J. SYSTEMS SOFTWARE 9
1993; 23:9-26

An Interconnection Language for
Reuse at the Template /Module Level

M. K. Zand and H. Saiedian

Department of Math and Computer Science, University of Nebraska at Omaha, Omaha, Nebraska

K. M. George and M. H. Samadzadeh

Computer Science Department, Oklahoma State University, Stillwater, Oklahoma

Reuse is becoming a potent trend in software develop-
ment and a major way to boost software productivity.
To put reusable software units together, one has to be
able to find them with minimal effort in the first place.
The effort needed to access, understand, and cus-
tomize the code must be less than the effort required
to create new code. A simple library of components
cannot provide sufficient methods to facilitate the se-
lection and interconnection of the reusable modules.
The context of this work is the ROPCO ({reuse of
persistent code and object code) environment and the
primary candidates for reuse are the maodules and
templates. The objective of this article is to present
the design of an interconnection language which can
be incorporated with other ROPCO components to
facilitate the selection, customization, and intercon-
nection of reusable modules in the ROPCO software
development environment. This language helps to de-
fine the interface specifications of the components
and find the best module(s) /template(s) meeting the
desired specification. The detailed algorithms of the
operations that are necessary at the user level to
‘support the reuse of available components are given
and described in detail with a view toward verification.

1. INTRODUCTION

An interconnection language is a machine-processa-
ble specification language that provides the means
for a system designer to represent the system in a
concise, precise, and verifiable form. Once the sys-
tem structure has been designed, it can be coded in

Address correspondence to Prof. Mansour Zand, Department of
Math and Computer Science, University of Nebraska, Omaha, NE
68182.

© Elsevier Science Publishing Co., Inc.
655 Avenue of the Americas, New York, NY 10010

an interconnection language. This code is used to
verify the design completeness and detect inconsis-
tencies before the system is actually linked together.

Conventional module interconnection languages
(MILs) provide formal grammar constructs (or other
types of formalisms) to specify and eventually assem-
ble a complete software system [1]. Automatic
processing of such formal specifications requires sys-
tem-integrity and intermodule-compatibility verifi-
cation. Conventional MILs are not concerned with
the specification information (i.e., the actual func-
tion of the system) or the detailed design informa-
tion (i.e., how the modules implement their func-
tions). Typically, they are primarily concerned with
architectural design information (i.e., how the mod-
ules fit together). Prieto-Diaz and Neighbors [1] con-
sider the following items as the main characteristics
of an MIL:

1. A separate language is used to describe the sys-
tem design.

2. It can perform static type checking at an inter-
module level of description.

3. It can consolidate the design and construction
processes (i.e., module assembly) into a single
description.

4. It can control different versions and families of a
system.

Tichy and Baker [2] and Perry [3, 4] emphasize the
close relationship that exists among the MIL, the
interface control system, and the version control
system in a software development environment.
Goguen’s LIL (library interconnection language)
[5] and Perry’s INSCAPE [6, 7] use most of the ideas

0164-1212,/93 /$6.00

10 J. SYSTEMS SOFTWARE
1993; 23:9-26

found in conventional MILs such as INTERCOL [8]
and GANDALF [9]. However, they go beyond these
MILs by incorporating tools for specifying the se-
mantics of the modules.

The general context of this work is the ROPCO
(reuse of persistent code and object code) environ-
ment [10]. ROPCO’s module /template interconnec-
tion language (RMTIL) is not a stand-alone “tool”;
rather, it is a part of the ROPCO environment
specifically designed to utilize and integrate with the
other components of ROPCO. Section 2 covers
ROPCO by providing a general overview and more
detailed description of the components that are di-
rectly related to the discussion of the interconnec-
tion language. This brief introduction to ROPCO is
deemed necessary because an understanding of the
ROPCO environment will help clarify and justify a
number of the design decisions and implementation
choices.

This article is organized into seven sections. Sec-
tion 2 is a brief introduction to the ROPCO environ-
ment and its design goals. Section 3 is a survey of
existing interconnection models and Section 4 intro-
duces ROPCO’s interconnection model and lan-
guage. Sections 5 and 6 discuss interconnection op-
erations and processes. A description of the relevant
operations as well as verification conditions are dis-
cussed. The last section summarizes the work and
gives a progress report on the implementation of the
ROPCO environment.

