another table and vice versa.
Mutual inclusion specifies that data values that occur in one
table must appear in another specified table.

Triggers are used to ensure sequence rules. In other words,
triggers are used to insure that certain database transactions oc-
cur in a specific well-defined order. Recent developments in ac-

Triggers are used to ensure
uniqueness or primary key
constraints.

tive databases have even begun to define temporal triggers and
triggers on database histories. Temporal triggers are triggers
based on time. As such, users can define events that occur at a
specific date and time or at specified intervals. Additionally,
time-based sequencings of actions are possible. Triggers on
database histories allow the monitoring of the database log file for
specific conditions. For example, a trigger could monitor the
history for an extraordinary amount of aborts over a given pe-
riod of time and alert the database administrator of the condition.

Although the number of uses for triggers in a relational or ac-
tive database system is quite large, the ways in which triggers may
be used should not be limited to those listed here. Because the
ECA model underpins the implementation of triggers and even ex-
ternal events and actions can be defined for triggers, conceptu-
ally, the number of uses for triggers is limitless. Any event that
can be made to send a signal to the trigger subsystem demon can
be utilized in the model. Likewise, any stored procedure, written
in a data manipulation language (DML) or an external program-
ming language, can be used as an action. A careful examination of
how triggers could be used in an OODBMS will be postponed
until after the characteristics of an OODBMS have been discussed.

OBJECT-ORIENTED DATABASE MANAGE-
MENT SYSTEMS Object-oriented databases arose out of
a need to persistently store complex objects created by object-
oriented programming languages, the need for new data types
for storing images or large textual items, and the need to define
nonstandard application-specified operations. The object-ori-
ented approach offered the flexibility to handle these require-
ments without being limited by the data types and query lan-

I8

— JOOP —

guages of traditional DBMSs. The key feature of object-oriented
databases is the ability to define complex objects and the opera-
tions that can be applied to these objects.

Until recently, it was very difficult to describe the exact char-
acteristics a DBMS must possess to be classified as an OODBMS
becausé no agreed upon object database standard existed. In 1994,
the Object Database Management Group (ODMG) published the
Object Database Standard, ODMG-93, which was an attempt by
industry leaders in the OODBMS arena to agree on a standard
with which all OODBMSs must comply.* The ODMG-93 Standard
defined the object model to be used by compliant OODBMSs.
The object model is slightly different from the Object Manage-
ment Group’s (OMG) object model, but still compatible. Addi-
tionally, the ODMG-93 standard elucidated a grammar for defining
objects called the Object Definition Language (ODL), a language
for querying OODBMSs called the Object Query Language (OQL),
C++ and Smalltalk language bindings to OODBMSs, and methods
for OODBMSs to communicate with CORBA.*

Even though the specifics of how an OODBMS should be im-
plemented are not agreed upon, a high-level conceptual standard
of OODBMS:s has been established by Atkinson et al-! “Object-Ori-
ented Database Manifesto” was presented at the First International
Conference on Deductive and Object-Oriented Databases. It defines
13 commandments with which an OODBMS must conform. Eight
of the commandments are rules that make an OODBMS an object-
oriented system. Five of the commandments are rules that make an
OODBMS a DBMS. The commandments that make an OODBMS
an object-oriented system are as follows:

+ Commandment 1: The system must support complex ob-
jects.

* Commandment 2: Object identity must be supported.

+ Commandment 3: Objects must be encapsulated.

+ Commandment 4: The system must support types or classes.
* Commandment 5: The system must support inheritance.

g Coﬁmandment 6: The system must avoid premature binding,

* Commandment 7: The system must be computationally
complete.

+ Commandment 8: The system must be extensible.
The five commandments that make an OODBMS a DBMS are as
follows:

* Commandment 9: The system must be able to remember
data locations. '

* Unfortunately for the developers of the ODMG standard, at the time they were
developing ODMG-93, ANSI was hard at work extending the SQL-2 standard
to work with OODBMSs. The new SQL-3 standard provides its own object
model, object definition language, and object query language. For the most
part, the ODMG-93 standard and the SQL-3 standard are compatible, although
not completely. It is hoped that in the future the two standards can be merged.
Until such a time, the OODBMS world still is without a definitive standard.

http://www.sigs.com

nted
pera-

char-
BMS
1994,
d the
ptby
idard
adard
MSs.
nage-
Addi-
juage
QL),
thods

eim-
idard
=Ori-
tional
efines
Eight
bject-
ke an
)BMS

X ob-

asses.
ce.

