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An Invitation to
Formal

Methods

‘ ne of the most challenging tasks in software system design is to
O assure reliability, especially as these systems are increasingly used
in sensitive and often life-critical environments such as medical
systems, air traffic control, and space applications. It is therefore essen-
tial for developers to employ those methods that offer a high degree of
assurance that the system’s requirements accurately capture the users’
critical requirements and that an implementation in software (or hard-
ware) is an accurate realization of the design.
‘ Software reliability, although the primary concern of the computing
industry, is not the only one. Another major concern has been the
| increased cost of developing and maintaining software. Precise, up-to-
date figures representing the actual cost of software in industry are nei-
ther available nor easy to establish. Boehm suggested that the worldwide
cost of software in 1985 was roughly $140 billion ($70 billion in the US
alone).! Even if we assume a modest growth rate of 10 percent per year
(Boehm suggested 12), the software cost in the year 2000 will be close to
$600 billion ($300 billion in the US). Much of software’s cost stems from
testing and maintenance. The absence of rigorous practices that elimi-
nate residual specification and design errors (caused by imprecision,
ambiguity, and sometimes, plain mistakes) has translated into a significant
portion of this cost. .

Many claim that formal methods not only provide added reliability but
also have the potential to reduce costs. They provide a notation for the
formal specification of a system whereby the desired properties are
described in a way that can be reasoned about, either formally in mathe-
matics or informally but rigorously. In essence, formal methods offer the
same advantages for software (or even hardware) design that many other
engineering disciplines have exploited—namely, mathematical analysis
using a mathematically based model. Such models allow the designer to
predicate the behavior and validate the accuracy of a system instead of
having to rely entirely on nonassuring exhaustive testing.

The clear advantages of a more mathematical approach to software
design has certainly been well documented; the literature contains many
excellent examples of applications of formal methods for large, critical, or
even business transaction systems. Despite the evidence, however, a large
percentage of practitioners see formal methods as irrelevant to their daily
work.

To be sure, practitioners can’t simply be blamed for their skepticism.
What is hindering the adoption of formal methods by industry? Is'the
notation too complex? Or are existing formal methods unable to con-
tribute to, benefit from, or be integrated with traditional methodologies?
Is there still a perception of high complexity and costs? Has the barrier
been the lack of easy-to-use support tools? Or would an increase of for-
malism in computer science or software engineering education translate
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into a more formal approach in industry by the next gen-
eration of software engineers?

In seeking answers to these questions, I contacted some
of the best minds in academia and industry, asking them
to share their insights.

ROUNDTABLE CONTRIBUTIONS

We open with a point/counterpoint on the viability of
formal methods in industrial practice. Two long-time
advocates of formal methods, Jonathan Bowen and
Michael Hinchey, identify four areas they believe are
important in the industrial adoption of formal methods:
standards, tools, training, and correcting the misconcep-
tions. Robert Glass speaks for practitioners who perceive
achasm between researchers and practitioners. He argues
that it will be impossible to advance formal methods in
industry until the chasm is effectively bridged.

Formal methods light

Formal methods can be applied to all or selected com-
ponents of a system in varying degrees, depending on the
criticality and nature of that system. Of course, increasing
the level of formality may imply increased costs (for exam-
ple, in formal analysis and verification). Is it possible to
maintain acceptable levels of rigor without complete for-
malization, or to use partial formalism during modeling
and analysis? Commentaries by Cliff Jones and by Daniel
Jackson and Jeannette Wing address these issues. While
emphasizing rigor and the importance of a formal basis,
Jones suggests using a less-than-completely formal
approach in most development cases. Jackson and Wing,
on the other hand, advocate a lightweight approach to for-
mal methods in which cost-effectiveness is achieved by
developing partial specifications (with a focused applica-
tion) that can be analyzed mechanically. The authors dis-
cuss partiality in terms of language, modeling, analysis,
and composition.

Formal methods in practice

The experts from industry examine formal methods
from the vantage point of their direct experiences.
Anthony Hall elaborates on their economic benefits. His
industrial experiences in using formal methods for rela-
tively large projects (see his recent article in the March
issue of IEEE Software) suggest that such methods may
indeed make software development cheaper if used as part
of an overall engineering approach. David Dill and John
Rushby discuss the successful application of formal veri-
fication in hardware design. Formal methods have sub-
stantially more practical impact on hardware design, they
claim, not only because hardware is easier to verify, but
also because the problem has been approached with an
eye to maximizing ROI. Here, formalists target areas of
high payoff, use highly automated techniques, and apply
formal verification more to debugging than assurance.
Michael Holloway and Ricky Butler discuss three primary
impediments to the wide-scale industrial use offofmal
methods: inadequate tools, inadequate exarr;plés, and the
“build it and they will come” expectations. Finally, Pamela
Zave discusses the conceptual gaps between the mathe-
matical models offered by formalists and actual applica-
tion domains.

Resources

For a comprehensive list of formal methods
resources, try this URL: http:// www.comlab.ox.ac.
uk/archive/formalmethods.html.

Engineering mathematics

If software engineering is in fact an engineering disci-
pline, then application of formal methods should parallel
the use of mathematics in other engineering disciplines.
Michael Lutz believes that the gap between researchers
and industrial practitioners is largely due to a misunder-
standing of the differences between research mathemat-
ics and engineering mathematics. He outlines these
differences and suggests some approaches that may accel-
erate the use of formal methods in industry. David Parnas,
who was the first winner of the Norbert Wiener Award for
Professional and Social Responsibility, also believes that
formal methods should be more like the mathematics used
by other engineering disciplines. While emphasizing the
importance of routinely using mathematics in software
engineering, Parnas expresses concerns about the nota-
tion purveyed by most formal methods researchers.

Education

The term formal in formal methods derives from formal
logic, a powerful tool intended for reasoning and certify-
ing certain properties. But has this topic been adequately
presented as a useful tool? David Gries, who is known for
significant contributions to computing education and who
won the 1995 Karl V. Karlstrom Outstanding Educator
Award, reflects on the role of logic as the foundation of
most formal methods. He argues that until people are com-
fortable using formal logic, they won't be comfortable with
most formal methods.

THIS ROUNDTABLE WILL, it is hoped, serve as a beginning for
amore serious forum in which academics and practitioners
can sit down together to discuss their needs, expectations,
and goals in an effort to close the gap between them. I am
open to suggestions about how to proceed from here. I
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TO FORMALIZE OR NOT TO FORMALIZE?

Michael G. Hinchey, New Jersey Institute of
Technology and University of Limerick
Jonathan P. Bowen, University of Reading

I t may seem strange to have two academics contributing
to such a roundtable. However, our recent work in edit-
ing a collection of essays on the industrial application of for-
mal methods has brought us into contact with a wide range
of industrial projects, giving us some useful insights.
Broadly speaking, we can identify four reasons for indus-
try’s reluctance to take formal methods to heart.

:
MISCONCEPTIONS OR MYTHS. Claims that formal meth-
ods can guarantee correct hardware and software, elimi-
nate the need for testing, and so on have led some to believe
that formal methods are something almost magical.?
Similarly, and even more significantly, myths that formal
methods are difficult to use, delay the development process
and raise development costs have led many to believe that
formal methods are not for them. We hope that the exam-
ples in our study will help to dispel some of these myths.
Formal methods are not a panacea; they are just one of
several techniques that, when correctly applied, have
resulted in systems of the highest integrity. Formality should
be used appropriately and judiciously at the weakest links in
the chain of development, in tandem with other techniques
of proven benefit for improved computer-based systems.

STANDARDS. Formal methods should not be applied to
satisfy a whim or to be in vogue. Realistically, the first
thing that must be determined before a formal develop-
ment is undertaken is that forral methods are needed—
whether for increased confidence in a system, to conquer
complexity, or, increasingly, to satisfy the standards set by
procurers or various regulatory bodies.

Until recently, formal methods were not included in that
latter category. Now, however, standards bodies are not
only using formal methods in making their own standards
less ambiguous but have strongly recommended, and in the
future may mandate, the use of formal methods in certain
classes of applications.?

Michael G. Hinchey is a professor in the Department of Computer
and Information Science at New Jersey Institute of Technology and in
the Department of Computer Science & Information Systems at Univer-
sity of Limerick, Ireland. His interests include formal methods for sys-
tem specification, Z, verification, concurrency, functional programming,
and method integration. E-mail hinchey @cis.njit.edu.

