
Version management for ROPCO--a
micro-incremental reuse environment

M K Zand*, M H Samadzadeht and H Saiedian*

Version management is a pervasive issue in computer science. It
is an important part o f database theory, software engineering,
distributed systems, etc. This paper focuses on version manage-
ment for software being developed in a software development
environment or a software .factory. The main objective o f the
paper is to present a new approach on version management o f
reusable units of software by using modules~templates as
the reusable units. This approach is adopted in the design of
a software development environment called ROPCO. Reuse
Of Persistent Code and Object code is an integrated collection
of techniques, tools, and structures to facilitate the reusability of
persistent code and object code.

reusable units, ROPCO, version management, persistent code,
object code, software reuse

Productivity, adaptability, simplicity, maintainability,
and reliability are among the main issues concerning
large-scale software development. Reuse is an emerging
practice in software development. The result of one
survey shows that 4 0 ~ 0 % of all code is reusable from
one application to another, 60% of the design and code
on all business application is reusable, and 75% of
program functions is common to more than one pro-
gram 1. The survey also indicated that on the average
only 15% of the code found in most programs is unique
and novel to each specific application.

Several alternatives have been proposed for the level
of software reuse. They include specification level, design
level, program/subprogram level, module/template level,
as well as code and object-code level 2'3'4. The specific and
design levels are at higher levels of abstraction than the
other reuse levels, therefore their potential for accommo-
dating reuse is greater and their adaptation to new
applications can be simpler. However, the reuse process
of the specification and design levels ultimately involves
coding (either manual or system-generated), testing, and
debugging 5'3"6'7. On the other hand, reuse at the code level
reduces the coding and overall testing efforts, hence it
could be more economical where a large library of
reusable code exists.

To make code (i.e., modules or segments of code) a
feasible alternative as a reuse level, three main tasks

*Department of Computer Science, University of Nebraska at Omaha,
Omaha, NE 68182, USA
tComputer Science Department, Oklahoma State University,
Stillwater, OK 74078, USA

should be addressed as the prime objectives in the design
of software development environments.

(1) Identification of and providing access to a segment
of code and object code based on user requirements
(locating). Given the availability of a large
number of software components, like the 'Japanese
software factory', one should ask: 'Does a part
exist that preforms this function? '~. The goal is to
provide an answer (or answers) to that query. This
task would be simple to achieve if the components
are designed and developed for the purpose of
reuse and are organized in a library. Examples of
successful code components are the SPSS statistical
libraries and the IMSL math library. Relatively
modern languages like Ada, Modula-2, and
Smalltalk-80 not only provide features for
developing reusable components, but also provide
mechanisms to make a distinction between abstrac-
tion and implementation. Krueger believes that
although in a few narrow areas this model has
been successful, the applicability of code com-
ponents in more broad areas is not yet clear 8.
However, according to Prieto-Diaz, software
classification and identification is the kernel of
successful reuse 9.

(2) Facilitating program modification at both coding
and compiler levels (recompilation). Direct code
editing is the main method to customize the code for
new applications. This method has the problem of
the possible impact of modifications on other com-
ponents. Krueger considers 'work at a low level of
abstraction' a drawback of this level of reuse 8. This
is not a drawback for all cases, we believe in some
environments like ROPCO (Reuse Of Persistent
Code and Object code) the low level of work adds
to the capabilities of the environment.

Another approach for code customization is using
parameterized components like the Ada generic
package. The use of parameterized packages relieves
the burden of validation of the modified com-
ponents. The generic parameters of a parameterized
package are declared in a way that the type of the
instantiated elements must satisfy the parameter
requirements t°.

Development environments for languages like
Ada or Modula-2 facilitate 'macro-incremental'
compilation, i.e., independent compilation of the

Vol 35 No 11/12 November/December 1993 0950-5849/93/110627-11 © 1993 Butterworth-Heinemann Ltd 627

Version management for ROPCO--a micro-incremental reuse environment

modified modules. This capability is utilized for
reuse at the module level. In a code-level-reuse
environment, code templates or other units of
reusable code and the related object code must be
relocatable, and each template's symbol table should
be extracted from (or merged into) the program
symbol table. These capabilities facilitate the reuse
of portions of programs, hence the possibility of
micro-incremental compilation H.

(3) Providing facilities to store and retrieve all versions
of a program efficiently (persistency and version
management).

In this work we focus on the third issue. The first two
issues are discussed in detail in an earlier paper 4. The rest
of this paper is organized as follows. The second section
presents a discussion on different approaches to version
and configuration management. In the third section,
hierarchical and persistent data structures and the
notions of existence persistency and version persistency
are discussed. The fourth section gives an overview of
the ROPCO environment. SCM, the kernel of ROPCO,
is presented in the fifth section. In the sixth and
seventh sections the methodology and procedures of the
version management of objects in ROPCO are intro-
duced, and the final section provides the summary and
conclusions.

V E R S I O N M A N A G E M E N T

A version management or configuration management
system can be defined in different ways, depending on the
design goals of a software system and the needs of the
users of the software system. In general, a version
management system can be defined ~2 as a system for
identifying the software architecture and its components
by controlling changes in those components during their
life-cycle and maintaining consistency among the com-
ponents by controlling the effect of having multiple
developers and allowing simultaneous work on the sys-
tem components. Different concepts utilized to achieve
these objectives include check-in/check-out, compo-
sition, change sets, and transaction.

