Journal of Computing and Information Technology - CIT 5, 1997, 4, 249-264 249

A Framework for Evaluating Software
Environments that Support Design Reuse

Hossein Saiedian and Mansour Zand

Department of Computer Science, University of Nebraska at Omaha

A practical software reuse environment must provide
user-friendly facilities for the creation, collection, stor-
age, retrieval, modification, and representation of infor-
mation for reuse purposes. To evaluate the capabilities
and features of such a practical reuse environment, a
“checklist,” “benchmark,” or a “framework” is needed
for evaluation purposes. We introduce such a framework.
This framework includes ten properties or features that
we believe are essential for any design-reuse environ-
ment. We use the framework to assess the capabilities
of three software reuse environments developed at major
European and North American institutions. Further re-
search ideas related to reusing other design components
are also identified.

Keywords: Design Reuse, Reuse Environments, Hyper-
CASE, ITHACA, REBOQOT

1. Introduction

Software reuse is the reapplication of a vari-
ety of components of existing system to a new
system to reduce the effort of the development
and maintenance of the new systems. Software
reuse has become a significant subfield of re-
search and the practice of software engineering.
Reuse practice appears to exhibit considerable
potential, far more than many other on-going
activities, to enhance the software development
process and to re-structure not only the process
of software construction, but also the actual soft-
ware development departments [22].

A large body of recent work consists of promot-
ing a comprehensive methodology that utilizes
sophisticated tools to produce reusable compo-
nents. There is a good deal of emphasis on
domain analysis as the infrastructure for reuse
[1]; domain-specific software architecture to de-
scribe the topology for software components,

their interfaces, and the associated computa-
tional models [18]; and domain-specific kits to
produce a family of components for a specific
domain. The use of knowledge representation
tools and the application of CASE tools are also
emphasized [9].

It is obvious that there is no single “reuse" ap-
proach as a solution for all cases. A study of
the reported accounts of the relative success of
software reuse in organizations such as NEC,
GTE, IBM, Fujitsu, and Toshiba, in some of
the DoD, NASA, and European ESPRIT III
projects, and others, indicates that the major
factors of success at these organization include:
business modeling, organizational design, tech-
nology transfer, technology infrastructure, and
the development of a standard methodology
[17].

The organization of this article is as follows: A
brief definition of reuse will be provided in Sec-
tion 2, along with a description of its potential
benefits. In Section 2.3, we will introduce the
basic properties of our proposed framework. A
brief description of three selected software reuse
environments will be presented in Section 3.
In Section 4, we evaluate the characteristics of
the selected reuse environments using our pro-
posed framework. Our summary, conclusions,
and further research areas are presented in Sec-
tion 5.

2. Reuse Definition

Software reuse is the use of existing software
development artifacts, created during different
software development projects, to create a new

250

A Framework for Evaluating Software Environments that Support Design Reuse

software product. In its purest and most pro-
ductive form, reuse would start at the earliest
phases of software development and continue
throughout the entire process.

Design reuse is the subset of reuse where prod-
ucts of the design phase, both intermediate and
final, are reused. Design reuse provides many
advantages over code reuse. Code is very spe-
cific, and is filled with implementation details
that limit its reuseability. Often these details
must be modified or abstracted out of the code
before it can be reused. Designs, on the other
hand, have little or no implementation details,
and thus can be reused for a wider range of solu-
tions. The complete design information shows
the underlying architecture of the product. It
also shows the thought process of the designer,
the alternatives evaluated and the reasons for se-
lecting: or rejecting those alternatives. Clearly
this higher level information is more useful in a
variety of software development scenarios, in-
cluding new product development as well as
the maintenance and re-engineering of existing
products.

Karakostas [11] describes the relative benefit of
reuse with this equation:

Relative Reuse Benefit
B Added Value of Reused Product
N Effort to Reuse

Clearly if the effort to reuse is small (i.e. few
changes required), the benefit of reuse will be
higher. Since designs contain little or no imple-
mentation details, there would be fewer changes
required to reuse, thus producing a higher Rel-
ative Reuse Benefit.

Before this design information can be reused,
an environment must be created to facilitate the
collection, representation, storage, retrieval and
modification of this information. The environ-
ment must ensure the collection of both the input
to the design process, and the output. A number
of such environments have been proposed. In
order to evaluate these environments and assess
their potential benefits, we must have a frame-
work for evaluation purposes. That is the goal
of our article: to propose such a framework and
to use it in the evaluation of a number of highly
practical design reuse environments.

2.1. The Software Reuse Process

The reuse processes can be classified in three
categories:

e accidental reuse is the reuse of existing
components,

e planned reuse is the development of reus-
able components, and

e hiybrid approach which combines the first
two approaches.

The third approach is also known as domain en-
gineering. We discuss the third approach in this
section.

The reuse process of the domain engineering
approach can be built around any variation of a
viable software life cycle. This process starts
with an analysis of domain of the project to
identify all objects or entities that are common
within a given domain. The domain engineer
also collects all applications in the domain and
will use the information to develop a model that
includes objects, operations, and relationships
common to the working domain. The model
and collected components (also called assers)
are stored in a domain repository to be used for
future development.