Jonathan P. Bowen is a lecturer at the Department of Computer Sci-
ence, University of Reading. His interests include formal specification, Z,
provably correct systems, rapid prototyping using logic programming,
decompilation, hardware compilation, safety-critical systems, and soft-
ware/hardware codesign. E-mail J.P.Bower@reading.ac.uk.
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TOOLS. Just as significant investment in compiler tech-
nology was required for the widespread take-up of high-
level languages, a sighificant investment in formal
methods tools is required for industrial application.

Most of the projects in our study necessitated a consid-
erable emphasis on tool development initially, because
the required tools were often simply not available off the
shelf. There is certainly a need for, and trend toward, fur-
ther tool support and tool integration. Thankfully, excel-
lent tools are now commercially available, and more
integrated toolkits are evolving.

We expect and hope that in the future more emphasis
will be placed on IFDSEs (Integrated Formal Development
Support Environments) to support formal development,
just as CASE workbenches support system development
using more traditional structured methods. Unfortunately,
this requires significant financial investment, which to date
the formal methods market has found difficult to sustain.
This “chicken and egg” situation must be resolved if formal
methods are to gain wider acceptance.

EDUCATION AND TRAINING. We strongly believe in the
applicability of formal methods to industrial-scale prob-
lems. However, technology transfer from academic the-
ory to industrial practice must be addressed.

One way to cost-effectively integrate formal methods
is to investigate how formal methods can be combined
with existing structured and other methods already in use.
In addition, novice formal developers must ensure that
they have access to expert advice. Most successful formal
methods projects have benefited from the guidance of at
least one outside expert. Until sufficient local expertise
has been built up, it appears difficult to use formal meth-
ods successfully without such consultants.

In addition, the necessary grounding for the use of for-
mal methods has either not been taught adequately in
computer science courses or specialists in industry simply
have not taken such courses. Thus, many software engi-
neers (and even more managers) shy away from formal
methods because they feel out of their depth. Fortunately,
many undergraduate courses (at least in Europe, and par-
ticularly in the U.K.) now teach the requisite foundations
for applying formal methods. v

However, formal aspects of courses are often unintegrated
with the rest of the syllabus. Coordinated course material
in which the mathematical foundations are subsequently
applied to practical problems will help produce more pro-
fessional software engineers and formal developers.

THE “STICK” OF STANDARDS and the “carrot” of education, sup-
ported by industrial-strength tools, will make or break the
significant industrial use of formal methods. The market sec-
tor with the greatest potential to combine these elements
most effectively is probably safety-critical systems.? This is
an increasingly important area for computer-based systems
because of the flexibility that software provides. We hope




that formal methods will prove theirworth in helping to pre-
ventthe loss of human lives where such systems are involved.
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formal FORMAL METHODS ARE A SURROGATE FOR A MORE SERIOUS
n. SOFTWARE CONCERN
consid-
yecause Robert L. Glass, The Software Practitioner viewpoints of its participants. Let me provide my own view
2 off the of what such a forum might conclude regarding formal
ird, fur- here is a serious problem with formal methods in the methods.
7, excel- T software profession. The problem goes well beyond First of all, ITbelieve this forum would see that formal meth-
d more the fact that academics engage in wishful thinking about  ods are underdefined. Some see formal methods as “anyrig-
their value, and practitioners engage in skepticism and  orous technique” for software development, while others see
nphasis resistance to their use. The problem is lodged in what  itas being limited to software specification and formal veri-
opment many are calling a chasm that exists between software in fication. (1 have seen both definitions in the same formal
ypment, academe and software in industry. methods paper!) Until the subject is properly defined, no dis-
opment The essence of the chasm is that those two groupsseesoft-  cussion of the topic can have a successful outcome.
unately, ware engineering as different concepts, with different needs, Second, I believe this forum would see that formal meth-
1to date in different terms, and through different lenses. Formal  ods are underevaluated. I collect evaluative research find-
sustain. methods are the epitome of, and an interesting surrogate ings, and my cupboard of formal methods findings is nearly
fformal for, that chasm. Academics see formal methods as inevitable  bare.Isee some anecdotal evidence of its value (aseditor of |
in the future of the software profession (the chargetowrite  Elsevier'sJournal of Systems and Software, T have published
this roundtable response said “It is clear that formal meth-  a few myself}, and I see plenty of analysis that concludes
reinthe ods provide a high degree of assurance . . . that systemswill  there is enormous value. But I see very little in the way of
le prob- operate as desired”). Practitioners see formal methods as  cost-benefit studies—experimental or otherwise—that give
nic the- irrelevant to what they do (my skeptical practitioner side  me any confidence that the methods have value.
responded to that charge with “Clear to whom?”). Third, I believe such a forum would seriously question
1ethods That chasm was articulated nicely in a prior roundtable,  whether formal methods are taking us in the right direc-
mbined the one in which Ted Lewis collected opinions on “Where  tion. There is a strong view (although still in the minor-
yin use. Is Software Headed?” (Computer, Aug. 1995) and noted ity) in contemporary software engineering that software
1re that that his most dramatic finding was-that academic and malleability is at the essence of the problem solutions we
| formal practitioner responses were almost entirely unrelated to prepare and that formal methods inhibit that malleabil-
ice of at one another. Specifically, formal methods appearedonthe ity Further, there is another belief—this one accepted by
tpertise academic list defining the future of software but did not most—that specifications must be readable by the
U meth- appear on the industrial list. intended customers/users of the software product and
In my view, it is pointless to try to address the advance  that formal methods do not fulfill that need. .
e of for- of formal methods in industry until the broader problem Finally, such a forum would reject the belief that formal
ately in of the chasm is addressed. After all, formal methods have methods will lead to any breakthrough in software pro-
7simply been around now for at least 25 years (I recall a paperon  ductivity/quality, such as through automatic code gener-
re engi- proof of correctness being published in Computing Surveys  ation from formal specifications, on the same grounds set
formal in the late 1960s), well past the period of time Redwine  forth in articles by Rich and Waters (“Cocktail Party
1nately, and Riddle found to be typical for technology transfer of Myth”), Brooks (“No Silver Bullet™), and Parnas (“Star
ind par- new concepts into practice. If a generation of brilliant soft- Wars”).
dations ware academics has failed to achieve the transfer of for-
mal methods to practice in the past, why should we think  THE POINT OF A ROUNDTABLE,
egrated the current crop will be able to do it? of course, is to collect a Robert L. Glass is president of Com-
naterial What is most badly needed, I believe, is an ongoing  stimulating set of view- puting Trends, a software engineering
quently forum in which academics and practitioners meet to dis-  points to help catalyze the consulting/education,/publishing firm.
sre pro- cuss their views of software. In that forum there must be reader into thinking more He has been active in the field of com-
S an absence of preaching and a great deal of listening.  clearly about the round- puting and software for over 40 years,
Religious zealots of any stripe, including unquestioning  table’s subject. Iwould sug- largely in industry (several aerospace
on, sup- advocates of formal methods (and any other technique or  gest that, for this topic, a companies) but also as an academic
eak the concept), should be banned. The goal of this forumwould ~ roundtable should be only (Seattle University, Software Engineer-
tket sec- be to seek truth, not to coerce converts. BecauseThave the beginning. Someone ing Institute). He is editor of the Jour-

ements walked on both sides of this chasm, Tam convinced that  has to take responsibility nal of Systems and Software and

3 This is such a fdrum, properly conducted, would be a dramatic  for beginning that forum publisher and editor of the Software
systems learning experience for practitioners and academics alike. mentioned above. Why Practitioner.
Ve hope However, the point of this roundtable is to presentthe  couldn’t it start here? I
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Formal Methods Light

A RIGOROUS APPROACH TO FORMAL METHODS

Cliff B. Jones, University of Manchester

have been active in formal methods for more than

twenty years—and may have been one of the first peo-
ple to use the term. Having experienced the early prob-
lems of gaining recognition for the subject, I am actually
pleased with today’s level of awareness of more formal
approaches to computer systems development. But this
roundtable asks us to address why more has not been
achieved. My own views on how to foster the use of for-
mal methods have changed over time, and the proposals
I make now for how an organization might use formal
methods differ from the more austere suggestions I put
forth a decade and more ago.