Make-like systems augmented with an interface tool
have been proposed for configuration management. The
main weakness of such systems is that they are passive
tools. In other words they act only when requested
explicitly. If the structure of a system is not stable, there
is a need for a new makefile for every change in the
structure of the system. Make-type configuration man-
agement tools are based on file name suffixes and do not
use implicit rules, so the user has to specify intermediate
steps and target files. In these systems, it is rather difficult
to maintain the integrity because of reliance on the user
for keeping all dependency relations updated. Make
assumes the success of each command, which can lead to
obscure formats for the description file. Also, makefile
may contain redundant information 12'~3.

At times, file systems are promoted as version man-
agement systems. Characteristics that are specific to file

systems should be considered during the design and
construction of a configuration and/or version manage-
ment system la. Typically, in a file system there are no file
attributes that can be used to characterize the contents
of the files. The only relation that can be used to navigate
through files is the directories and the directory
structure. There are in general no links between files to
represent relations among these files, except naming
conventions. Hence, it does not seem that file systems
can provide all of the necessary operations for a version
management system.

Another possibility for having a configuration/version
management system is using a conventional database
system. Typically, the transactions in conventional data-
bases have short life times, and there are two ways to
control concurrency 15, either by using a two-phase lock
to avoid conflicts between the database records or by the
use of a time-stamp to detect the conflicts. In a version
management system, even minor logical changes such as
enhancements or bug fixes may cause many conflicts.

Instead of using the conventional database technology
to implement a version/configuration management sys-
tem, the more recent object-oriented database technol-
ogy can be used to implement an object-oriented version
management system. Object-oriented databases such as
ORION, ODE, Ires, 02, GemStone, and Vbase, have
overcome many of the limitations of the relational and
other record-oriented database management sys-
tems 16'17:8. The following justification can be offered for
the benefits that might be gained from combining the
database technology with the object-oriented concepts
(when dealing with version/configuration management).
Classification of versions or configuration items depends
on two important relationships: the hierarchical relation-
ship and the syntactical relationship. The hierarchical
relationship is the basis for the enumerative classification
scheme. The faceted classification scheme, on the other
hand, is constructed based on the syntactical relation-
ship among the elements 19.

In this paper we mainly focus on the hierarchical
relationships among versions of a program in an en-
vironment which facilitates micro-incremental reuse.

P E R S I S T E N C Y

Persistency has been defined and used with two different
interpretations. The first type of persistency, which is
called Eper in this paper, is defined as follows: Eper,
existence persistency, allows objects to exist as long as
they are required and the life span of each object exceeds
the life-cycle of its originator 2°'21. In this type of persist-
ency, only one version of each object is saved. Any
change to an object results in a new object and the
original one is lost.

The second type of persistency, which we call Vper, is
defined as follows: In Vper, version persistency, different
versions of one object co-exist, and each version is marked
with its time or instance of creation 22'23'24'25. In this type
of persistency, the life span of a version may exceed the
life-cycle of its originator.

628 Information and Software Technology

M K ZAND, M H SAMADZADEH AND H SAIEDIAN

Vper has been implemented using two different
approaches. Tichy 24 used the incremental method for
version control. In this approach all updates on the
current version are recorded after each revision. To go
back from the current version to one of the previous
versions, say X, all recorded updates between the current
version and version X are undone to reconstruct version
X. This approach resembles the log or journal mechan-
ism of database transactions 24. This is an ad hoc ex t e rna l
persistency. In terna l techniques are those which use or
modify the object structure to make it persistent. Cole 26,
Sarnak and Tarjan 23, and Zand et al. 27 applied the
internal Vper technique to ordered lists, red/black binary
trees, and quad-trees, respectively.

Version persistency of hierarchical structures can be
implemented in two different ways: the node-copy
method and the path-copy method. We use binary trees
to describe these methods.

In the first approach (i.e., the node-copying method),
which is an internal technique, each node in the tree has
p pointers in addition to its original two pointers. For
each update in the tree, the key information and the last
two pointers of the relevant node are copied into a new
node; also a pointer is set in the node's parent pointer
list that points to the new node. If all pointer fields in
a parent's node are used up, the same operation is
repeated on the path to the root till an ancestor node
with an unused pointer field is reached, or the root is
encountered. The auxiliary pointers in the nodes require
a time stamp to indicate the time at which they are set.
Also a root array is required to point to the root of the
tree at a given time 23.

The second approach (i.e., the path-copy method),
which is an internal technique, involves copying only the
nodes in which changes are made. Any node containing
a pointer to a node that is copied must itself be copied.
This means copying a node causes a ripple effect of
copying all the nodes on the path from the node to the
root 2s. The path-copy method is quite versatile in the
applications it supports (i.e., it has the capability to
update any version of the tree), provided that an update
is assumed to create an entirely new version. But the
major drawback of this approach is its space usage. In
a tree with L levels, for each update, L nodes must be
copied. In the node-copy method, it is true that using
extra space for the auxiliary pointers and time stamps
results in a constant cost on spaces usage, but this space
overhead in fact reduces the total cost of the copying
operation. Zand and Fisher 2~ devised an algorithm that
utilized the node-copy method to implement PB-trees
(persistent B-trees). That algorithm constitutes the base
structure of the Software Control Mechanism (SCM) of
the ROPCO environment.