1ding.
nally

are as

mber

2y were
andard
. object
e most
though
nerged.
dard.

15.com

+ Commandment 10: The system must be able to manage very
large databases.

« Commandment 11: The system must accept concurrent users.

+ Commandment 12: The system must be able to recover from
various failures.

+ Commandment 13: The data query must be simple.

Of the 13 commandments listed, three (3, 7, and 13) are partic-
ularly relevant to this article and will therefore be discussed fur-
ther. Commandment 3 states that objects in the OODBMS must
be encapsulated. Encapsulation means that the objects must have
a publicinterface, but private implementation of data and meth-

_ ods. The encapsulation feature ensures that only the public aspect

of the object is seen, while the implementation details are hid-
den. It is this principle that adding triggers to OODBMSs will
purportedly violate. Commandment 7 states the system must be
computationally complete. This capability is provided by aug-
menting the data manipulation language (DML) of the DBMS
with the features of modern programming languages. The re-
sulting DML should allow any type of operation to be expressed.
Because of the expressive power of the DML, many believe trig-
gers should not be implemented in OODBMSs, but instead han-
dled by the object’s methods, thus preserving encapsulation.
Lastly, Commandment 13 states that data queries must be sim-
ple. Efficient querying is one of the most important features of any
DBMS. Relational DBMSs have provided a standard database
query method through SQL, and OODBMSs must provide sim-
ilar query capabilities and efficiencies.

A knowledge of how OODBMSs are used is essential to mak-
ing the trigger implementation decision. Object-oriented
databases have been characterized as “next-generation” database
management systems for advanced applications. Traditional us-
ages of OODBMSs have included computer-aided design (CAD),
computer-aided manufacturing (CAM), computer-aided
software engineering (CASE), and intelligent offices, which in-
clude office automation and document imaging. CAD denotes
the use of computerized systems and tools for designing products.
Through the direct representation of the hierarchical structures
of complex design objects, the support of versioning when designs
are altered, and the control of concurrent accesses and updates

in projects, object-oriented databases provide ideal persistent |

repositories for CAD objects. CAM refers to a software system
that offers assistance in the manufacturing or production of

components or machines. With CAM, computer systems are

involved in monitoring and controlling the production cycle.
This means that computers operate the manufacturing floor.
The status of various machines and monitors is continually pro-
cessed and communicated by the system. The role of the un-
derlying object-oriented database system is the storage of ob-
jects, the object states, and the history of the object states in the
manufacturing process. In CASE tools, OODBMSs are used to
store and retrieve the code base of complex software-engineer-
ing projects. The various libraries that are used to construct the
system can be modeled as complex objects. The OODBMS is

also used for versioning and provides a natural check-out/check-
in mechanism through object locking. In intelligent office en-
vironments, OODBMSs are used to persistently store a variety of
complex objects such as faxes, scanned images, multimedia, and
voice data.1?

TRIGGERS IN AN OBJECT-ORIENTED DBMS
Not every use of triggers specified for relational or active databases
will map to OODBMSs. Additionally, OODBMSs may have their
own special needs that triggers could support quite well. This
section seeks to examine which uses of triggers previously men-
tioned are applicable to OODBMSs and identify any uses of trig-
gers that are unique to OODBMSs.

Objects in OODBMSs do not typically have keys, but rather
a unique object identity; therefore, triggers would not be used to
ensure primary key constraints. The object identity’s unique-
ness is guaranteed by the system itself. Uniqueness constraints
would be less likely to be needed in an OODBMS, but are not en-
tirely unthinkable. Triggers could be used to enforce unique-
ness constraints. Referential integrity is guaranteed in an
OODBMS because references to other objects are automatically
handled by the formation of complex objects. All references are
a part of this complex object and therefore maintained auto-
matically. Triggers could be used to maintain “not null” con-
straints in an OODBMS in the same manner previously men-
tioned for a relational DBMS. Triggers can still be used to