My position today could be characterized as “formal
methods light.” Interestingly, my 1980 book on formal
methods deliberately had the word rigorous rather than for-
malin its title. My opinion even then was that it was impor-
tant to understand-the formal basis but to use—in most
cases—a less than completely formal approach; this course
was proposed on the assumption that one was capable of
filling in the formal details where necessary. Under the ban-
ner of “fm-light,” I today teach courses on how to sketch
abstract models of systems where a minimum of emphasis
is put on the notational detail, and the central idea is that of
presenting an abstract state for a system. It is amazing how
much understanding of an architecture is captured in its
state. For a database system, less than half a page of state
formulae can show the overall function; even for a pro-
gramming language whose definition might cover more
thana hundred pages of formulas, the semantic objects cap-
turing the language’s essence most likely can be presented
onafew pages. The step beyond presenting just a state is to
provide a specification of major parts—or possibly all—of
a system; and only in extreme cases would I recommend
formal proofs for design steps of (portions of) a system. In
contrast to the emphasis in much of the literature, I would
prefer to see formalism employed to justify the early data-
structure/design decisions rather than the detailed control
constructs.

Coupled with the idea that a rigorous development is
capable of being formalized, we have made numerous

experiments with formal
documents in inspections
or walk-throughs. [ remem-

errors. 1 believe the reason for this was clearly the lack of
formal material available in a project’s early stages—the
later reviews had the formalism of the code to ensure pre-
cision. We all know that the expensive mistakes are made
in a project’s early stages: Undetected errors in the speci-
fication and overall design phases are very expensive to
fix. What I have found with specification and design
inspections based on formal documents is that they
achieve the same level of precision as code inspections
and, with that, a considerably greater level of confidence.
Furthermore, it is precisely in the review process that the
virtue of formalizing rigorous development becomes clear:
Doubits raised in an inspection can be resolved by going to
another level of formalization.

Perhaps the area where I have changed my views most
concerns the necessary education for groups of engineers.
I have had bad experiences seeing system architects pro-
pose designs in natural language and ask others to for-
malize them. The inevitable effect was that the people
constructing the formal document generated many ques-
tions about—and corrections to—the architecture’s nat-
ural language description and were thanked only with
more pages of ambiguous and inconsistent natural lan-
guage. I had formed the view that the only way to avoid
this trap was for all team members to be able to write for-
mal specifications themselves; domain experts would then
use formal notations to record and think about their archi-
tectures. When 1 consulted for the IBM Laboratory in
Germany, we attempted to educate all people involved in
a project (including those from publications) about VDM
to a level where they could actually write specifications
themselves.

I now feel that it is more realistic to follow the pattern
of operations research groups (in which IThad the pleasure
of working early in my career in the oil industry). A com-
bined team of domain specialists and formalists would, I
believe, solve many of the problems of adopting formal
methods. The major difficulty in communicating formal
methods is the ability to find appropriate levels of abstrac-
tion at which to describe serious systems. People capable
of doing this would become the team’s formal methods
specialists who would help the domain specialists under-
stand the system they wished to build and document it at
an appropriate level of abstraction. Education in general,
and specifically education in the use of abstraction, is a

ber when I worked for IBM  bigger gap than the claimed lack of tools for formal meth-
that—with traditional de-  ods. Clearly, all team members need to be able to read the
velopment methods—those ~ formal specification language, but it is not so much the
inspections conducted late  minutiae of discrete mathematics that inhibits users as it
major projects led to a deep dissatisfac- in a development cycle isthe ability to abstract.

tion with the development methods tended to be crisp and use- Today, formal methods are mainly used in the safety-
being used. While at the IBM Vienna ful in locating errors, critical area where their detailed application can be justi-
Laboratory, Jones helped create the for- whereas inspections con-  fied because of the danger of loss of life. The use of formal
mal development method known as ducted earlier in the project  methods in a lighter way is both a key to using them on
VDM. E-mail cliff@cs.man.ac.uk. tended to be woollier and  larger-scale applications and a way of penetrating fields
not so useful in locating outside the safety-critical area. I'd like to see formal meth-

Cliff B. Jones is professor of comput-
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the future of a company depends or whose software sys-
tems can affect society at large.

A DANGER OF THIS FM-LIGHT approach is that formalists will
obtain no thanks for their efforts! Many contributions of
formalism are now absorbed into everyday computing

LIGHTWEIGHT FORNAL METHODS

Daniel Jackson and Jeannette Wing,
Carnegie Mellon University

M any benefits promised by formal methods are
shared with other approaches. The precision of
mathematical thinking relies not on formality but on care-
ful use of mathematical notions. You don’t need to know
7 to think about sets and functions. Likewise, the lin-
guistic advantages of a formal notation rely more on syn-
tax than semantics.

Mechanical analysis, in contrast, is a benefit unique to
formal approaches. An engineer’s sketch can communi-
cate ideas to other engineers, but only a detailed plan can
be rigorously examined for flaws. Informal methods often
provide some analysis, but since their notations are gen-
erally incapable of expressing behavior, the results of the
analysis bear only on the properties of the artifact’s
description, not on the properties of the artifact itself.

For everyday software development, the purpose of for-
malization is to reduce the risk of serious errors in speci-
fication and design. Analysis can expose such errors while
they are still cheap to fix. Formal methods can provide lim-
ited guarantees of correctness too, but, except in safety-
critical work, the cost of full verification is prohibitive, and
early detection of errors is a more realistic goal.

To make analysis economically feasible, the cost of spec-
ification must be dramatically reduced, and the analysis
itself must be automated. Experience (of several decades)
with interactive theorem proving has shown that the cost
of proof is usually an order of magnitude greater than the
cost of specification. And yet the cost of specification alone
is often beyond a project’s budget. Industry will have no
reason to adopt formal methods until the benefits of for-
malization can be obtained immediately, with an analy-
sis that does not require further massive investment.

Existing formal methods, atleast if used in the conven-
tional manner, cannot achieve these goals. By promoting
full formalization in expressive languages, formalists have
unwittingly guaranteed that the benefits of formalization
are thinly spread. A lightweight approach, which in con-

trast emphasizes partiality and focused application, can
bring greater benefits at reduced cost. What are the ele-
ments of a lightweight approach?

PARTIALITY IN LANGUAGE. Until now, specification lan-
guages have been judged primarily on their expressive-
ness, with little attention paid to tractability. Some
languages—such as Larch—were from the start designed
with tool support in mind, but they are the exception.
Tools designed as an afterthought can provide only weak
analysis, such as type cliecking. The tendency (in Z espe-

know-how (for example, context-free grammars, finite-
state diagrams, and so on), yet there is still a question as
to the impact of formal methods. When states, data-type
invariants, retrieve functions, loop invariants, rely/guar-
antee-conditions are all part of general computer knowl-
edge, the formalists will be challenged to justify their
continuing research on other topics. 1

cially) to see a specification language as a general math-
ematical notation is surely a mistake, since such general-
ity can only come at the expense of analysis (and,
moreover, at the expense of the language’s suitability for
its most common applications).

PARTIALITY IN MODELING. Since a complete formaliza-
tion of the properties of a large system is infeasible, the
question is not whether specifications should focus on some
details at the expense of others, but rather which details
merit the cost of formalization. The naive presumption that
formalization is useful in its own right must be dropped.
There can be no point embarking on the construction of a
specification until it is known exactly what the specifica-
tion is for; which risks it is intended to mitigate; and in
which respects it will inevitably prove inadequate.

PARTIALITY IN ANALYSIS. A sufficiently expressive lan-
guage, even if designed for tractability, cannot be decid-
able, so a sound and complete analysis is impossible. Most
specifications contain errors, and so it makes more sense
to sacrifice the ability to find proofs than the ability to
detect errors reliably. A common objection to this
approach is thatit reduces analysis to testing: No reported
errors does not imply no actual errors. But this much-
touted weakness of testing is not its major flaw. The prob-
lem with testing is not that it cannot show the absence of
bugs, but that, in practice, it fails to show their presence.
A model checker that exhausts an enormous state space
finds bugs much more reliably than conventional testing
techniques, which sample only a minute proportion of
cases.