Application of persistent structures in software
reuse

The results of an experiment show that the optimal size
of a reusable module is about 200 to 250 code lines 29.
Reuse of modules is usually incremental, i.e., it results in

altering only one portion of the code of a software
system. In most of the existing reuse methods, the older
versions of the resulting module at each step either are
not saved at all or are not stored efficiently. It turns out
that there is no need to store the entire module under
a new version number or recompile the whole module.
The modified portion of the code is normally one or
more of the constructs of the language (referred to here
as a template). Consequently, it is natural to consider
templates as units of reuse and store only those tem-
plates that are modified or are added to a module 4. Code
(i.e., templates/modules) stored in this fashion is called
persistent code.

Persistency has been used in all levels of software
reuse. Cheatham 3° used external incremental Vper at the
abstract program level. Marzullo and Wiebe 3~ applied
incremental Vper at the module level in the Jasmine
Modeling Facility. Neighbors 32 followed the same idea in
the 'refinement history' at all levels of the DRACO
System. Tichy 24 applied Vper to version control. At the
time of this work, internal hierarchical Vper has not been
utilized in software reuse. The merits of this technique
include enhancing version management of software units
through providing fast and direct access to the units of
software, enabling dynamic changes within or among
software units, and efficient storage of those units.

AN OVERVIEW OF THE R O P C O
E N V I R O N M E N T

This section presents the subsystems and components
of the ROPCO environment, relationships among its
components, and a general overview of the system (for
a complete explanation of ROPCO's components see
Zand et al.4).

ROPCO is a software development environment that
adopts a novel approach to reuse utilizing code and
object code stored in persistent structures. ROPCO was
designed to accomplish the following goals:

(l) Identification of and providing access to a segment
of code and the related object code based on user
specifications.

(2) Facilitating module modification both at the pro-
grammer and the compiler levels.

(3) Providing facilities to store efficiently and retrieve all
versions of the module(s) under consideration.

(4) Facilitating module/template inter- and intra-
connection 33.

Minimizing the user/programmer efforts spent on tasks
other than programming was one of the main motiv-
ations in the design of the ROPCO environment. We
emphasized on minimizing the compilation time and
effort. ROPCO's minimal compilation strategy limits the
propagation of micro-incremental compilation resulting
from intra-procedure modifications, while consistency of
variables and the intra-module flow graph remain intact.
The problem of macro-incremental compilation result-
ing from inter-procedural modifications is addressed in
ROPCO's design II.

Vol 35 No 11/12 November/December 1993 629

Version management for ROPCO--a micro-incremental reuse environment

In ROPCO, templates/modules are chosen as units of
reuse and the novel concept of a 'use network' is devised.
Another design goal of ROPCO was to furnish the
system with a pragmatic schema for storage of versions
of a module, and maintaining direct and sequential
access to the blocks of modules. Hierarchical and fiat
persistency methods were utilized to achieve this goal.

ROPCO consists of three main subsystems: IDentifi-
cation Mechanism (IDM), Software Control Mechanism
(SCM), and Interface. Figure 1 illustrates the main
components of ROPCO and the relationships among
them. The following is a brief description of IDM and
Interface. SCM is described in some detail in the next
section.

IDentification Mechanism (IDM)

IDM is designed to identify and select one or more
modules/templates that meet user requirements. Each
module is classified based on its function, environment,
and implementation attributes. The attributes, which are
stored in the Software Attribute DataBase (SADB), are
used to identify the candidate module(s)/template(s).

Interface

The Interface is designed to facilitate micro-incremental
compilation between ROPCO and the language-specific
compilers. It is designed to prepare the templates/
modules that are altered or otherwise affected by modifi-

I I oM o YsYs MI

SCM
~VCT~ , LIS

PHDB I I ' ~

. '

I

I

cation for compilation. As a post-compiling activity, the
Interface transfers the address of the newly-created
object code and symbol table to SCM.

S C M C O M P O N E N T S

SCM, or the Software Control Mechanism, which is the
kernel of ROPCO, is designed to facilitate program
access, modification, storage, compilation, and intercon-
nection. The objectives of the design of this subsystem
are as follows:

(1) To store efficiently and to eliminate duplicate copies
of code and object code for different versions of a
program.

(2) To arrange access to different versions of a module/
template.

(3) To coordinate compilation and recompilation
(specifically, micro-incremental compilation).

(4) To maintain variable consistency throughout differ-
ent versions of software components.

(5) To preform inter- and intra-connection operations.

The core of SCM is structural persistence that provides
direct access to the different versions of a program and
its constituent templates. A revised incremental persist-
ence is utilized to assist by faster movement, back and
forth, among the adjacent versions. ROPCO's persistent
version management system that provides random and
sequential access (in both directions), without the use of
ad hoc structures, is a novel approach. SCM has five
components:

(1) Program History DataBase (PHDB)
(2) Version Control Tree (VCT)
(3) Persistent NETwork (PNET)
(4) Persistent SymBol Table (PSBT)
(5) Module/Template Verifier (MTV)--MTV is designed

to check for the compatibility of interconnection/
substitution of modules/templates. This component
of ROPCO employs an automatic verifier and uti-
lizes a semantic specification model to verify func-
tional consistency among the interconnecting
components.