One of the major products of domain engineer-
ing is a domain architecture that represents the
main components of a generic system. The
generic domain architecture captures the prin-
cipal components present in the model. To spe-
cialize the implementation of the model, the
generic architecture is used and the required
variations are incorporated. In general, the de-
velopment process should include the following
activities:

1. Identification of reusable components

2. Identification of variation

3. Specialization and generalization of the
components, and

4. Development guidelines to adapt compo-
nents for enhanced applications and to
conform with the architectural design.

A Framework for Evaluating Software Environments that Support Design Reuse 251

The development phases of reuse process are in-
terleaving and might be repeated as many times
as needed; different phases might take place in
parallel. During the development, all products
should be assessed for the degree of reuseabil-
ity and be stored in the repository along with
proper reuseability attributes as well as other
information needed for future retrieval 2, 16].

2.2. The Impact of Reuse on Design
Activities

Although some general principles have been
proposed for the design of reusable components,
no comprehensive methodology yet exists. In
general, during the early stages of the design
process, while no decisions have been made on
selecting specific design alternatives, the pro-
cess should capture all design components that
are viable for reuseability and investigate the in-
corporation of existing reusable design artifacts.
If the reuse process is accidental, all potential
reusable components should be evaluated for
their adaptability. The additional tasks in the
design phase can be summarized as refining the
requirements to search, identify, and understand
the component and to select one and adapt it.

If the reuse process is planned, the specification
of the potential reusable components must be
studied and analyzed to capture their common
and specific requirements and features. The
outcome of this task is used to identify the po-
tential “reuser” in the developing system as well
as future development projects.

In the case of /iybrid reuse, alternative solutions
must be evaluated along with their costs, times,
and their risks. The best one should be used in
the design. If the domain engineering approach
is used, most of the necessary bits and pieces to
examine alternatives are available in a domain
repository.

Making components reusable often means
adding complexity to the interface, hence archi-
tectural design. During the architectural design
phase, measures should be taken to ensure that
the architecture is reusable; and if any compo-
nent is reused, it is properly integrated into the
product. As mentioned previously, the use of

domain architecture may have a drastic impact
on the architectural design. Once a reusable
domain architecture is identified, the task of the
designer is to develop a specification and design
based on the generic architecture. Normally a
prototype is used to test and evaluate the design
and specification.

During the detailed design phase, measures
should be taken to ensure that the detailed de-
sign maintains the reusable characteristics of
architectural design. Also, standards and proce-
dures for development of reusable components
should be strictly followed and monitored.

2.3. A Framework to Evaluate Reuse
Environments

A legitimate design reuse environment must fa-
cilitate the creation, collection, storage, repre-
sentation, retrieval, and modification of the nec-
essary information for reuse purposes. In order
to more effectively and systematically evaluate
such an environment, we must have a checklist
that highlights the necessary features an envi-
ronment must possess. For the purposes of this
article, we call such a checklist a framework for
evaluation. The term framework in this context
should not be confused with its other uses in
software reuse literature. We are using it as a
convenient term to refer to a related collection
of features, attributes, and properties. Our pro-
posed framework consists of the features and /or

properties shown in Table 1.1

We will briefly describe these properties as we
begin to evaluate the three environments de-
scribed in Section 3. Perhaps we should note
that there is no theoretical foundation for the
properties listed in our proposed framework. In
fact, we do not yet believe such properties can be
theorized in the near future, because there is no
formal theory behind software reuse methodolo-
gies. Every heuristics reported is based on ex-
periences, observations, and intuition. To some
extent, reuse concepts are similar to their coun-
terparts in object-oriented field. While there is
not (yet) a formal theory of object-orientation,
it is agreed that applying object-oriented con-
cepts will improve software engineering prac-
tices and will yield better software. Similarly,

! It should be made clear these features are purely technical features. In general, when an organization plans to purchase a tool,
other factors such as price, compatibility with existing tools and operating systems, etc., play a role. However, our goal here is to

focus on and evaluate technical factors.

232

A Framework for Evaluating Software Environments that Support Design Reuse

Z
=

Property |

OO 00 1O L = Lo b

o

Design methodology independent
Support for object-oriented techniques
Representation of Design Properties
Support for Automated Tools

Support for Traceability

Hypertext Capabilities

Version Control Features
Implementation-Language Independence
Partitioning by Domain

Automated Consistency Checking

Table 1. Framework Properties

the properties proposed in Table 1 are those that
we believe an environment must have in order
to allow for effective software reuse. We have
collected these properties through our practical
and research work, our observation of certain
environments, and our study of reuse literature
such as [1], [3], [5], [8], [10], [15], [19], [20].

3. Description of the Selected Reuse
Environment

As indicated earlier, an environment must be
created in order to effectively use design infor-
mation for reuse. Such an environment must
facilitate the collection, representation, storage,
retrieval, and modification of design informa-
tion for practical purposes. We have selected
three such reuse design environments. These
three environments were selected based on the
following criteria:

1. The selected environment had to be al-
ready developed.

2. The selected environment for design reuse
had to be (a part of) a complete environ-
ment that supported full life-cycle reuse.

3. The selected environment had to support
the majority of the characteristics described
in our proposed framework.

Perhaps many environments have the potential
to satisfy the above criteria. We chose two Eu-
ropean and one North American reuse environ-
ments: HyperCASE, ITHACA, and REBOOT.
There are certainly other tools and environments

that provide support for reuse. The ones that
are being evaluated here are just a representa-
tive selection. Developed by major organiza-
tions and/or institutions, these reuse environ-
ments have been shown to be quite effective.
Before comparing and evaluating the environ-
ments themselves, we provide a brief descrip-
tion of each.

3.1. HyperCASE

HyperCASE [5] is a software engineering envi-
ronment being developed by the Amdahl Aus-
tralian Intelligent Tools Program. As its name
implies, the environment was developed on top
of an extended hypertext system. The goal
of HyperCASE was to develop an integrated
CASE environment, where a number of stand-
alone CASE tools could be merged into this
environment and work together as one. The in-
tegration occurs by combining a hypertext based
user interface with a common knowledge-based
document repository.