LR
The SELA Group

Software, Training, Systems & Networking

The 3" Israeli Object Oriented Days

Object Oriented

Conference
ur*

P Delphi e
} CDRB A I%?\IaAn Baker
P Pattern Writing Jim Coplien
AT&T Bell Labs
} Object Oriented Joshua Duti
Databases IU|Y b- 10’ 1997 Stillpoint Consulting
> Tel-Aviv , lsrael Peter M. Heinckiens
Advanced C+ + Dan Panorama University of Ghent
Programmmg Dr. Jon Siegel
a0 Object Mgmt Group
} Designing Large-Scale e
Client/ Server Software System Joop

} Object Oriented Analysis & Design:
Notions & Notations

| 2> * Jerusalem & Nazareth < |

To redister: 1uk +972-3-619-0999 Fax: +972-3-619-0992
RN Orline: http://www.sela.co.il E-Mail:info @sela.co.il

Circle 208 on Reader Service Card

Triggers

maintain derived, redundant data, mutually exclusive rules, mu-
tually inclusive rules, and sequencing rules in an OODBMS. In
an OODBMS, temporal triggers and triggers on database histo-
ries are even more desirable considering the nature of the ap-
plications in which OODBMSs are typically used.

Of great applicability in an OODBMS, triggers can be used to en-
force complex semantic rules. Nonstandard applications like
CAD/CAM, image processing, CASE, and intelligent offices require
database systerns with facilities to handle sophisticated semantics. Ad-
vanced data models, such as OODBMSs, supporting complexly
structured objects, abstract data types, and such have been developed
to this end. However, any data model remains restricted to static and
global semantics, not taking into account individual and dynami-
cally changing issues, It is therefore necessary to create additional se-
mantic rules, which may be rather complex and possess a variety of
checking as well as enforcement requirements.?

From the previous discussion, it is readily apparent that trig-
gers could be used to satisfy a variety of OODBMS needs. The
question that remains to be answered is should they be used
even though they violate the encapsulation principle? The next
section of this article will examine this issue in greater detail.

DISCUSSIONS The following section of the article takes a
critical look at arguments both for and against the implementa-
tion of triggers in an OODBMS. First, the concept of support-
ing encapsulation through the encoding of rules into object meth-
ods is explored. Next, the effects of violating encapsulation are
discussed. Then, the violation of encapsulation by query lan-
guages is exposed. Lastly, methods of implementing triggers in
OODBMSs are explored.

SUPPORTING ENCAPSULATION THROUGH
OBJECT METHODS Opponents of OODBMS triggers
not only believe that triggers violate encapsulation, they also be-
lieve that properly coded methods.can be used to provide the
same functionality as triggers without violating encapsulation.
One of the 13 OODBMS commandments was that the DML be
computationally complete. Does computational completeness
mean that demon methods can be created that will monitor the
state of the object and trigger actions? Probably not at this time.
However, if the DML is augmented to use procedures compiled
in a programming language, such as C++ directly, then demon
processes would be possible. However, one must consider the
consequences of coding one or more demons for each object in

the system. Millions of demons could be required to check con-

straints, ensure integrity, guarantee semantic rules, etc. This
would obviously be inefficient compared to a single, central de-
mon maintaining all the rules of the system. Along the same lines
as the demons, it is uncertain how the DML would handle tem-
poral events. Because of the static nature of the objects in an
OODBMS, it is uncertain how demons for maintaining rules or
handling ternporal events would get instantiated. Object methods
do not start themselves automatically in an OODBMS, but rather
are invoked by users or application programs. Would a user have
to instantiate all the demon methods? This is not clear.

- ' JoopP ——

20

Certainly all object constraints and rules could be checked for
in the object’s methods. However, problems exist with embedding
constraints and rule enforcement in the methods. Every method
that modifies an attribute that needs to have a rule or constraint
enforced must include the logic for enforcing the constraint. If an
object has 20 different methods that can update an attribute on
which a rule must hold, all 20 methods must encode the same
logic. This has implications in the area of maintainability and
efficiency. The ability to create new rules, delete existing ones,
and toggle rules on and off instantaneously is lacking from this
method as well. Another area of concern is that the DML for rule
or constraint enforcement could become quite complex, espe-
cially when considering events that must occur in a given se-
quence. Much coding could be required of the system develop-
ers. Similarly, if the code for enforcing the rules is overly complex
it can be difficult to extract the actual description of what exactly
is being enforced. Having stated all the above, it is still possible to
enforce rules and take actions through an object’s methods, how-
ever inefficient and unmanageable the actual implementation.