(6) Module/Template Interconnection Mechanism
(MTIM)--MTIM is the component responsible
for interconnection and substitution of modules/
templates. MTIM utilizes PSBT, PNET, VCT, and
MTV to preform its task.

The first four components of SCM are discussed briefly
in the following subsections.

IDM: IDentification Mechanism LIS: Linkage System
LPDB: LIS Persistent DataBase MTIM: Module/Template

Inter-connection Mechanism
MTV: Module/Template Verifier P N E T : Persistent NETwork
PEIDB: Persistent History DataBase PSBT: Persistent SymBol Table
SADB: Software Attribute DataBase S C M : Software Control Mechanism
VCT: Version Control Tree

Figure 1. Main components o f R O P C O

Persistent History DataBase (P H D B)

This component of SCM is designed to retain the
information required to access the root of the family tree
(version tree) of a module/program and to hold infor-
mation on how to move from a specific version to the
successor or predecessor version(s). To access the family

630 Information and Software Technology

M K Z A N D , M H SA M A D Z A D E H A N D H SAIEDIAN

tree of a module, the header pointing to the root of the
version tree can be found in that module's record in
PHDB. To move from one version to another, infor-
mation on incremental changes to each version is also
deposited in the module record of the working module.
The structure of a program record in PHDB is given
below.

PHDB-Program-Record
Program-ID {same as Program-ID in SADB}
Number-of-versions
Persistent-symbol-table-location
Root-header

Version-root-pointer[n]
version-ID {Start from a base number and

increment by 1 after each modification}
root-location
non-technical-info {date, programmer }
Forward-construction

template-modified[m]
template-no.
action-code

Backward-construction
template-modified[m]

template-no.
action-code

replaced-template(s)
Next-root-Header

Some information about various PHDB operations is
provided later in the paper under 'Version management
and access/retrieval in SCM'.

Version Control Tree (VCT)

We use a typical hierarchical Vper PB-tree structure for
V C T 25. The internal nodes of VCT serve as indices. The
external nodes contain addresses of the clusters which
hold code and a header for the chain of variables used
in the template. Each internal node has k sets of child
pointers and each pointer has a time stamp to indicate
the version number. Each external node contains five
address items related to the template represented by the
external node. These addresses are: location of the
template's code clusters, location of the interconnection
specifications cluster, a header to a chain (in PNET) of
names used in the template, and the location of the next
external node. The external nodes are linked to maintain
sequential access to the clusters. This is in addition to the
direct access provided to the template clusters. Figure 2
shows examples of VCT and PNET. The access and
update operations of VCT are given below under 'Per-
sistent network and variable consistency'.

to

Legend :
O: Object
T: Template Id.

P1 ,P2: Pointer Fields

Figure 2. An example of a network of chains (PNET). In
this example four objects are used in five templates.
Template 0 corresponds to the declaration segment of the
program

table is that in PSBT one variable could be defined in
more than one context and can have different types.
However, only one type of variable is allowed in each
instance (version) of the table. Each variable could have
one or more records in the table with the following
structure:

VAR-NODE:
VAR-NAME,
TYPE,
CREATION-INSTANCE,
ALTERATION-INSTANCE,
NEXT-VAR-NODE,
(other information)

Figure 3 illustrates a persistent symbol table for six
versions of a hypothetical program with three variables.
The next section presents the outline of the algorithms
devised for storage and retrieval in PSBT.

Persistent SymBol Table (PSBT)

The symbol table of a persistent programming environ-
ment exists as long as the program exists. The life-cycle
of the symbol table of a program does not terminate at
the end of program execution. The symbol table of a
persistent program must be able to support all versions
of the program. The main difference between this type
of persistent symbol table and a conventional symbol

M A N A G E M E N T O F O B J E C T V E R S I O N S
IN ROPCO

In this section, algorithms and procedures designed to
preform the version management of objects (i.e., names
and variables) are presented. The subsystems of SCM
(VCT, PSBT, and PNET), which are designed to facili-
tate objects version management (among other tasks),
simplify this process.

Vol 35 No I 1/12 November/December 1993 631

Version management for ROPCO---a micro-incremental reuse environment

A i I l l l

1 I3 - F 13161

1114b--- I 1511

Sequence of change:
tl-VarA, B,C:I;
t2- Var A, C : I; B : R;
t3- Vat A, C : I; B : F;
t4- VarA:I;B :F;
tS- VaxA, C : I;B : F;
t6 - VarA, C : I;

Figure 3. The effect of type change~insertion or deletion
of variables in the Persistent SymBol Table

Legend: IT Itd[=l
T: Type
td: Time declared
tr: Time redeclared

Retrieval of objects from P S B T

Algorithm PSBT-access is designed to access a variable
in the table. The required inputs to this algorithm are
version-ID (VID), variable name (VAR-NAME), and
variable type (V-TYPE).

PSBT-access (VAR-NAME, V-TYPE, VID),

(1) Use V A R - N A M E as a hash value to locate the
variable.