The system architecture can be seen in Figure
2. The HyperEdit portion of the system is the
hypertext based user interface. Among other
things, it provides access to a number of di-
agramming tools and text editors to facilitate
the joining and modification of reusable arti-
facts. The HyperBase portion of the system
provides all the tools necessary for all phases of
software development. The Base tools are pro-
vided to manage the underlying hypertext struc-
tures. The CASE tools exist to build solutions
and to ensure that the solutions are consistent
with the knowledge-base and the design solu-
tions are reusable. HyperDict is the final piece

A Framework for Evaluating Software Environments that Support Design Reuse

253

HyperEdit

HyperBase

F Reuse Manager
Integrity Manager)
Design Animator

HyperDict

(Executub!c Spec Manager
Interface Manager =) Query Svsiem
Event E-SQL
Manger
Authoring Tools (Document Manager J Reporting System
[Configuration Manager
Windows DBMS
(Praject Tracker J - =

(Design Tracker

Text Analyzer J

Knowledge-Based
Management System

Fig. 1. HyperCASE System Architecture

of the HyperCASE environment. It is the actual
repository for all documents stored in Hyper-
CASE. It is implemented as a Prolog data store
in Ingres.

The framework for design reuse in HyperCASE
is constructed and maintained by three of the
tools within HyperBase, the design tracker, the
design animator and the reuse manager. The
reuse manager is responsible for creating and
maintaining a uniform declarative representa-
tion of all documents, both design related and
otherwise. It uses this standard representation to
formulate a set of knowledge-based rules about
the design to aid in its reusability. In addition,
it provides a means for multiple classifications
of design artifacts. The design tracker is the
tool used to capture all the steps involved in the
design process. It forces designers to record
all their decisions and the reasons why. When
reusing a design artifact, the design tracker will
allow the designer to retrace the original design
process step-by-step, thus promoting a good
understanding of the artifact. Finally, the de-
sign animator is responsible for monitoring all
modifications and refinements made during a
software development. Its job is to ensure that
there is complete traceability, both structural
and functional, from requirement specification
all the way to coding. The design animator
will allow a developer to execute a completed
module in a special debug mode. In this mode,
the executing program can be suspended at any
time. Once suspended, the developer can re-
quest that the design animator display any por-

tion of the software development, from require-
ments to design to code, which corresponds to
the point at which the program was suspended.
This can be a very powerful testing tool.

3.2. ITHACA

Intelligent Tools for Highly Advanced Commer-
cial Applications (ITHACA) [6, 8, 15, 20] is a
software application development environment,
created explicitly to enhance the utilization of
reuse. ITHACA is being developed as part of
the ESPRIT II and ESPRIT III projects. ES-
PRIT 1I and ESPRIT 1T (European Strategic
Program for Research in Information Technol-
ogy — Phase 11 and III) are long term efforts
sponsored by the countries of Europe to develop
a complete software development environment
to support commercial software development
today and for years to come. The ITHACA en-
vironment was designed from the ground up to
support reuse of both software components and
software development artifacts (i.e. require-
ments, specifications, designs).

The software development methodology used

within ITHACA is not acommonly used method-
ology, and appears to be unique to ITHACA at

the moment. Within ITHACA, software devel-

opment is divided into two separate but compli-

mentary phases, Application Engineering (AE)

and Application Development (AD).

254

A Framework for Evaluating Software Environments that Support Design Reuse

Reuse and Development Experience

R ———
Technical

Literature

—_—
SAF's External Application

Precursors

Application
New
GAFs SAF

— 5{ Engineering
Domain Expert

Advice

A——
Current and Future

Requirements

Requirements

Development

—

Specific

Fig. 2. ITHACA Environment

Application Engineering involves the creation
of Generic Application Frames (GAFs). A
GAF is an object oriented framework or skele-
ton for developing applications within a specific
problem domain. The GAF contains classes of
information which define generic development
information (requirements, specifications, de-
signs etc.), and knowledge about how to reuse
this information. GAFs are normall y developed
by experts in both software development and the
domain associated with the GAF.

The Application Development phase is com-
pleted when an actual application needs to be
developed. A developer will initially obtain
some high level requirements for the applica-
tion. Using those requirements the developer
will use ITHACA to scan all existing GAFs for
a frame(s) which seems to fit the requirements.
Ideally, there will always be a GAF for every
possible problem domain, however, if one does
not exist it will have to be created. Once the
developer selects the best GAF, he/she sim-
ply uses the generic guidelines, development
information and reusable artifacts as a basis for
constructing the application. If additional struc-
tures or components are required, they are built

by the developer and identified as new knowl-
edge to be abstracted back into the GAF(s) as-
sociated with this domain. After all the compo-
nents have been tailored and /or built, the com-
ponents are assembled using a script which de-
fines the interaction between the components,
normally design classes. The newly constructed
application is known as a SAF, Specified Ap-
plication Frame. Any new domain knowledge
discovered during SAF development is then in-
corporated back into the GAF for future use. A
detailed diagram of this data flow can be seen
in Figure 3.