PARTIALITY IN COMPOSITION. For a large system, a sin-
gle partial specification will not suffice, and it will be nec-
essary to compose many partial specifications, at the very
least to allow some analysis of consistency. How to com-
pose different views of a system is not well understood

Daniel Jackson is an assistant professor of computer science at Carnegie
Mellon. After receiving a BA in physics from Oxford, he worked as apro-
grammer for Logica UK. He has a PhD in computer science from MIT He
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and has only minimal support from specification lan-
guages, since it does not fit the standard pattern of “whole-
and-part” composition.

MUCH OF WHAT WE SAY HERE IS AT ODDS with the conven-
tional wisdom of formal methods. The notion of a light-
weight approach is radical, however, only in its departure
from a dogmatic view of formal methods that is detached

Industrial Practice

from mainstream software development. In the broader
engineering context, the suggestion of pragmatic com-
promise is hardly new. :

Alightweight approach, in comparison to the traditional
approach, lacks power of expression and breadth of cover-
age. A surgical laser likewise produces less power and poorer
coverage than a light bulb, but it makes more efficient use
of the energy it consumes, and its effect is more dramatic. I
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WHAT IS THE FORNMAL METHODS DEBATE ABOUT?
L
Anthony Hall, Praxis son. However, we wanted to make sure that we understood J
the requirements accurately and decided to use formal
tis extraordinary that formal methods cause such fierce  methods at the early stages of the life cycle to help us do I
debate. Some proponents seem committed with an  that. We therefore wrote aformal specification of the whole
almost religious fervor; some opponents seem hostile ~ system as the basis for our development. There are about d
beyond all reason. As far as I know, no issue in software 150 user-level operations in CDIS (the final system is about n
engineering causes as much passion, unlessitisthe useof 200,000 lines of code), so the specification is a large docu- h
the goto statement. ' ment (about 1,000 pages). This in turn means that we are I
One reason for this polarization may be that the two  making fairly “shallow” use of formality—we did not h
sides are arguing from completely different premises.  attempt any proofs of consistency or of particular proper- i1
Perhaps the argument has been between those who say  ties. Nevertheless, we found the specification enormously u
that formal methods are essential because they are the  useful in pinning down just what it was that we were going <
only way to gain assurance and those who say formal tobuild. ti
methods are impossible because they are too expensive. The system specification was not the only way we used k
No amount of argument will resolve that difference unless  formality on CDIS. We also wrote a similar specification p
the two sides start to recognize each other’s objectives. of the main design-level modules, again at a shallow level. o
I have been using formal methods in real projects for  In one particular part of the design we used formalityina o
the past 10 years, and recently I have begun to see a fun-  much deeper way, writing detailed process specifications tl
damental shift in the argument. Ten years ago, the argu-  and attempting to prove them correct. The fact that some g
ment was that formal methods were hugely expensive  proofs failed demonstrated that our design was in fact i
(they were!) but that you had to use them because there  incorrect, and as it turned out, incorrect in a way that o
was no other way to ensure that your software was cor-  might well have escaped detection in our tests. Fault met-
rect. Now, the argument is quite different. We know that  rics for CDIS confirmed our hope that it would be of higher P
it is possible to produce software, even critical software, —quality than systems built using conventional methods. b
without formal methods; we also know that itis horribly ~ They also showed an unusual distribution in that, unlike d
expensive. What is only recently becoming clearis thatit many other systems, very few of the faults that survived tl
is practical to produce software, even noncritical software,  system test into the delivered system were requiremerits or
using formal methods; it is also, as far as we can tell, specification faults. l¢
cheaper to do it that way. Most interesting is the fact that none of this good news 1
I say “as far as we can tell” because it is notoriously dif-  cost us anything—our productivity on the project was as d
ficult to get any useful information from software met-  good as or better than if we had done it conventionally. I in
rics. What I can do is describe some of the projects we  believe that one reason is that the work we put in at the Pl
have done at Praxis and early stages was effective in finding lots of errors that Iy
how we perceive the costs  would, if we had not found them, have proved very expen- v
and benefits of using for- sive to correct later. The formal specification enabled us €l
Anthony Hall is a principal consul- mal methods.'? to find these errors effectively. ti
tant with Praxis, a British software One of the largest appli- While CDIS is an example where formal methods at the €l
engineering compary. He led the analy- cations of formal methods1  front of the life cycle pay off, they can also show economic
sts and design team on CDIS and has know of isa project we com-  benefits at the code and test stages. For Lockheed, we have hy
promoted the use of formal methods on pleted a few years ago to  recently been analyzing the code for the avionics software ix
many projects. His current interests are develop an air trafficcontrol ~ for the C130J.2 The software is coded in the Spark-anno- w
in formal aspects of software architec- information system called tated subset of Ada, working from specifications in the
tures and in tool-based verification of CDIS. Thisis asafety-related ~ Software Productivity Consortium’s Core notation. Here, &
formal specifications and designs. system, but there was no too, many people would expect that the use of Spark «
E-mail jah@praxis.co.uk. regulatory pressure to use  would add to the software’s cost, while improving its qual- gl
formal methods for thatrea-  ity. In fact, however, the added quality decreases the cost if
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of the software because of the huge savings in testing. The
use of Spark annotations to capture the specification of
the modules has truly led to software that is “correct by
construction” and hence passes its tests instead of requir-
ing expensive rework. '

THESE TWO EXAMPLES support the prime contention of this
article. We can now have a rational discussion about for-
mal methods, because both sides can ask the same ques-
tions about them. I believe the right question to ask'is

|

ACCEPTANCE OF FORMAL METHODS: LESSONS FRONM HARDWARE DESIGN

David L. Dill, Stanford University
John Rushby, SRI International

espite years of research, the overall impact of formal
methods on mainstream software design has been
disappointing. By contrast, formal methods are begin-
ning to make real inroads in commercial
hardware design. This penetration is the
result of sustained progress in automated

hardware verification methods, an increas- o the benefits

of the new
method exceed
the costs of con-
verting to it and
using it by a suffi-
cient margin to
justify the risks
of doing so?

ing accumulation of success stories from
using formal techniques, and a growing
consensus among hardware designers that
traditional validation techniques are not
keeping up with increasing design com-
plexity. For example, validation of a new
microprocessor design typically requires as
much manpower as the design itself, and
the size of validation teams continues to
grow. This manpower is employed in writ-
ing test cases for simulations that run for months on acres
of high-powered workstations.

In particular, the notorious FDIV bug in the Intel
Pentium processor has galvanized verification efforts, not
because it was the first or most serious bug in a processor
design, but because it was easily repeatable and because
the cost was quantified (more than $400 million).

Hence, hardware design companies are increasingly
looking to new techniques, including formal verification,
to supplement and sometimes replace conventional vali-
dation methods. Indeed, many companies, including
industry leaders such as AT&T, Cadence, Hewlett-
Packard, IBM, Intel, LSI Logic, Motorola, Rockwell, Texas
Instruments, and Silicon Graphics have created formal
verification groups to help with ongoing designs. In sev-
eral cases, these groups began by demonstrating the effec-
tiveness of formal verification by finding subtle design
errors that were overlooked by months of simulation.

Why have formal methods been more successful for
hardware than for software? We believe that the overrid-
ing reason is that applications of formal methods to hard-
ware have become cost-effective.

The decision to use a new methodology is driven by
economics: Do the benefits of the new method exceed the
costs of converting to it and using it by a sufficient mar-
gin to justify the risks of doing so? The benefits may
include an improved product (for example, fewer errors),

“what can formal methods contribute to improve the qual-
ity and decrease the cost of our systems?”
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but those most keenly desired are reduced validation
costs and reduced time-to-market (for the same product
quality). The chief impediments to applying traditional
formal methods are that the costs are thought to be high
(for example, much highly skilled labor) or even unac-
ceptable (a potential increase in time-to-market), while
the benefits are uncertain (a possible
increase in product quality). Formal
hardware verification has become attrac-
tive because it has focused on reducing
the cost and time required for validation
rather than pursuit of perfection.

Of course, hardware has some intrinsic
advantages over software as a target for
formal methods. In general, hardware has
no pointers, no potentially unbounded
loops or recursion, and no dynamically
created processes, so its verification prob-
lem is more tractable. Furthermore, hard-
ware is based on a relatively small number
of major design elements, so that investment in master-
ing the formal treatment of, say, pipelining or cache coher-
ence can pay off over many applications. And the cost of
fabricating hardware is much greater than software, so
the financial incentive to reduce design errors is much
greater.