(2) I f there is no collision, then the variable doesn' t exist,
Exit;

(3) I f V-TYPE = TYPE and A L T E R A T I O N - I N -
STANCE is zero or is larger than VID, then the
variable is found, Exit;

(4) I f A L T E R A T I O N - I N S T A N C E < = VID and the
N E X T - V A R - N O D E field is null, then the variable
doesn' t exist, Exit;

(5) Otherwise, follow the N E X T - V A R - N O D E link and
repeat Step 4.

End PSBT-access.

Storage of objects in P S B T

Algorithm PSBT-store is devised to store a variable in
the current version of PSBT. The description o f the
algorithm is given below.

PSBT-store (VAR-NAME, V-TYPE, and VID {version-
ID})

(1) Use V A R - N A M E as a hash value to find the
location of the variable in the table.

(2) I f there is no collision, allocate a new V A R - N O D E
and goto SET.

(3) I f a V A R - N A M E does exist, compare V-TYPE with
TYPE:

(a) if types are the same and if A L T E R A T I O N -
I N S T A N C E is zero (is not set), then the variable
is already defined (it is active);

(b) else, compare the VID, say x, with the ALTER-
A T I O N - I N S T A N C E , say y. I f x > y, then the
PSBT variable is active (attempt to update in a
past version), Exit;

(c) Otherwise, allocate a new V A R - N O D E and goto
SET.

(4) I f the V-TYPE is not equal to TYPE, allocate a
new V A R - N O D E and goto SET. The ALTER-
A T I O N - I N S T A N C E field of the resident variable is
set to VID.

SET:
TYPE: = V-TYPE
C R E A T I O N - I N S T A N C E : = VID
NEXT-VAR-NOD E: = N U L L
A L T E R A T I O N - I N S T A N C E : -- 0

End PSBT-store

The search time of both algorithms is slightly higher
than the search time of a non-persistent symbol
table, but it remains proportional to n/m (n is the
number of variables in the table and m is the size of the
table). The slight increase in the length of search is
related to searching the chain of N E X T - V A R - N O D E
to find the desired instance of the given variable (see
Figure 3).

Persistent network and variable consistency

When a variable declaration is deleted or inserted in
template zero of a program or when a new statement
is added to a template, some tools are needed to
enforce variable consistency. Fischer and Johnson 34
used the idea of one symbol table for each template
of a program. In their scheme, every identifier in a
symbol table uses a pointer to a chain of all uses of
that identifier in the template. When a declaration
is inserted in or deleted from a template, the use-chains
are searched to access the relevant variables in the
template.

In this research, the idea of a use-chain has been
modified (and improved upon) and used as a tool to
enforce variable consistency in a persistent environment.
Also, the space overhead of using one symbol table for
one template used by Cockshot et al. 21 is eliminated.
Each unit of a program, which is allowed to declare
variables, has one persistent symbol table. Each template
of a program has a chain of pointers to the symbol
tab le- -one for each variable used in the template. Each
variable in the symbol table has a chain of its uses in
different templates. These two chains share one node at
their intersection. Figure 2 depicts an example of a
PNET with one N E X T - V A R I A B L E - L I N K pointer per
node.

632 Information and Software Technology

M K ZAND, M H SAMADZADEH AND H SAIEDIAN

Network node structure and operations

The general structure of the nodes of PNET is given
below.

NETWORK-NODE
POINTER-TO-SYMBOL-TABLE
TIME-INSERTED
NEXT-TEMPLATE-LINKS[n]

NT-TIME-STAMP
NT-LINK

NEXT-VARIABLE-LINKS[n]
NV-TIME-STAMP
NV-LINK

Some of the possible operations on a chain network and
the description of each operation are mentioned in the
following subsection.

Operations on PNET

This section presents the primitive operations as well as
other operations provided by PNET. ADD-VARIABLE
(templatei. t ime. vary)

Add variable var~ to the chain of variables used in
template~ at timer.
Add templatei to the chain of templates using vary at
timet.

DELETE-VARIABLE (templatei, timet, vary)

Remove var~ from the chain of variables used in
templatei at timet.
Remove templatei from the chain of templates that
uses vary at timet.

NEW-STATEMENT (templatei, time~,
var2, • . . ,var n)

v a r l ,

Preform NEW-VARIABLE n times for the n vari-
ables in the new template.

DELETE-STATEMENT (templatei, timer, varl, var2,
varn)

Perform DELETE-VARIABLE n times.

LOOK-FOR-Template-USE-VARIABLE (Vary, timer)

Through the header node of vary, find the chain of
templates using vary at timet.
Traverse the chain to find templates using vary (in
each node follow the links with the largest time-stamp
which is less than or equal to the search timet).

LOOK-FOR-VAR-IN-Template (templatei, timer)

Through the header node of template i (given in the
external node in the template tree), traverse the chain
at timet to find all variables used in the template.

NEW-VARIABLE (vary, timet)

Create a header node for vary and set it to null at
timer. This operation is needed when a new variable
is declared.

DELETE-DECLARATION (vary, timet)

Perform LOOK-FOR-Template-USE-VARIABLE
to find all templates using v at timet.
Remove the node(s) for variable v from the chain of
all those templates. Set variable v header's link to null
at timet.

DELETE-Template (templateb, time~)

Through the header node of the chain (templat%,
timer), remove all nodes from this chain and all
variable-chains intersecting the chain.