The architecture of the ITHACA ADE is shown
in Figure 4. The SIB or Software Informa-
tion Base is a database repository of all the
object classes which make up the GAFs and
SAFs. On the AD side, there are a number
of tools which support the developer in SAF
construction. RECAST is used for selection
of a GAF and refinement or specification of the
genericinformation. VISTA is a visual scriptin g
tool which allows the developer to link all the
selected components into a single application.
VISTA allows the developer to explicitly define
the interaction between the components. Once

A Framework for Evaluating Software Environments that Support Design Reuse 255

'S ™ = ™
CooL
GAF
GAF Desi
VISTA eoien
\\
: *‘ SAF
RECAST Application Application
Development Engineering
L S L A B

Selection Tool

On

Fig. 3. ITHACA Application Development Environment

fully scripted, the application is simply gen-
erated into Cool., which is the object-oriented
language used within ITHACA.

3.3. REBOOT

REBOOT (REuse Based on Object-Oriented
Techniques) is a product of ESPRIT III project.
More specifically, REBOOT is ESPRIT Project
5327. REBOOT is not just a tool, it is rather
a collection of integrated tools and methods for
the creation, adaptation and reuse of compo-
nents. The REBOOT project team was made by

Adaptive tool
Evaluation tool
Retrieval tool
Navigator o
Classification tool
Qualification tool

Reengineering tool

members of ten European organizations. This
project started in 1990 and was completed in
1994, The objective of the project is to improve
productivity and enhance quality of software
development through promoting reuse. The re-
boot project goes beyond the design and de-
velopment of software development environ-
ment. It also provides methodologies for study-
ing managerial, commercial and legal aspects
reuse, training package and support systems [12]
and [14].

The major motivation of the REBOOT project
was to overcome weaknesses of previous reuse
projects such as:

Adele or PCTE Emeraude

Database Interface

—

Communication Manager

Fig. 4. Architecture of the REBOOT Environment

256

A Framework for Evaluating Software Environments that Support Design Reuse

1. Too much emphasis on the technical as-
pects and focus on the development of so-
phisticated tools.

2. Underestimating the organizational prob-
lems and requiring dramatic changes in
software development practices.

Therefore the goal of the REBOOT project was
o prompt a reuse method that equally studied
organizational and technical aspects, to propose
a methodology that had the capability to inte-
grate with existing methods, and to concentrate
on utilization of existing technologies rather
than focus on innovation of new ones [19].

REBOOT has been developed around the con-
cept of reusable components. Reusable com-
ponents include all products of software life-
cycle as well as all information about the com-
ponents. Component repository of REBOOT
supports heterogeneous components that have
been developed by different methodologies and
teams.

The major components of REBOOT environ-
ment include a database (i.e. reusable compo-
nents repositories) and a two groups of tools.
The Component Building Assistant, the first
group, is used for building, classification, and
qualification of new components. This sub-
system supports the idea of reuse for concept:
development of new inherently reusable compo-
nents. The Reuse Assistant is used for retrieval,
adaptation, and evaluation of existing compo-
nents in repositories. The Reuse Assistant sup-
ports the idea of reuse with: development of
systems using existing reusable components.

The architecture of REBOOT environment sup-
ports the philosophy of integrating heteroge-
neous reusable components, Figure 5. It has
also been designed to integrate various exist-
ing tools in the environment. There are three
major parts beside the reuse tools mentioned
above. The Communication Manager provides
communication among the tools via message
passing. This subsystem provides flexibility in-
term of incremental integration of tools. The
Database Interface provides access to database
for reuse tools and maintain independency of
tools on database platform. The Database Plat-
form is reusable component repository. Utiliz-
ing Database Interface, REBOOT environment
can use different databases.

It should be mentioned that REBOOT does not
have a design tool. However, it provides a com-
prehensive design guideline for reuse with any
object-oriented methodology. There are two
main kinds of design components in REBOOT:
classes and framework. The design method-
ology provides guidelines on development of
reusable classes and frameworks [19].

The REBOOT environment is running on Sun4
Sparcstation, IBM/AIX, and Bull/DPX20 and
has been tested successfully in telecommunica-
tion, factory planning, and office systems [14].

4. Evaluating the Reuse Environments

In order for an environment to facilitate design
reuse and allow the maximum benefits to be at-
tained, it must possess characteristics such as
those listed in Table 1. These characteristics
form the basis for the comparison of the envi-
ronments described above. The characteristics
were gathered from a variety of sources as in-
dicated by the references. This portion of the
paper lists the characteristics, a brief descrip-
tion of each and then a summary of each of the
environments’ support for that characteristic.

4.1. Design Methodology Independence

The environment’s design methodology must be
relatively independent [21]. A reuse environ-
ment should be able to handle different design
methodologies and integrate products of differ-
ent design methodologies in order to assem-
ble an existing heterogeneous design artifact
in the new system. A reuse environment that
lacks such a capability is at best only appro-
priate for development “for” reusable compo-
nents and may not be practical in development
“with” reusable components. Design Subsys-
tem of reuse environment should allow a de-
signer to use any design methodology. The stan-
dard design representations for each methodol-
ogy should be available. The internal represen-
tation of designs from all methodologies should
be consistent to permit reuse of design informa-
tion regardless of methodology.

The architectural phase of design has significant
impact on designing a solution. This step of de-
sign defines a high-level strategy for solving

A Framework for Evaluating Software Environments that Support Design Reuse

o

the problem and constructing a solution. Pro-
viding the capability to reuse different architec-
tural artifacts as well as methodologies must be
included in the future software environments.

Evaluation

HyperCASE: YES — HyperCASE will allow
the designer to use any design method-
ology. The components of the design
are simply connected via hypertext links.
The standard representations for most de-
sign methodologies are available to be dis-
played graphically.