TRIGGER EFFECTS ON ENCAPSULATION En-
capsulation is a desired property of object-oriented systems that
secks to maintain the integrity of objects by allowing the object’s

state to be altered only by the object’s methods. State variables of

the object are not visible to users. Only the object’s methods are vis-
ible. In an OODBMS, what are the implications of not enforcing
encapsulation? Other objects, users, or applications could incor-
rectly alter the state variables of the object. Couldn’t the state vari-
ables be incorrectly altered by using the object’s methods? The
answer is yes and no. The answer is yes if the methods do no rule
ot constraint checking before making the alteration. The answer
is no if the methods check rule violations. The following two state-
ments sum up the importance of encapsulation in an OODBMS:
If rule checking is built into the methods and the methods are
used religiously, encapsulation ensures the consistency of the ob-
ject. If no rule checking is built into the methods or the methods
aren’t always used, encapsulation provides not much more-than
an indirect means to alter the object’s state without ensuring con-
sistency. These statements could almost lead one to believe that the
opponents to triggers are correct in thinking that trigger-like con-
ditions and actions should be programmed into the methods.
However, one of the uses of triggers is to maintain consistency in
the database, regardless of whether modifications are done di-
rectly or through methods. Even if encapsulation is violated when
updating data in the database, triggers will be there to ensure con-
sistency. The same cannot be said of object methods. In essence,

by saying that triggers cannot be implemented in an OODBMS be--

cause they violate encapsulation, we are actually saying we cannot
implement a method of ensuring object consistency because it
might violate the consistency of the object!

TRIGGERS AND QUERY PROCESSING EN-
CAPSULATION Database users expect OODBMSs to sup-
port queries. They expect the queries to be handled quickly and
efficiently. They also expect to have a variety of features avail-

_http://www.sigs.com

=== ‘

ed for
:dding
iethod
straint
t. Ifan
1te on
-same
y and
ones,
7 this
or rule
espe-
en se-
velop-
mplex
xactly
ible to
,how-
tion.

I En-
15 that
bject’s
bles of
ire vis-
orcing
incor-
e vari-
3¢ The
10 rule
nswer
) state-
)BMS:
ds are
he ob-
thods
e than
g con-
1at the
e con-
thods.
neyin
ne di-
when
€ con-
sence,
AS be-
-annot
wuse it

EN-
0 sup-
ly and

avail-

gs.com

able to them, such as aggregate functions, sorting and grouping
functions, and nested queries.® Designers of the first OODBMSs
quickly discovered that without violating encapsulation, queries
would be very slow and inefficient. Additionally, advanced features
would be extremely difficult to implement. If the query language
cannot violate encapsulation, then basically the only access to
the objects is through methods, and the physical data is invisible.
If we want to see the data, we are obliged to violate encapsulation.
DBMSs provide very fast low-level methods for finding, retriev-
ing, joining, and sorting data. The use of methods would negate
the ability of the DBMS to work with large amounts of data at a
low level. From this example, it is apparent that it is acceptable to
violate encapsulation in some circumstances.?

Of three articles found closely relating to the implementa-
tion of triggers in OODBMSs, all three seem to have taken a
common approach. The approach was to represent constraints
and rules semantically and store the semantic definitions as full-
fledged objects in the OODBMS. The OODBMS would auto-
matically generate the appropriate low-level implementation of
the rule/trigger: An active rule/trigger subsystem constantly
monitors system events, evaluates conditions, and calls stored
procedures (actions) when necessary.>¢ The actions invoked by
the trigger subsystem can be calls to object methods or directly
alter the object. Calls to object methods, rather than directly al-
tering or querying the data, would ensure encapsulation.

CONCLUSIONS Triggers could be utilized for a variety of

3. Bertino, E. and L. Martino. Object-Oriented Database Systems: Concepts
and Architectures. Addison-Wesley, Reading, MA, 1993.

4, Cattell, RG.G. Object Database Standard: ODMG-93, Release 1.1. Mor-
gan Kaufmann, San Francisco, 1994.