INSERT-Template (templat%, timet, vary,
var2 , . . . ,yarn)

Preform ADD-VARIABLE n times for the n vari-
ables.

DELETE-VARIABLE(Vary, timet)

Through the header for v a r v at timet, access chain
(Vary, timet). Remove all nodes on the chain from
chain(v.t), and the chains of templates which intersect
this chain. Set the header node for v a r v to null at
timet.

Analysis of time complexity of PNET operations

The average search time for all inquiries on one chain is
O (n), where n is the length of the chain. Every update
needs two searches, one in the template chain and the
other in the variable chain. For example, to remove
variable v at time t t from all templates using it, we must
traverse variable v's chain (via invoking the LOOK-
FOR-Template-USE-VARIABLE operation) and find
the templates using v. Then all of those templates must
be traversed to remove v from their chains.

If m templates with the average chain length of n are
involved, the processing time would be O (m.n) This is
a very expensive operation. Adding backward links to
the nodes would eliminate the traversal of a template's
chains. The use of backward links makes it possible to
remove variables from the template chains during the
removal of templates from the variable chains. The
average processing time of such an update is search time
O (m), which is a substantial improvement over the first
approach (singly-linked list) and the Fischer-Johnson
method 34. However, the trade-off for such an improve-
ment is the additional space for the backward links and
the required time-stamp for each link. Description of the
operations described earlier need not be changed except
for the DELETE-VARIABLE operation.

fTime and version numbers are used with the same meaning. They
both refer to Version-ID.

Vol 35 No 11/12 November/December 1993 633

Version management for ROPCO--a micro-incremental reuse environment

V E R S I O N M A N A G E M E N T A N D A C C E S S /
R E T R I E V A L I N S C M

Access to modules/ templates in S C M

This section describes the method of access to a given
version of a module/program in SCM. Using the Pro-
gram-ID (given forth by IDM), SCM loads the program
record from PHDB into memory. Information in the
root-header facilitates access to any given version of the
program. The root-header field in the PHDB-program
record contains the location of the root(s) of VCT, which
is (are) accessed and loaded into the primary memory.
Using the Persistent-Symbol-Table-Location field of the
program record, the persistent symbol table is also
loaded into memory.

The user may start by browsing any version of a
program, move from one version to another, or edit a
specific template in a given version of the program. For
example, if the user is interested in looking at all
templates in version x of the program, first SCM locates
the root of version x of the program tree through the
version-root-pointer/x] field in the program record. Then
SCM uses the first external node (which is found in the
left-most node of the PB-tree and serves as header to the
chained external nodes) to access all clusters related to
version x, and displays the code alongside the template
identifiers. To move from version x to version x + 1,
only clusters of those templates which have been altered,
moved, or inserted at instance x + 1 are fetched and
replaced by the revised template (this information is
recorded in the version history of x + 1).

Providing direct and sequential access to programs
and templates is a substantial improvement over other
approaches. This improvement is attributable to the
utilization of both incremental and structural persistence
in the system. Version history of incremental persistence,
implemented by Cockshot et al. 2~, eliminates the need to
traverse the tree (to move from one version to another
as needed) by using structurally persistent structures.
However, their method only has direct access to the first
or the last version (depending on the implementation)
and needs forward (or backward) reconstruction to get
to the other versions. Reps proposed using a 'shareable
2-3 tree' for the implementation of the symbol table for
large attributes 2s, but his proposed structure is not a
persistent one. Reps has used this structure to implement
incremental changes efficiently in a symbol table.

Update

Modification of a program could be divided into two
broad categories of local and structural changes. Local
modification may alter the structure of a program, the
network of use-chains (PNET) of the program, or both.
However, the flow graph of the program remains un-
changed. Structural changes not only modify the net-
work, but also alter the flow graph of the program. The
possible template modification and the corresponding
VCT's required actions are provided in the next section.

Legend :
CCA : Code Cluster Address
CP: Chain-pointer to PNET

Figure 4. A Version Control Tree (VCT) (in binary form)
with four templates

In all cases, the inter-template modification results in
updating the network of chains (PNET) and PSBT. The
details of actions on each operation relevant to PNET
and PSBT are provided above under 'Persistent network
and variable consistency'.

Once a modification on a module/template is done, it
is the task of the version manager to update the tree,
record the modification history, and allocate clusters for
new templates.

Operations on templates

In this section the list of possible operations (modifi-
cations) on templates and the actions taken by the
relevant SCM components are presented. Examples of
operations are shown on a binary tree to make the
demonstration simpler. The original tree is given in
Figure 4.

(1) Intra-template modification. This operation consists
of modifying a portion of a template. If an intra-
template modification does not have any effect on
other templates, only compilation of the altered
template is required. SCM dispatches the template
and the working symbol table to the interface for
compilation.

(2) Template relocation. If a template is relocated in a
module, no compilation is required. The version
manager (SCM) needs to update the tree by taking
the following steps:

(a) Remove the node related to the relocated tem-
plate (described below);

(b) Insert a new node for the relocated template
(described below); and

(c) Modify the pointers at the external level
(Figure 5).