ITHACA: NO — ITHACA has established its
own software development methodology.
ITHACA’s methodology can be described
as software construction. Although ITHA-
CA does not incorporate the standard de-
signrepresentations, it does provide graph-
ical representations unique to its design
methodology.

REBOOT: YES butlimited —REBOOT main-
ly relies on an object-oriented approach,
but not on a specific object-oriented method-
ology. The REBOOT design guidelines
for reuse can be applied on any object-
oriented methodology (and to some extent
only with other types of methodologies).

4.2. Supportfor Object-Oriented Technique

Object-Oriented techniques have become one of
the major techniques in software development.
Although object-oriented techniques by them-
selves do not provide systematic reuseability,
the concepts incorporated in this methodology
and components such as classes and objects can
facilitate this goal. Therefore, it is important
that the environment supports object-oriented
techniques, among other methodologies.

In an object-oriented environment, it is im-
portant that the environment internals be im-
plemented via object-oriented techniques [15,
20]. The internal representation of the de-
sign information should be stored as objects.
The environment should make use of object-
oriented techniques whenever possible to pro-
mote the logical grouping of design artifacts by
real world entities.

Evaluation

HyperCASE: Limited — The HyperDict is a
relational database, and therefore is not
purely object-oriented. However, the Event
Talk or Event Manager is able to provide
the user of HyperEdit an object-oriented
view of the repository.

ITHACA: YES — Each piece of knowledge
associated with each GAF and SAF is
stored as a class in the SIB. Every aspect
of ITHACA was developed using object-
oriented techniques, and these techniques
pervade the entire system.

REBOOT: Indirectly — REBOOT is not a de-
sign tool. It only manipulates files gener-
ated by the user’s design tool. These files
are managed as objects with attributes and
relationships that respectively record the
characteristics of the design and its depen-
dence on other related objects.

4.3. Representation of Design Properties

The environment should allow representation
of the design related properties. [4]. These
properties are commonly given as: (1) Archi-
tectural design. The architecture of the design
must be available, and be able to be generated
into the standard architectural design represen-
tations (e.g., a DFD). (2) Detailed design. The
detailed design must be available, and be able to
be generated into the standard detailed design
representations. (3) Design decisions and jus-
tification. Each design decision that was made
must be recorded along with a justification for
the decision. This will allow a future maintainer
or reuser of this design to easily ascertain the
logic behind the design. (4) Design alternatives
and reasons for rejection. It is also very impor-
tant to maintain a record of the design alterna-
tives that were considered and rejected. This
will also be very beneficial to a future main-
tainer or reuser. It will save them from having
to make the same mistakes, or learn the same
lessons, as the original designer.

258

A Framework for Evaluating Software Environments that Support Design Reuse

Evaluation

HyperCASE: YES — This information is gath-
ered by the design tracker and is stored in
the HyperDict. Standard representations
for this information are supported by Hy-
perCASE.

ITHACA: YES — This information is con-
tained in the GAFs or is captured dur-
ing the SAF development. If necessary,
new information from the SAF develop-
ment will be abstracted back into the asso-
ciated GAF. The information is stored in
the SIB.

REBOOT: This environment relies on the
user’s design tool (which can simply be
drawing and natural language). REBOOT
design guidelines strongly recommend
recording all details of design decision
making, justifications and alternatives in
an associated file, using a preferred word
processor or text editor.

4.4. Support for Automated Tools

The environment should support automated
browsing, querying and manipulation of design
information. [5]. The volume of design arti-
facts that will be accumulated necessitates this
requirement. It is imperative that a designer be
able to build a query to find design information
related to the problem at hand. A sequential
search through all the artifacts would be all it
would take to discourage any designer from try-
ing toreuse design artifacts. The same argument
holds for manipulation of design artifacts. The
designer should be able to use automated tools
to make any necessary changes to a design arti-
fact that is to be reused. The system should also
take care of establishing the link between the
original artifact and the new modified version.

Another crucial aspect of an automated tool is its
potential support for computer-supported coop-
erative work. Among the facilities that a group-
ware can provide are multi-user editors, mes-
sage systems, coordinating system and so forth.
This is a worthwhile tool for large-scale reuse
projects. Such a tool assists group interaction
in all software development projects. In reuse
projects it can help re-users by passing on their

experiences with components or requests for in-
formation on needed components, if they are not
in the repository or the repository doesn’t have
necessary information.

Evaluation

HyperCASE: YES — HyperEdit supports hy-
pertext navigation, updates and natural lan-
guage queries of the artifact repository.

ITHACA: YES —RECAST provides the tools
to browse the GAFs, make a selection and
modify the GAF as required.

REBOOT: YES — support to browse, query
reusable components, identify the design
document (or design file) and display it
by the appropriate tool (automatic activa-
tion of the corresponding word processor
or design tool).

4.5. Support for Traceability

The environment should support traceability to
adjoining lifecycle phases [4]. This require-
ment addresses the necessity to be able to track
a particular design artifact back to its original
requirement or forward to its implementation.
This 1s outside the scope of design reuse, but is
very necessary if the full benefits of reuse are to
be obtained.

Evaluation

HyperCASE: YES — The Hypertext links be-
tween corresponding requirements, designs
and code are built and maintained by the
design animator.

ITHACA: YES — Within the GAF the generic
requirements information is directly asso-
ciated with the appropriate generic design
solutions which are associated with the ap-
propriate script and code. The same is true
within the SAF, only to a greater, more de-
tailed level.