However, we believe there are some lessons and prin-
ciples from hardware verification that can be transferred
to the software world. Some of these are listed below.

PROVIDE POWERFUL TOOLS. Technology is the primary
source of increased productivity in most areas, and espe-
cially this one. In particular, tools that use formal specifi-
cations as the starting point for mechanized formal
calculations are the primary source of cost-effective appli-
cations of formal methods. This is exactly analogous to
the use of mathematical modeling and calculation in other
engineering disciplines. Without tools to deliver tangible
benefits, formal specifications are just documentation,
and there is little incentive for engineers to construct them
or to keep them up to date as the design evolves.

For hardware, a spectrum of tools has evolved to per-
form formal calculations at different levels of the design
hierarchy and with different benefits and costs. At the low-
est level are tools that check Boolean equivalence of com-
binational circuits (this is useful for checking manual
circuit optimizations). Techniques based on Ordered
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Binary Decision Diagrams (OBDDs) are able to checklarge
circuits quite efficiently and are now incorporated in com-
mercial CAD tools: At a higher level, designs can often be
represented as interacting finite state machines, and tools
that systematically explore the combined state space can
check that certain desired properties always hold or that
undesired circumstances never arise. Tools based on
explicit state enumeration can explore many millions of
states in a few hours; tools that represent the state space
symbolically (using OBDDs) can sometimes explore vast
numbers of states (for example, 10) in the same time
and can check richer properties (for example, those that
can be specified in a temporal logic, in which case the tech-
nique is called “temporal logic model checking”). At the
highest levels, or wheri very complex properties or very
large (or infinite) state spaces are involved, highly auto-
mated theorem-proving methods can be used to compare
implementations with specifications. These theorem-prov-
ing methods combine rewriting and induction with deci-
sion procedures for propositional calculus, equality, and
linear arithmetic. In all cases, the tools concerned are
highly engineered so that they can deal with very large
formulas and require little or no user interaction when
applied in familiar domains.

USE VERIFICATION TO FIND BUGS. A tool that simply
“blesses” a design at the end of a laborious process is not
nearly as impressive to engineers as a tool that finds a bug.
Finding bugs is computationally easier than proving cor-
rectness, and a potential cost can be attached to every bug
that is found, making it easy to see the payoff from formal
verification. Traditional validation methods already are
used primarily as bug-finders, so formal methods are very
attractive if they find bugs different from those found with
traditional methods—a much more achievable goal than
trying to guarantee correctness.

Shortcuts can be taken when formal verification is
used for finding bugs rather than proving correctness.
For example, a system can be scaled down—the number
or size of components can be drastically reduced. A direc-
tory-based cache-coherence protocol can be checked
with just four processors, one cache line, and two data
values. Such a scaled-down description will still have
many millions of states, but will be within reach of state
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Computer

exploration and model checking methods. These meth-
ods can check the reduced system completely; in contrast,
simulation checks the full system incompletely. Both
techniques find some bugs and miss others, but the for-
mal methods often detect bugs that simulation does not.
Some researchers are now applying these techniques to
software.

FORMAL TECHNIQUES MUST BE TARGETED. In hard-
ware, experience shows that control-dominated circuits
are much harder to debug than data paths. Effort has thus
gone into developing formal verification techniques for
protocols and controllers rather than for data paths.
Targeting maximizes the potential payoff of formal meth-
ods by solving problems not handled by other means.
Notice that the targeted problems often concern the hard-
est challenges in design: cache coherence, pipeline (and
now superscalar) correctness, and floating point arith-
metic. For software, correspondingly difficult and worth-
while challenges include those where local design

-decisions have complex global consequences, such as the

fault-tolerance and real-time properties of concurrent dis-
tributed systems.

RESEARCHERS SHOULD APPLY THEIR WORK TO REAL
PROBLEMS. Our research priorities are completely dif-
ferent from what they would have been, had we not exer-
cised our ideas on realistic problems. Such efforts have
frequently raised interesting new theoretical problems,
as well as highlighting the need for improvements in
tools.

Of course, applying verification strategies to real prob-
lems is also crucial for building credibility. There is now a
long string of success stories from academia and industry
where finite-state verification techniques have been
applied to hardware and protocols. A few documented
examples include protocol bugs in IEEE standards for the
FutureBus+ (found using symbolic model checking with
a version of Carnegie Mellon’s SMV system) and SCI
(found using explicit state enumeration with Stanford’s
Murphi verifier), and formal verification of the microar-
chitecture and microcode of the Collins AAMP5 and
AAMP-FV avionics processors (using theorem proving
with SRI’s PVS system). Several groups have also demon-
strated the ability to detect bugs in the quotient-predic-
tion tables of SRT division algorithms (similar to the
Pentium FDIV bug), and some have been able to verify
specific SRT circuits and tables. There have also been many
unpublicized examples of problems found by industrial
formal verification groups, which have helped them
build credibility among designers and managers in their
companies.

WE ATTRIBUTE THE GROWING ACCEPTANCE of formal meth-
ods in commercial hardware design to the power and
effectiveness of the tools that have been developed, to the
pragmatic ways in which those tools have been applied,
and to the overall cost-effectiveness and utility that has
been demonstrated. We believe formal methods can
achieve similar success in selected software applications by
following the same principles. I




meth-
ntrast,
7. Both
he for-
es not.
Jues to

1 hard-
;ircuits
as thus
ues for
paths.
[ meth-
neans.
e hard-
e (and
- arith-
worth-
design
1as the
ant dis-

) REAL
:ly dif-
't exer-
s have
blems,
ants in

1 prob-
inow a
dustry
» been
1ented
for the
ig with
ad SCI
aford’s
icroar-
5 and
roving
emon-
sredic-
to the
verify
1many
ustrial
: them
n their

meth-
er and
,tothe
oplied,
1at has
ds can
ions by

IMPEDIMENTS TO INDUSTRIAL USE OF FORMAL METHODS

C. Michael Holloway and Ricky W. Butler,
NASA Langley Research Center

ASA Langley Research Center has, for eight years,
conducted and sponsored research to develop for-
mal methods for high integrity applications. For the past

four years, Langley’s effort has focused primarily on pro-_

jects to inject formal methods technology into commercial
use. In particular, NASA Langley has sponsored SRI
International to work with Rockwell-Collins to formally
verify a portion of the-AAMP5 microprocessor and fully
verify the AAMP-FV, which is a new microprocessor being
developed by Collins for potential use in critical applica-
tions. We have also funded Odyssey Research Associates
towork with Honeywell Air Transport Systens to develop
formally based tools and techniques to analyze and
manipulate decision table specifications. Other projects
have applied formal methods to fault-tolerant algorithms
developed by Allied Signal, advanced control algorithms
under development by Union Switch and Signal, and
change requests to space shuttle software.

All these projects have met the goals we established for
them. In fact, they have often been cited as good examples
of industrial use of formal methods. Nevertheless, these
projects have also illustrated that there remain serious
impediments to the full acceptance of formal methods by
industry. Some of the impediments frequently cited by the
formal methods community include such industrial prob-
lems as inadequately educated engineers, the not-invented-
here syndrome, and greater emphasis on reducing costs
than on increasing safety. However, we believe that the pri-
mary causes for the lack of wide-scale industrial use of for-
mal methods are (1) inadequate tools, (2) inadequate
examples, and (3) a “build it and they will come” expecta-
tion. The projects cited above have succeeded because our
partners have been able to overcome or avoid these pitfalls
in one way or another. In the rest of this article, we will dis-
cuss each of the three factors, and provide suggestions as
towhat formal methodists can do to overcome them.

TooLs. Inadequate tools are a serious impediment to
industrial use of formal methods. Almost all formal meth-
ods researchers will acknowledge that most existing tools
are not production-quality and are difficult to learn to use
effectively. Not only do the input languages use special-
ized notations from mathematical logic, but many tools
have numerous bugs in them. Few things are more dis-
concerting to formal methods neophytes than having to
wonder constantly if their inability to complete a proof is
a result of their own lack of skill, the falsity of what they
are trying to prove, or a bug in the tool. Prototype tools
must be built, but no one should expect such tools to be
used regularly within industry.