634 Information and Software Technology

M K ZAND, M H SAMADZADEH AND H SAIEDIAN

Figure 5. An example of template-move in VCT
Figure 7. An example of template-removal (Template 1 &
removed at tl)

(3) Insertion of a newly created template. The template
needs to be compiled and the version manager must
update the tree. Figure 6 shows the tree after inser-
tion of Template 1.5.

(4) Template removal. This operation removes the tem-
plate node from the VCT program tree. The effect of
this operation on the tree given in Figure 4 is shown
in Figure 7. In this example, Template 1 is deleted
at time h.

(5) Template split. This operation splits a template into
two new templates. The new templates need to be
compiled. SCM removes the split template from the
old version and preforms the insert operation for the
new templates. Figure 8 shows the VCT tree after
splitting Template 1 into templates 1 and 1.5 at
time t~.

(6) Consecutive-templates join or blend. Two or more
templates are combined/blended to create a new
template. A compilation is required for the new
template. Assuming templates tj, tj + ~ tk_ ~ , and
t k are to be joined, SCM preforms the template
removal operation on tj through tk and the new
template replaces the old templates. Figure 9 pro-
vides an example of the join operation. Templates
1 and 2 are joined to form the new Template 2 at
time tl.

S U M M A R Y A N D C O N C L U S I O N S

The main objective of this paper was to present a new
approach on managing the versions of reusable units of
software. ROPCO is an integrated collection of tech-
niques, tools, and structures to facilitate the reusability
of persistent code and object code. As the kernel of
ROPCO, SCM is an integrated collection of techniques
and structures designed: (a) to assist reusability at the
code and object-code levels; (b) to store efficiently ver-
sions of programs on persistent structures; (c) to facili-
tate micro-incremental compilation; and (d) to preform
the interconnection process. SCM is also designed to
provide direct and sequential access to the templates of
a program, and to facilitate maintaining variable consist-
ency across the versions of a program. Providing direct
and sequential access to the versions of a program and
its templates is a notable advantage of this design over
similar reuse approaches.

The novel idea of a persistent network (PNET) and its
structure, along with the related operations allowed on
the PNET, are provided. The PNET network is designed
to facilitate variable consistency throughout the versions
of a program. It is shown that the PNET structure is

Figure 6. An example of template-insertion (Template 1.5
is inserted)

tl

Figure 8. An example of template split (Template 1 splits
into two templates at tl)

Vol 35 No 11/12 November/December 1993 635

Version management for ROPCO--a micro-incremental reuse environment

to

Figure 9. An example of template-Join. (Templates 1
and 2 are joined at t l)

more efficient than the other similar methods on those
type of operations that involve more than one variable
and template. The idea of a persistent symbol table and
its structure, as well as the access and update operations,
is also presented.

SCM receives the program id(s) from IDM. Using
these id(s), each of which is unique in the system, the
user/programmer selects the desired version or may
browse through the different versions of the program to
make a selection. The principal contribution of this
approach may be stated as its utility in the design of an
environment to reuse existing software. The major con-
tributions of this approach could be classified into four
different categories: (a) micro-incremental reuse capa-
bilities; (b) micro-incremental compilation; (c) version
control and system management; and (d) a mod-
ule/template interconnection language. What follows is
a brief discussion of the contributions of this paper.

Selecting templates as the secondary units of
reuse promotes micro-incremental reuse in a systematic
way. Language-dependent templates are natural units
of a programming language and simplify the process
of syntax and semantic checking. Furthermore, devising
a Persistent Network and a Persistent Symbol
Table simplifies the micro-incremental compilation/
recompilation process.

Application of the hierarchal Version-Persistent
scheme in the version control structure provides an
efficient and dynamic version control management sys-
tem and supports direct and sequential access to the
versions of a module/template.

The ROPCO environment is under implementation
and testing. The Version Control Tree, Identification
Mechanism, PNET, PSBT, and tools for reverse engin-
eering are being implemented in the Department of
Computer Science of the University of Nebraska at
Omaha and the Computer Science Department of
Oklahoma State University ~9'35.

ACKNOWLEDGEMENTS

The authors acknowledge the contribution of D D
Fisher and K M George in the development of basic
ROPCO environment.

REFERENCES
1 Tracz, W J 'Software reuse: motivations and inhibitors'

Proc. COMPCON87 (February 1987)
2 Biggerstaff, T J and Perlis, A J Software reusability Vol I,

ACM Press (1989)
3 Kaiser, G E and Garlan, D 'Systems from reusable building

blocks' IEEE Software (July 1987) pp 17-24
4 Zand, M K, Samadzadeh, M H and George, K M

'ROPCO--an environment for micro-incremental reuse'
Proc. IEEE Int. Phoenix Conf. Computers and Communi-
cations, Scottsdale, AZ (March 1990) pp 347-355

5 Freeman, P 'Reusable software engineering: a statement of
long-range research objectives' Technical Report 159 De-
part. Inf. and Comp. Science, University of California,
Irvine, CA (November 1980)

6 Burton B A and Aragon, R W 'The reusable software
library' IEEE Software (July 1987) pp 25-33

7 Lenz, M, Schmid, H A and Wolf, P F 'Software reuse
through building blocks' IEEE Software (July 1987)
pp 34-42

8 Krueger, C W 'Models of reuse in software engineering'
Technical Report CMU-CS-89-188 Dept. Comp. Science,
Carnegie Mellon University, Pittsburgh, PA (December 1989)