A Framework for Evaluating Software Environments that Support Design Reuse 259

REBOOT: YES — The REBOOT component
model considers a Reusable Component to
be an aggregate. This means an RC is com-
posed of various workproducts (Require-
ments, specification, design, code, tests,
documents, etc.). REBOOT also have an
‘is-an-evolution-of* relationship to relate
versions of the RC, but it is not yet effi-
ciently managed.

4.6. Hypertext Capability

Flexible and powerful internal environment
structure (hypertext) is considered an impor-
tant feature [4, 5]. This requirement is neces-
sary for the satisfaction of nearly every other
characteristic in this list. Without a hypertext
like structure, navigation through artifacts, link-
ing of related artifacts, attaching related docu-
mentation, setting up traceability and providing
version control would be very complex. With
hypertext, artifacts can be grouped and logically
linked together to promote maximum flexibility
and utility. Besides, hypertext adds extensibility
to the system internals, where no other structure
could.

Evaluation

HyperCASE: YES — Hypertext is the base
upon which HyperCASE functions.

ITHACA: Unknown — The details of the in-
ternal structures of the environment were
not addressed.

REBOOT: YES — The Hypertext capability is
provided through relationships using Nav-
igator subsystem.

4.7. Version Control Features

Another important consideration is support for
version control of designs and related infor-
mation [4, 5]. Over the course of the design
phase of software development, the designer
will most certainly experiment with a number
of approaches. Version control will allow the
designer to incrementally develop the design,

and always be ‘able to retreat back to an ear-
lier version of the design, if necessary. Such
functionality is also very desirable, once the
maintenance phase of software development is
reached.

Evaluation

HyperCASE: YES — Version control within
HyperCASE is managed by the Configu-
ration Manager tool within HyperBase.

ITHACA: YES — Within the SIB, the class
objects are version controlled. However,
there was no information to indicate that
a designer could explicitly create different
versions of the same design and let the sys-
tem manage the separation and control of
each version.

REBOOT: Limited version control is avail-
able,

4.8. Implementation Language
Independence

The environment should be independent from
any implementation language [21]. The repre-
sentation of the design within the environment
should not be tied to any specific implementa-
tion language. In other words, the same detailed
design should be able to be translated into any
implementation language available within the
environment.

Evaluation

HyperCASE: YES — HyperCASE currently
provides no code generation facilities.
However, since it supports all standard de-
sign methodologies, it stands to reason that
the code could be generated into any lan-

guage.

ITHACA: NO—ITHACA was developed with
a single implementation language in mind.
CooL is the object-oriented language se-
lected for the ITHACA environment. Since
CooL is such an integral part of the total
environment, this factor will not impact
the system negatively.

260 A Framewaork for Evaluating Software Environments that Support Design Reuse

REBOOT: YES — REBOOT design presenta-
tion of object (file managed as objects) is
independent from the implementation lan-

guage.

4.9. Partitioning by Domain

The frame should support partitioning of design
information by domains [8, 20]. It is gener-
ally agreed that reuse is most effective within
a well-defined, fairly small domain. The en-
vironment should allow the designer to specify
which domain to place design artifacts into. The
environment should also provide limited sanity
checks, to verify the selected domain is appro-
priate. The environment should also have the
ability to select an appropriate domain if one is
not specified by the designer.

Evaluation

HyperCASE: NO — HyperCASE provides no
direct support for domain grouping. How-
ever, it could be implemented as a field
in the HyperDict representation of all the
artifacts.

ITHACA: YES — Domain partitioning is the
single criteria for creating separate GAFs.
GAFs are built for a specific domain. SAF
development that occurs for an application
in a particular domain will use only GAFs
developed specifically for that domain.

REBOOT: YES — REBOOT uses a sophis-
ticated faceted classification per domain
for partitioning of domain. This is a re-
vised facet based approach to tailor object-
oriented components. The classifier sub-
system is very flexible and allow the de-
signer to specify which domain to place
design artifacts into. However, it doesn’t
have the ability to select an appropriate do-
main if one is not specified by the designer.

4.10. Automated Consistency Checking

The environment should support an automated
means of design solution consistency checking
[13]. The representation of the design informa-
tion should be done in such a way that the design
solution can be verified against the correspond-
ing requirements specifications. The character-
istic extends beyond the bounds of design, but it
1s a very necessary characteristic. Without this
type of verification the designer would either
skip this step alltogether, or be forced to man-
ually trace each part of the design back to the
specifications and perform the checking. Either
solution is unacceptable.

Evaluation

HyperCASE: YES — The Integrity and Com-
pleteness Manager contains the inferenc-
ing environment for checking document
completeness, solution completeness and
semantic integrity.

ITHACA: YES — ITHACA makes use of an
object-oriented model called the Objects
with Roles Model (ORM). As components
are tailored and created, the RECAST tool
verifies that the ORM model holds. As
components are linked and applications
built, the VISTA tool verifies the ORM
model.

REBOOT: NO — REBOOT considers this as
the responsibility of the design tool and
not as the responsibility of the reuse tool.

4.11. A Tabular Comparison

A tabular comparison of the three reuse environ-
ments using our proposed framework is shown
in Table 2.