5. Chakravarthy, U. S., and S. Nesson. “Making an Object-Oriented DBMS
Active: Design, Implementation, and Evaluation of a Prototype,” in Proc.
International Conf. on EDBT, Venice, March 1990.

6. Dayal, U., A. Buchmann, and D. McCarthy. “Rules are objects too: A
knowledge model for an active, object-oriented database system,” Ad-
vances in Object-Oriented Database Systems, pp. 129-143, Sept. 1988.

7. Graham, 1. Object-Oriented Methods. Addison-Wesley, Reading, MA,
1991.

8. Kotz, A., K. Dittrich, and].‘ Mulle. “Supporting Semantic Rules by a
Generalized Event/Trigger Mechanism,” in Lecture Notes in Computer Sci-
ence, J. Schmidt, S. Ceri, and M. Missikoff, Eds. Springer-Verlag, New
York, 1988: 76-91.

9. Loomis, M. E. S. Object Databases: The Essentials. Addison-Wesley, Read-
ing, MA, 1995. :

10. McCarthy, D. R. and U. Dayal. “The architecture of an active database
management system,” in Proc. 1989 ACM SIGMOD International Conf.
on the Management of Data, pp. 215-224, June 1989.

11. Owens, K., and S. Adams. “Oracle 7 triggers: The challenge of mutat-
ing tables,” Database Programming and Design, pp. 47-54, Oct. 1994.

12. Sybase Inc. Transact-SQL User’s Guide, 1987.

13. Widom, J., and C. Stefano. Active Database Systems: Triggers and Rules for
Advanced Database Processing. Morgan Kaufmann, San Francisco, 1995.

14, Zhou, Y., and M. Hsu. “A theory for rule triggering systems,” in Lecture
Notes in Computer Science, F. Bancilhon, C. Thanos, and D. Tsichritzis,
Eds. Springer-Verlag, New York, 1990: 407-421.

tasks in an OODBMS, ranging from constraint enforcement to ini- |

tiating timed events. Because of the way triggers directly alter the |

data in tables in relational and active DBMSs, it is believed that the
same would be true in OODBMSs, thus violating the principle of
object encapsulation. Coding rules into the object’s methods was
suggested as a solution to the problem. However, there are a va-
riety of problems that can arise from this approach, some worse
than violating encapsulation. Encapsulation is a principle that
seems to be selectively enforced in OODBMSs. Exemptions must
be made to encapsulation wherever practical. Triggers are one
area where the benefits of relaxing the encapsulation rule out-
weigh the effects of violating encapsulation. After viewing sev-
eral implementations of triggering systems in OODBMSs in which
rules are stored as full-fledged objects in the system, it can be ar-
gued that such a system allows for interobject communication
and does not violate encapsulation. Regardless of whether one
views triggers as violating encapsulation, they should be imple-
mented in OODBMSs. Future work in this area must produce a
common, consistent grammar for representing triggers and rules
in OODBMSs, much like the ODL for defining objects. ®

References

1. Atkinson, M., et al., “The Object-Oriented Database Manifesto,” in De-
ductive and Object-Oriented Databases, W. Kim, J. M. Nicolas, and S.
Nishio, Eds. Elsevier Science Publishers, New York, 1990.

2. Bancilhon, F., C. Delobel, and P. Kanellakis. Building an Object-Ori-
ented Database System: The Story of O2. Morgan-Kaufmann, San Fran-
cisco, 1992.

IO (@TERR
The SELA Group

Software, Traliing, Systems & Networking

in Israel @

I TR NL — July 12:17
} Patterns in Practice.......ccovveeemiinnns July 13-19
P TCPIIP & Networking........coorveeree July 19-23
C Programming.........cocoerveverercserenns July 20-26
Windows NT 32 bit programming.....July 27- Aug 2
D Object Oriented & C+ +.covcrcrre July 29 - Aug 6
} MFC Programming.........cocccoveresevens Aug 3-9

@_ Jerusalem & Nazareth
. M Call: +972-3-619-0999 Fax: +972-3-619-0992
To rquSter' Online: http://www.sela.co.il E-Mail:tour@sela.co.il

Circle 208 on Reader Service Card