9 Prieto-Diaz, R 'Classification of reusable modules' in
Biggerstaff, T and Perlis, A (ells) Software reusability
ACM Press (1990) pp 99-123

10 Goguen, J A 'Reusing and interconnecting software com-
ponents' IEEE Computer Vol 19 No 2 (February 1986)

11 Zand, M K, Samadzadeh, M H and George, K M 'Minimiz-
ing ripple recompilation in a persistent software environ-
ment' Proc. ACM Comp. Science Conf. Washington DC
(February 1990) pp 166-172

12 Dart, S A 'The past, present, and future of configuration
management' Technical Report Carnegie Mellon Univer-
sity, Pittsburgh, PA (July 1992)

13 Baalbergen, E H, Verstoep, K and Tanenbaunm, A S 'On the
design of the amoeba configuration management' Proc. 2nd
Int. Workshop on Software Configuration Management,
Princeton, NJ (October 1989) pp 15-22

14 Thomas, L, 'Version and configuration management on
a software engineering database' Proc. 2nd Int. Workshop
on Software Configuration Management Princeton, NJ
(October 1989) pp 23-25

15 Crane, B M and Pal, A 'Conflict management in a source
version management system' Proc. 2nd Int. Workshop on
Software Configuration Mangement Princeton, NJ (October
1989) pp 149-151

16 Andrews, T, Harris, C, IBM Almaden Research Center, and
Sinkel, K Ontologic, Inc., 'ONTOS: a persistent databse for
C+ + Object-oriented database with applications to CASE,
networks, and CLSI CAD Prentice-Hall (1990)

17 Bacilhon, F, Barbedette, G and Benzaken, V 'The design and
implementation of O2, an object-oriented database system'
Proc. 2nd Int. Workshop on Object-Oriented Database
Systems Springer-Verlag (1988)

18 Croft, W B and Turtle, H R 'Retrieval of complex objects'
Proc. 3rd Int. Conf. Extending Database Technology,
Vienna, Austria (March 1992)

19 Swanson, L E and Samadzadeh, M H 'A reusable software
catalog interface' Proc. 1992 ACM/SIGAPP Symp. Applied
Computing (SAC'92) Kansas City, MO (March 1992)
pp 1076-1083

20 Atkinson, M P, Baily, P J and Chisholm, K J 'An approach
to persistent programming' Computer J. Vol 26 No 4 (1983)
pp 360-365

21 Coekshot, W P, Atkinson, M P and Chisholm, K J
'Persistent object management system' Software-Practice
and Experience Vol 14 (1984) pp 49-71

22 Atkinson, M P, Chisholm, K J and Coekshott, W P
'CMS--a chunk management system' Software-Practice
and Experience Vol 13 (1983) pp273-285

636 Information and Software Technology

M K ZAND, M H SAMADZADEH AND H SAIEDIAN

23 Sarnak, N and Tarjan, R E 'Planar point location using
persistent search trees' Comm. ACM Vol 29 No 7 (July
1986) pp 669-679

24 Tichy, W 'RCS--a system for version control' Software-
Practice and Experience Vol 15 No 7 (July 1985) pp
634-637

25 Zand, M K and Fisher, D D 'Space-efficient persistent
B-trees' Proc. 2nd Workshop Applied Computing Stillwater,
OK (March 1988) pp 295-318

26 Cole, R 'Searching and sorting similar lists' J. Algorithms
Vol 7 (1986) pp 202-220

27 Zand, M K, Saiedian, H and Farhat, H 'A persistent
quad-tree to store graphic images' J. Congressus Numeran-
tium Vol 81 (1991) pp 173-182

28 Reps T and Tentelbaum, T 'Incremental context-dependent
analysis for language-based editors', ACM Trans. on
Prog. Lang and Systems Vol 5 No 3, pp 449-477 (July
1983)

29 Teitelman, W and Mainster, L 'The Interlisp programming
environment' Computer Vol 14 No 4 (July 1985)
pp 637-654

30 Cheatham, T E Jr, 'Reusability through program trans-
formations' IEEE Trans. Soft. Eng. Voi 10 No 5 (Septem-
ber 1984) pp 589-594

31 Marzullo K and Wiebe, D 'Jasmine: a software system
modeling facility' Proc. ACM SIGSOFT/SIGPLAN Conf.
(November 1988) pp 28-30

32 Neighbors, J M 'The DRACO approach to constructing
software from reusable components' IEEE Trans. Soft.
Eng. Vol 10 No 5 (1984) pp 564-574

33 Zand, M K, Samadzadeh, H, George, K M and Saiedian, H
'An interconnection language for reuse at the tem-
plate/module level' to appear in J. Systems and Software
(1993)

34 Fischer, G and Johnson, C 'A meta-language and system for
nonlocal incremental attribute evaluation in language-
based editors' Conf. Records 12th Ann. ACM Syrup. on
Prin. of Prog. Lang New Orleans, LA (January 1985)
pp 141-151

35 Zand, M K and Hiesterkamp, D 'A reverse-engineering tool
for the ROPCO environment' (work in progress) Dept. of
Math & Computer Science, UNO, Omaha, NE (1993)

Vol 35 No i 1/12 November/December 1993 637