201

A Framework for Evaluating Software Environments that Support Design Reuse

ON SIK Sax Sunyoayd Aoua)sIsued uonnjos ugIsap Jo suedw pajewone ue poddng | Of
RE) § Sax ON urewop Aq uonewrojur udisap jo Sutuonnted poddng | ¢
SOA ON SOx yuapuadapur a8endue] uoneuowadwy | §
pajry SOL SIX UOTIBULIOJUT PAJE|al puk suSIsap Jo [01u0d uolsioa uoddng | £
SR amouyuy] Sk 21M1oNNS yJomawely reurdul [njramod pue QXL | 9
SOX Sax SOA soseyd a[oko-ay1] Sururolpe 01 Ajjiqeasen yoddng | ¢
Sax SO SAX uonewoyur uSisap jo Surkionb pue Suismoiq pajewoine poddng | ¢
ON SX Sox UOTIRWIOJUT PAJe[al uIsap ay) Jo uoneuasaidal mo[[y | €
j0211pU]) § pajnury sonbiuyoa) payusLi()-100lqQ Sursn pajuswaydiul S[RUIOIUT YI0MOWRL] | T
SAx ON SOx wwopuadapur ASojopoyjaur usiso | |
100448 | VOVHLI [ASvD12d4Y || fadoag [oN |

Tuable 2. Evaluation Summary

262

A Framework for Evaluating Software Environments that Support Design Reuse

5. Conclusions, Summary, and Further
Research

Each of the three environments plainly supports
design reuse as they were developed to do. The
question that faces software engineers and their
managers is, “Which environment better suits
the needs of my shop and my developers?”
Based on the comparisons just completed, the
answer to that question is found in the answer
to another question, “What software develop-
ment methodology is right for the products we
produce?”

Each of the three environments provides a unique
choice of methodology. HyperCASE lets the
software engineer determine the design method-
ology to be used. HyperCASE automatically
keeps track of reusable information, and can
recommend reusable artifacts to solve a prob-
lem, but it is up to the software engineer to
“reuse or not to reuse". ITHACA can be viewed
as an intermediate level between the other two.
It has its own unique development methodol-
ogy, but the decision on what to reuse and how,
is left to the application developer, as in Hyper-
CASE. Which environment is appropriate for
any given software development shop can only
be decided by those who work there. Here are
some general guidelines.

If the development shop is fairly immature in
software engineering techniques, it may be bet-
ter served by a tool within the PA environment.
HyperCASE takes a lot of the learning curve
for software engineering techniques and puts it
into the tool. For shops with good and solid
software engineering practices established, but
little or no reuse, ITHACA would be a good
selection. ITHACA will allow the on-site ex-
perts to use their expertise in GAF design, while
allowing the rest to build applications (SAFs)
with greater ease, thanks to the experience built
into the GAFs. For shops that require maximum
flexibility, HyperCASE is the answer. Hyper-
CASE is also better suited for shops that desire
to reverse engineer existing applications to gen-
erate reusable artifacts. It is simply the most
adaptable. So the decision is left where it should
be, in the hands of the managers and leaders
of software developers today. Those managers
with a clear view of their environment and the
software demands of the future will choose to

implement an environment such as the three de-
scribed above. Without it the software crisis
will surely overwhelm them. Their products
will then be taken over by a manager whose
team stays one step ahead of the software crisis.

5.1. Additional Research ltems

Development of a standard for design repre-
sentation. This is the single greatest missing
link in the design reuse effort. Currently, all
efforts to reuse designs are developed indepen-
dent of each other, with no common ground.
Although these efforts may provide excellent
support for reuse of designs, they lack the abil-
ity to export (and import) their reusable designs
to other environments. It is only through the
ability of all environments that advantage may
be taken of the work of others, in order to obtain
the required benefits of design reuse.

Development of a framework for the reuse
of formal specifications. Currently, software
development environments do not take full ad-
vantage of the use and reuse of formal specifi-
cations. Traditional efforts on formal specifica-
tions have been for functional specification of a
software system and have largely focused on ab-
stractions techniques (and refining abstractions
into some implementation). To make formal
methods an integral part of industrial software
development, the use of these methods has to
be as cost-effective as possible. One way of
achieving such cost-effectiveness is through de-
velopment of a framework for reuseability of
already developed formal specifications. Such
a framework has numerous benefits [7]:

o If a single specification can serve a num-
ber of products, its development cost can
be amortized over those products.

e The development of several products from
the same specification can lead to unifor-
mity across those products as well as their
development.

e Reuseability in specification may lead to
correspondingly reusable products.

e The fact that a specification can serve as
framework for several products, may cause
its developers to strive for particularly el-
egant abstractions. This in turn may lead

A Framework for Evaluating Software Environments that Support Design Reuse

263

to cleaner definitions of the fundamental
concepts behind related applications.

o The job of defining specifications for the
framework may be delegated to a small
team of highly skilled engineers.

e Libraries of formally specified software
components that form the basic design
repertoire of software developers may grad-
ually be produced.

Thus Research is needed to develop a frame-
work for reusing formal specifications.

Formalization of a design methodology based
onreuse. Sucha methodology is under devel-
opment at the Software Engineering Institute
(SEI) [10]. The ITHACA frameworks also pro-
vide possible examples of this type of method-
ology. However, these methodologies need to
be formalized so that their use can be picked up
and used elsewhere.

5.2. Summary

The challenges of incorporating design reuse
into an established software development orga-
nization are great. However, if there were easy
answers to the software crisis, there wouldn’t
be a crisis. As can be seen from this paper, the
tools for implementing design reuse are avail-
able today. One of the main inhibitors is that
the top mangers of organizations refuse to take
a long-term look at software development pro-
cess. A long-term view, including the change to
incorporate reuse as an integral part of the soft-
ware development process, would cost more up
front, and many managers are unwilling to take
that risk.