One cause for optimism is that many of the formal meth-
ods tool developers are working on their third- or fourth-
generation tools. Some of these evolving tools are also
being developed with industrial use as a major goal and
are being applied to increasingly sophisticated real prob-
lems. Also, government sponsors are working to build
cooperation between different projects so that the meth-

ods and tools developed at different sites work together.
This will also help reduce the duplication of effort that has
unfortunately characterized the field.

Despite our optimism, increased vigilance is still needed
on several fronts. Tool developers must curb their desires
to create more and more powerful tools and instead
expend increased effort on improving the robustness and
performance of existing tools. The emerging tools should
be thoroughly exercised within the formal methods com-
munity before they are made available to industry; gov-
ernment sponsors can take alarge role in this area. Finally,
when tools are made available to industry, formal meth-
ods experts must be available to provide guidance in the
tool’s use and ways to overcome its shortcomings. There is
a growing need for training courses that are tailored for
industrial users.

INADEQUATE EXAMPLES. A second impediment to
industrial use of formal methods is the inadequacy of exist-
ing examples and models. For too long, formal methods
researchers have worked on toy examples and intellectu-
ally interesting but industrially irrelevant problems.
Although academic-style work is essential to the advance-
ment of the field, it cannot be the only work that is done.
Because so few researchers have concentrated on indus-
trially relevant problems, most of the examples and mod-
els that have been developed have borne little resemblance
to the examples and models needed in industry.

Industry cannot be expected to develop the needed mod-
els alone. The first attempt to formalize a new problem
domain requires a significant time investment, one that is

almost always longer than engineers with product dead- |

lines can afford to make. The time required to formalize
the underlying domain-specific knowledge in existing for-
mal verification tools can be considerable, but this is often
not recognized even by formal methodists until they tackle
areal application. Also, the first endeavor in a new domain
requires far greater creativity than subsequent efforts.
The solution to this impediment is conceptually sim-
ple: More formal methods researchers must become
knowledgeable about the problem domains relevant to
industry, and develop examples, models, techniques, and
tools appropriate for those domains. This means that
some formal methodists must be willing to tackle prob-
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lems that are not intellectually interesting but that indus-
try needs solved. It also means that some must be will-
ing to forgo using powerful and sophisticated methods,
when simple and pedestrian ones will suffice. Much of
the success of NASA Langley’s program can be attributed
to our contractors’ willingness to attempt to understand
important problem domains such as fault-tolerant com-
puting, clock synchronization, flight control and man-
agement, and microprocessor design. Also, we have
tackled mundane and tedious problems when necessary;
and our contractors have created simple, special-purpose
tools, when such tools were sufficient to meet the cus-
tomer’s needs.

“BUILD IT AND THEY WILL COME.” The final impedi-
ment to industrial use of formal methods is the expectation
that if one builds an advanced tool, it will be used. This
viewpoint overlooks the gulf that exists between the
research world and the industrial world. Industry rarely
has the time and resources to keep up with and distill the
vast number of ideas and tools that are emerging from the
research community, and the research community is often
ignorant of the challenges that industry faces. Literally
hundreds of different kinds of formal methods have been
promoted, but we lack adequate executive-level guidance
on how to match particular methods with specific appli-
cations, and few unbiased appraisals exist of the maturity

of current methods and tools.

Furthermore, the gulf between academia and industry
has been widened by the rhetoric of some formal meth-
ods zealots who blame industry for its failure to embrace
formal methods and question the intellectual acuity of
industry engineers. These zealots have also exaggerated
the importance of formal methods by claiming that only
formal methods can prevent future catastrophes, and by
telling industry that formal methodists know better than
professional engineers how to build real systems.

The solution to this impediment is also conceptually
simple: Formal methods researchers must stop giving
answers and start asking questions. Instead of saying “We
know what you're doing wrong and how to fix it,” we
should be asking “Where are you having trouble and what
can we do to help you?” If the potential benefits of formal
methods are as great as those of us in the field believe,
then we should be able to demonstrate those benefits by
dispassionate logic and empirical data. In short, we need
more ambassadors and fewer warriors. '

THE THREE MAJOR IMPEDIMENTS listed above can be over-
come. We believe that NASA Langley’s sponsorship of
ground-breaking uses of formal methods in several domains
has helped to show how this can be done. We hope that con-
tinued government sponsorship—from NASA Langley and
from other sources—will help speed the process. |

FORMAL METHODS ARE RESEARCH, NOT DEVELOPNMENT

Pamela Zave, AT&T Research

Atelecommunications engineer is concerned with fea-
ture behavior. In simple cases, call forwarding is
easy to understand: If directory number A is forwarded
to directory number B, then a call dialed to A is actually
connected to B, with both the caller and the subscriber of
A paying some of the charges. But what if the calling sub-
scriber has used a “call blocking” feature to ensure that
no one calls B from his telephone? Alternatively, B may
be forwarded to C. In that case, is a call to A connected to
B or C? These difficult cases are called “feature interac-
tions,” and they proliferate endlessly. The engineer must
find a way to describe the desired feature behavior that

is complete, consistent,

unambiguous, and—above

all—maintainable as new

Pamela Zave received the AB degree
in English from Cornell University,
Ithaca, New York, and the MS and PhD
degrees in computer sciences from the
University of Wisconsin at Madison. She
began her career as an assistant profes-
sor of Computer Science at the Univer-
sity of Maryland, College Park. Since
1981 she has been with AT&T Bell Lab-
oratories at Murray Hill, New Jersey,
and is now a Distinguished Member of
Technical Staff in AT&T Research. E-
mail pamela@research.att.com.

features are introduced.
Another telecommunica-
tions engineer is concerned
with system architecture.
There is an industry-wide
trend toward implementing
basic switching functions
(setup- and teardown of
voice paths) in a network
node separate from feature
control and the database of
subscriber information. The
interface between a switch-
ing node and a feature node

is a protocol that must be standardized, robust, and inde-
pendent of switching technology. How can the engineer
ensure that the protocol is rich enough to support all the
interactions that will be needed between the nodes, now
and in the future?

Another telecommunications engineer is concerned
with customer programmability. He wants to make it pos-
sible for business customers with 800 numbers to program
their own services, using building blocks such as touch-
tone digit menus, prerecorded announcements, database
queries, and voice synthesis. The resulting programs must
be able to run as “trusted code” in a highly reliable system.

Presumably, all these engineers could benefit from for-
mal methods. What shall we offer them? Finite-state
machines? Typed set theory? Algebra, be it process,
datatype, or relational? Logic, be it higher-order, deontic,
or temporal? The fact is that the principles, objects, and
relationships offered by these notations are absurdly dif-
ferent from the principles, objects, and relationships about
which these engineers are concerned. There is no super-
ficial similarity, and no easy way of applying any general-
purpose formal method to these engineering challenges.

The conceptual gap between application domains and
mathematics must be bridged by building mathematical
models of the application domains. Within an appropriate
model, formal language is extended to include the vocab-
ulary and relationships of the domain. The lack of appro-
priate models, on the other hand, constitutes a large barrier
to the use of formal methods in an application domain.

* For many people, the answer to this problem is better
education of software practitioners, so that they will be
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comfortable with formal methods, and better cost-bene-
fitanalysis, so that a significant initial investment in spec-
ification can be justified. I am skeptical of this approach,
because it places the burden of bridging the conceptual
gap on people who have a product-development sched-

ule to meet. It underestimates the difficulty of finding.

really good models. It also ignores the example given to
us by traditional engineering disciplines.

Consider first the characteristics that a successful model
must have. The right abstractions must be chosen so that
they illuminate rather than obscure important issues. Each
notation must cleverly reduce description complexity, or
the whole effort will collapse because of the size of the
specifications needed. The aspects of the system that are
formalized must be exactly those that benefit most from
improved documentation, analysis, .or code generation,
because certainly not everything can be formalized.