It is the duty of all software professionals to ed-
ucate others, and promote the advancement of
new technologies within software engineering.
Until this education takes place, and the peo-
ple who control the purse strings are convinced
of the value of reuse, the software industry is
doomed to continue to wallow around in the
software crisis. On the benign side, if the edu-
cation does take place, the science of software
development can move forward, out of the soft-
ware crisis, and into the software revolution.

Acknowledgment. The authors would like to
acknowledge David Barr’s efforts and contribu-
tions during the earlier parts of this project. The
director of the REBOOT Project, Jean-Marc
Morel, provided many comments and supplied
the necessary materials for evaluating the RE-
BOOT environment.

Hossein Saiedian’s work was supported by a
UCR Summer Fellowship grant.

References

[1] G. Arango. Domain analysis methods. In W. Scha-
effer, R. Prieto-Diaz, and M. Matsumoto, editors,
Software Reusability, pages 17-49. Ellis Horwood,
New York, 1993,

[2] G. Arango. A brief introduction to domain analysis.
In Proceedings of the ACM Symposium on Applied
Computing, pages 42-46, 1994,

[3] J. Bell. Reuse and browsing: Survey of program
developers. In D. Tsichritzis, editor, Object Frame-
works, pages 197-220. Université de Gengve, 1992.

[4] T. Biggerstaff. Design recovery for maintenance
and reuse. [EEE Computer, 22(7):36-49, July
1989.

[5] J. Cybulski and C. Reed. A hypertext based soft-
ware engineering environment. [EEE Software,
9(2):62-68, March 1992,

[6] M. Fugini, O. Nierstrasz, and B. Pernici. Applica-
tion development through reuse: the ITHACA tools
environment. ACM SIGQIS Bulletin, 13(2):38-47,
August 1992.

[7] D. Garlan and N. Delisle. Formal specifications
as reusable frameworks. In VDM’ 90, LNCS 428,
pages 150-163. Springer-Verlag, 1990.

[8] R.Girardi. Application engineering putting reuse to
work. In D. Tsichritzis, editor, Object Frameworks,
pages 137-149. Université de Genéve, 1992.

[9] M. Griss and K. Wentzel. Hybrid domain specific
kits for a flexible software factory. In Proceedings
of the ACM Symposium on Applied Computing,
pages 47-52, Phoenix, AZ, March 1994. ACM.

[10] K. Kang, S. Cohen, R. Holibaugh, J. Perry, and
A. Peterson. Reuse-based software development
methodology. Technical Report CMU/SET 92-SR-
4, Software Engineering Institute, Carnegie Mellon
University, January 1992,

[11] V. Karakostas. Requirements for CASE tools in
early software reuse. Sofrware Engineering Notes,
pages 3941, April 1989,

[12] E. Karlson. Software Reuse: A Holistic Approach.
Software Based Systems. Wiley, 1995.

264

A Framework for Evaluating Software Environments that Support Design Reuse

[13] M. Lubars. Representing design dependencies in an
issue-based style. IEEE Software, 8(4):81-89, July
1991.

(14] I. Morel. The REBOOT environment. Technical
Report 7808, ESPRIT Project, 1994.

[15] O. Nierstrasz, S. Gibbs, and D. Tsichritzis.
Component-oriented software development. Com-
munications of the ACM, 35(9):1607165, Septem-
ber 1992.

[16] R. Prieto-Diaz. Systematic reuse: A scientific or an
engineering method? In Proceedings of the ACM
Symposium on Software Reusability, pages 9-10,
1995.

[17] W. Schaeffer, R. Prieto-Diaz, and R. Matsumoto,
editors. Sofrware Reusability. Ellis Horwood, 1993,

[18] M. Shaw and D. Garlan. Software Architecture.
Prentice-Hall, 1996.

[19] G. Sindre and R. Conradi. The REBOOT approach
to software reuse. Journal of Systems and Software,
30(3):201-212, September 1995.

[20] C.Trotta and O. Nierstrasz. Object-oriented support
for generic application frames. In D. Tsichritzis,
editor, Object Frameworks, pages 151-195. Univer-
sité de Genéve, 1992.

[21] A. Wasserman, P. Pircher, and R. Muller. The
object-oriented structured design notation for soft-
ware design representation. [EEE Computer,
23(3):50-63, March 1990.

[22] M, Zand and M. Samadzadeh. Software reuse:
Current status and trends. Journal of Systems and
Software, 30(3):167-170, September 1995,

Received: November, 1996
Accepted: December, 1997

Contact address:

Hossein Saiedian and Mansour Zand
Department of Computer Science
University of Nebraska at Omaha

Omaha, Nebraska 68182-0500
USA

HOSSEIN SAIEDIAN (Ph.D., 1989, Kansas State University, USA) is an
associate professor at the Department of Computer Science, the Univer-
sity of Nebraska in Omaha, USA. He is a member of the IEEE Computer
Society, Sigma Xi, the ACM, and currently serves as the Chair of the
ACM SIGICE (Special Interest Group in Individual Computing En-
vironments). Dr. Saiedian’s contributions in software engineering are
extensive and recognized.

MANSOUR ZAND is an associate Professor at the Department of Com-
puter Science, the University of Nebraska in Omaha. He received
his Ph.D. in Computer Science from Oklahoma State University. Dr
Zand's main area of research is software engineering, specifically soft-
ware reuse, about which he has published more than 35 papers. He is a
co-founder of ACM-SIGSOFT Symposium on Software Reuse (SSR)
and has organized several other Reuse events and forums. His most
recent work on this area is related to organizational impacts of software
reuse, legal issues, and fuzzy metrics. He is also involved in research
in the database area, specifically data-warehousing, object oriented and
distributed database systems.