Not surprisingly, it is easy to build the wrong model. For
example, many articles on feature interaction have dis-
cussed the interaction of “call waiting” and “call forward-
ing on busy.” Call waiting enables a person who is talking
on an ordinary telephone to answer another incoming call
and subsequently time-multiplex the two calls. “Call for-
warding on busy” diverts to another destination a call to
a busy telephone. Typically these two features are repre-
sented on an equal footing, and their interacting behav-
ior is chosen in an arbitrary way. ‘

Despite its popularity and plausibility, this is a disas-
trous way to look at the situation. It ignores the existence
of many kinds of telephones, including multibutton tele-
phones that time-multiplex several calls without call wait-
ing (in fact, call waiting is just a way of imitating a
multibutton telephone on an ordinary telephone).

It makes much more sense to separate time-multiplex-
ing of calls from other features. Within the multiplexing
module there can be interchangeable submodules, one for
multibutton telephones and one for ordinary telephones
with call waiting. Either submodule will define when its
telephone is “busy,” probably when there are as many
active calls as its multiplexing capacity allows. Other fea-
tures, such as “call forwarding on busy,” can be specified
in terms of the atomic term “busy.” Ultimately this will be
a far more enlightening and extensible specification than
the first version. Note that behavior is structured along
with the specification. The separation of concerns shows
that it is awkward and inconsistent to give “call forward-
ing on busy” precedence over call waiting.

On the positive side, the benefits of the right model are
inspiring. For the benefits of a good decomposition, think
of protocol layers, the clean separation of processor man-
agement from memory management in operating sys-
tems, and the well-known decomposition of compilers into
lexical analysis, parsing, optimization, and code genera-
tion phases. As an example of a powerful notation, think
of using a BNF grammar to specify a parser. As examples
of productive analysis, think of code-optimization algo-
rithms and model checking for protocols.

Other engineering disciplines, such as civil, chemical,
aeronautical, nuclear, electrical, mechanical, and bio-
medical engineering, are specialized. The purpose of
research in these disciplines is to discover how to construct
a particular kind of useful artifact, more
efficiently and more successfully, using par-
ticular conceptual and mathematical tools.

Once the research has beén done, the bstractions
results can be taught and subsequently must be cho-
used by many engineers to make many sim- sen so that they

ilar artifacts.
Computer science is trying to cover the
same ground in the virtual realm that all of

illuminate rather
than obscure
important issues.

these engineering disciplines cover in the
physical realm. As a result, it promulgates
the fiction that one software system is pretty much the
same as another, and abdicdtes responsibility for discov-
ering and teaching how to build a particular kind of soft-

‘ware system really well.

From this perspective, it is notable that the software-
modeling success stories mentioned above all come from
software that is not an end in itself but serves to make com-
puters easier to use for other purposes. This software is
central to computer science, and has been the focus of
intense effort by computer scientists. So it is an exception
to the general attitude that all software is alike, and the
special attention has evidently paid off.

BECAUSE OF THE DIFFICULTY OF THE TASK, and taking into
account the example of engineering research, the con-
clusion is obvious: Finding the best way to use formal
methods in an application domain is research, not devel-
opment. It is an unusual kind of research, although cer-
tainly not unheard-of. It is intellectually challenging and
rewarding, at least when the standards for results are set
high. And it is probably the most effective thing we can do
to bring formal methods into widespread use. 1

CONSUNABLE MATHENMATICS FOR SOFTWARE ENGINEERS

Michael J. Lutz, Rochester Institute
of Technology

SOftware development is an engineering activity. The
goals of software development are essentially the
same as those of other engineering fields: the creation of
useful products and processes in an effective, economi-

cal, and timely fashion. What differentiates contemporary
engineering from software development is the relative
immaturity of the latter’s processes and methods.
Formal methods hold great promise for improving the
practice and moving the proféssion along the path toward
a full engineering discipline. For this promise to be met,
however, formal methods proponents must take into

April 1996




28

account the role of mathematics in other engineering dis-
ciplines. To ignore the engineering culture is to risk con-
tinued rejection of this technology as an “academic fad.”
The first thing to recognize is that engineers are not
mathematicians—nor should they be. Within the broad
range of engineering concerns, mathematics is simply a
tool, albeit an important one, that supports synthesis and
analysis. In this regard, calculus and differential equations
are the cornerstones of traditional engineering because of
their utility, not because of their elegant mathematical
foundations. Approaches that ignore the application of for-
mal methods to practical, realistic problems are unlikely
to garner much support among engineers or among the
practitioners and students
who aspire to be software
engineers.

Michael J. Lutzis a professor of Com-
puter Science at the Rochester Institute
of Technology in Rochester, NY. His aca-
demuc activities are complemented by
industrial experience as a software engi-
neer and as manager of a software devel-
opment group. His interest in formal
methods is focused primarily on tech-
nology transfer, especially those prob-
lems that hinder acceptance of formal
modeling as standard industrial prac-

Second, engineers rarely
(if ever) resort to first prin-
ciples. Instead, they use

‘tables, charts, and equa-

tions that capture the
essence of the phenomena
of interest. These highly
compact forms permit
accurate modeling and
analysis without explicitly
resorting to underlying

tice. E-mail mjl@cs.rit.edu.

axioms and theorems.
What is more, the mathe-

matics, while abstract, is expressed in terms of the prob-
lem at hand.

Byway of contrast, formal methods often require detailed
knowledge of underlying mathematical theory, at least
when used for verification. This is due both to the range of
potential applications and the newness of these techniques.
What would help immensely is the development of hand-
books, where common patterns are described formally.
Until the mathematics is made more “consumable” by prac-
titioners, formal analysis is simply too tedious for wide-
spread use (on the order, say, of the limit definition of
differentiation).

Finally, engineers are pragmatic about their tools, and
mathematics is no exception. Assuming a mathematical
technique is applicable to a problem, the overall context
determines whether the technique is used at all and, if so,
to what level of detail. There are few absolutes with respect
to the engineering uses of mathematics.

FOR FORMAL METHODS TO CHANGE THE PRACTICE, we must
take this pragmatic attitude into account. It does no good
(and immense harm) to promote formality as an either/or
proposition. There are various levels of formality, from
purely descriptive to deep, deductive analysis, that can be
applied at the various life cycle stages. We must be careful
to provide a balanced treatment, where current and future
practitioners learn the advantages and limitations, as well
as the benefits and costs, of greater formality. I

| MATHEMATICAL METHODS: WHAT WE NEED AND DON'T NEED

David Lorge Parnas, McMaster University

have long disliked the phrase “formal methods” for two
quite different reasons:

e Itisan unnecessary phrase. We are discussing the use
of mathematics in engineering, which is nothing new.
Why should we give it a new name?

¢ Those who use that phrase seem to take as their
model (and source of inspiration) the logicians who
try to tell mathematicians how they should work, not
the mathematicians and engineers who actually
obtain practical results. Hilbert set out to revolu-
tionize mathematics, but succeeded only in building
a separate field of mathematics. Formalists set out to
revolutionize software development but have suc-
ceeded only in forming new research cliques in com-
puter science.

My positions on the real issues are captured by the fol-
lowing assertions.

* Mathematics should be part of the everyday toolset
of every working engineer. Software design is engi-
neering. Engineers use mathematics routinely in
much of their work. Software designers should do
the same.

* Mathematical methods offered to the working soft-
ware engineer are not very practical and are not

Computer

much like the mathematics used by engineering.
Most, though not all, are theoretically sound but very
difficult to use. They are much more difficult to use
than the mathematics that has been developed for
use in other areas of engineering.

* We have all of the “fundamental models of pro-
gramming” we will ever need. Good sound, rela-
tional, and functional models of programming have
been known for decades. Much of the work on “for-
mal methods” is misguided and useless because it
continues to search for new foundations although the
ground is littered with sound foundations on which
nobody has erected a useful edifice.

¢ We need a lot more work on notation: The notation

that is purveyed by most formal methods researchers

is cumbersome and hard to read. Even the best nota-
tion 1 know (mine of course) is inadequate. The most
solid foundations are notation-free (they are expressed
in terms of abstract states), but without a notation they
are useless. The models that are expressed in terms of

a specific notation are shaky foundations because

those notations have limited applicability.

The distinction between model, description, and

specification is missed in most books and examples.

People often use the word “specification” when they

mean “model.” As a result, many proposed “specifi-

cations” are cluttered with information that should
not be there, while lacking essential requirements
information.
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* There is an unreasonable focus on
proof of correctness. In other areas,
engineers rarely prove theorems;
instead, they use mathematics to
derive important properties of their
proposed designs. They also use math-
ematics to describe their designs in a
way that makes mathematical analy-
sis possible. The difference is subtle,
but it is the key to practicality. If Twant
to prove that a circuit is correct, I start
with the daunting task of trying to
write down everything that I expect of that circuit,
including some things that are obviously true but hard
to express. If I try to determine key attributes of the
circuit, for example the maximum voltage across the
terminals of a particular component, or the resonant
frequencies, I have a concrete and achievable goal.
An old Dutch expression—*“selling the pelt before the
bear has been shot’—perfectly describes the activi-
ties of many formal methods advocates. Many spend
their time berating practitioners for not applying
their method. We all need to disseminate our ideas,
but most of our time should be spent applying and
improving our methods, not selling them. The best
way to sell a mouse trap is to display some trapped
mice. Trapping real mice also shows you how a trap
can be improved.

f_ Education

e all need to

disseminate
our ideas, but
most of our time
should be spent
applying and
improving our
methods, not sell-
ing them.

MATHEMATICAL METHODS HAVE been used
by “real people” to study “real software,”
but the notation was not the notation of
mathematical logic.> Mathematical meth-
ods will be the key to improved profes-
sionalism in software engineering, but
they must be rescued from the grip of
philosophers who preach sermons abéut
formality. I
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THE NEED FOR EDUCATION IN USEFUL FORMAL LOGIC

David Gries, Cornell University

pplication of “formal methods” in software devel-

opment can be interpreted narrowly to mean the
use of a computing tool that ensures some property (like
correctness) of the software being developed. Examples
are a tool that checks consistency of a specification, a tool
that checks whether a program satisfies its specification,
and a tool that enforces a particular discipline on soft-
ware development.

More liberally, any informal use of theoretical ideas in
the development process can be viewed as an application
of formal methods. Examples are the use of mathemati-
cal notation for part of a specification, the use of an infor-
mal invariant and bound function when developing aloop,
and the use of an informal coupling invariant that
describes how an abstract type is to be implemented.

Even with the most liberal meaning of “formal meth-
ods,” it is safe to say that formal methods are rarely used.
In fact, most programmers eschew all aspects of formal
methods. Why? Because computer science as a whole has
not embraced formal methods, even in the very liberal
sense of the term. Few computer scientists use formal
methods when writing algorithms and programs,
although most do write algorithms or programs. Aspects
of formal methods do appear in some undergraduate
courses, but only the faculty who teach those courses

understand and perhaps use the formal methods; the oth-
ers could care less.

.Few introductory programming texts mention formal
methods, much less apply them. Texts on data structures,
algorithms, databases, operating systems, and compiler
writing don’t use formal methods in presenting specifica-
tions or algorithms. Even courses on theory of computa-
tion, which rely heavily on theory to analyze complexity
issues, rarely use formal methods in presenting algorithms
and arguing about their correctness. »

Formal methods are eschewed for several reasons. We
concentrate on two of them:

1. Many computer science undergraduates fear mathe-
matics and math notation, and the courses they take
don’t dispel this fear. Some computer science faculty
also fear math, or at least don’t see the need for theory

of any kind. |

2. Formallogic—propositional and predicate calculus— ,
is almost universally viewed not as a useful tool but as
an object of study. Since almost all formal methods
are founded on formal logic, they too are viewed only
with academic interest. -

LOGIC UNDERLIES MANY FORMAL METHODS. Let us
discuss the second point, in the realm of sequential pro-
grams rather than more complicated parallel and distrib-
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uted programs. And, to make our point most easily, let us
restrict attention to specifications of correctness of sequen-
tial programs.

A specification of a program typically includes a pre-
condition and a postcondition, which descnbe the rela-
tion among input variables and among output variables.
(Alternatively, a single predicate could be
used.) These predicates are stated in some
form of predicate logic, extended to
include operations of the domain under
consideration. Hence, writing formal spec-
ifications requires facility with some nota-
tion that includes predicate calculus.

Moreover, to analyze a specification, to
rewrite parts of it, and to formally
develop an algorithm from it requires
agility in manipulating predicates.
Essentially, one must be able to develop
formal proofs, to calculate, to abstract
and refine. Hence, formal logic underlies
many formal methods. It can even be said that “Logic is
the glue that binds together methods of reasoning, in all
domains.” For example, almost every proof uses a tech-
nique like case analysis, assuming the antecedent, con-
tradiction, mutual implication, and mathematical
induction, and each of these techniques is based on some
theorem of propositional or predicate logic. Therefore,
a good education in logic will teach how to develop,
write, and present proofs—certainly an advantage when
using formal methods.

Many computer science programs require a course on
logic, but logic is taught as an object of study instead of as
a useful tool. Some computer science majors take a logic
course from the philosophy department. Philosophers are
more interested in relating logic to human thinking than
in using logic. Their courses thus do not prepare students
for using logic.

Other computer science majors take a logic course from
the math department. Mathematicians and logicians are
more interested in analyzing issues like completeness and
equivalence than in using logic. Their courses also do not
prepare students for using logic.

Even when computer science majors learn logici ina dis-
crete math course taught by computer scientists, the idea
of “logic as a tool” is lacking. Logic is usually taught in one
to two weeks, the notations and concepts of logic are not
used thereafter, and students get little skill in (and no
appreciation for) the use of logic.

Typically, these courses teach some variation of natural
deduction, or some logic with a minimal set of inference
rules and axioms, like Church’s P1. Such approaches are
doomed to fail in convincing thatlogic is useful. No one uses
natural deduction formally in their work; it is used only to
illustrate how informal arguments can be formalized. No
one uses P1 in their work; it is used only to studylogic. How
can useless tools be used to illustrate usefulness?

In short, computer science students learn that logic is
only of academic interest. Students who later become com-
puter science faculty pass this attitude on to their students.
This attitude has prevailed since the beginnings of com-
puter science, and as long as it prevails, formal methods—
even in the most liberal sense—won’t be adopted.

Computer

Even when com-
puter science
majors learn logic
in a discrete math
course taught by
computer
scientists, the
idea of “logic as a
tool” is lacking.

TEACHING LOGIC AS A TOOL. To show that]ogic is use-
ful, a different approach has to be developed. To deter-
mine a suitable approach, one can investigate the kinds of
formal manipulation used in proving things in other fields.

In many fields, to prove that one formula is equal to
another, one formula is transformed into the other using
a series of “substitution of equals for
equals.” A variation of this techmque isto
show that one formula is less than another,
by applying substitutions that result in a
“smaller” formula. Such calculations are
taught in high school. They are used in
modern algebra, calculus, and differential
equarions, to some extent. But such calcu-
lations have not been used in logic.

Over the past fifteen years, however, a
calculational (or equational) logic has
been developed by researchers in the field
of formal development of programs. Some
who have attended lectures on it call it
“seductive logic,” because it makes formalism seem so use-
ful. Those who use it swear by it. Those who teach it would
never switch back to older kinds of logic. For they find that,
when it is taught properly, students gain a skill in formal
manipulation, acquire an appreciation of formal proofs
and rigor, and begin to lose their fear of math. We surmise
that students will also take more readily to formal meth-
ods in software development, although we have not had a
chance to verify this conjecture.

Thus, our experience is that logic can be taught, to great
advantage, as a useful tool that can pave the way for later
appreciation and perhaps some adoption of formal meth-
ods. However, the goal of teaching logic as a tool is not
simply to make formal methods more readily usable.
Instead, the goal is to provide students with better men-
tal tools and a more positive attitude, making it easier for
them to deal with the problems they will face in the future.

Introducing a course on “logic as a tool” is not easy.
Without metrics (which we don’t have) by which to mea-
sure how much of a difference “logic as a tool” can make,
it is difficult to convince people to change. And there is
resistance to change, to anything that requires people to
think differently (even in the face of dissatisfaction with
the current state of affairs).

However, logic as a tool is not a panacea, a universal
remedy or cure-all for all the ills of software engineering.
It is just one aspect that can help change the attitudes of
practitioners toward mathematics, theory, and formal
methods.

David Gries is a professor in the Computer Scierice
Department at Cornell University. His research inter-
ests include compiling and programming methodolo-
gies. He has received a number of national awards for
contributions to education and was a Guggenheim Fel-
low in 1984-85. E-mail gries@cs.cornell.edu.