2. ROPCO

Reuse is becoming a potent trend in software devel-
opment and a major way to boost software produc-
tivity. Several alternatives have been proposed for
the level of software reuse. They include specifica-
tion level, design level, program /subprogram level,
module /template level, and code and object code
level [1, 11, 12]. Specification and design are at
higher levels of abstracfion than the other reuse
levels; therefore, their potential for accommodating
reuse is greater and adaptation to new applications
can be expected to be simpler. However, the reuse
process of the specification and design levels ulti-
mately involves coding (either manually or automati-
cally), testing, and debugging. On the other hand,
reuse at the code level reduces the coding and
overall testing efforts; hence, one can argue that it is
more economical.

The result of one survey shows that 40-60% of all
code is reusable from one application to another,
60% of the design and code on all business applica-
tions is reusable, and 75% of program functions are

M. K. Zand, K. M. George, M. H. Samadzadeh, and H. Saiedian

common to more than one program [13]. The survey
also indicated that only 15% of the code found in
most programs is unique and novel to each specific
application.

The results of an experiment show that the opti-
mal size of a reusable module is about 200 to 250
code lines {14]. Reuse of such modules is usually
incremental, i.e., it results in altering only one por-
tion of the code of a system. In most of the existing
reuse methods, older versions of the resulting mod-
ule at each step either are not saved at all or are not
stored efficiently. It turns out that there is no need
to store the entire module under a new version
number or recompile the whole module. The modi-
fied portion of the code is normally one or more of
the constructs of the language (referred to here as a
template); consequently, it is natural to consider
templates as units of reuse and store only those
templates that are modified or are added to a
module [15].

ROPCO is a software development environment
that adopts a novel approach to reuse utilizing code
and object code stored in persistent structures [10].
ROPCO was designed to accomplish the following
goals:

1. Identify and provide access to a segment of code
and the related object code based on user speci-
fications.

2. Facilitate module modification both at the pro-
grammer and compiler levels.

3. Provide facilities to efficiently store and retrieve
all versions of the module(s) under consideration.

4. Facilitate module /template inter- and intracon-
nection.

Minimizing the user/programmer efforts spent on
tasks- other than programming was one of the main
motivations in the design of the ROPCO system. We
emphasized minimizing the compilation time and
effort. ROPCQ’s minimal compilation strategy limits
the propagation of microincremental compilation re-
sulting from intraprocedure modifications, while
consistency of variables and the intramodule flow
graph remain intact. The problem of macroincre-
mental compilation resulting from interprocedural
modifications is addressed in ROPCO’s design [16].

In ROPCO, templates/modules are chosen as
units of reuse and the novel concept of a “use
network” is devised [10]. Another design goal of
ROPCO was to furnish the system with a pragmatic
schema for storage of versions of a module and
maintain direct and sequential access to the blocks
of modules. Hierarchical and flat persistency meth-
ods were used to achieve this goal.

An Interconnection Language

ROPCO consists of three main subsystems: iden-
tification mechanism, software control mechanism,
and interface. Figure 1 illustrates the main compo-
nents of ROPCO and the relationships among them.
The following is a brief description of the main
subsystems of ROPCO.

2.1 Definitions

The following definitions are provided to clarify the
presentation.

Template: A segment of code corresponding to a
syntactic construct of a high-level programming
language.

Basic template: A template that contains straight-line
code or a loop or conditional statement which

J. SYSTEMS SOFTWARE 11
1993; 23:9-26

contains only straight-line code (templates T1 and
T3 in Figure 2 are examples of basic templates).

Composite template: A nonbasic template is called a
composite template (template T2 in Figure 2 is an
example of a composite template).

Outermost template: A basic or composite template
that is not embedded in other template(s) (tem-
plates T1, T2, T3, and T4 are examples of outer-
most templates in Figure 2).

In the rest of this article, the three terms name,
object, and identifier are used interchangeably.

2.2 Identification Mechanism

The identification mechanism (IDM) is designed to
identify and select one or more module(s)/

[
oM (SADB | QUERY SYSTEM
T
SCM 1
. LIS
1
vCT PHDB)
1
I] '
l
CODE OBJECT PSBT |
i
/ '
PNET MTI CODE :
/ !
Figure 1. Main components of MTV | MTIM
ROPCO.
R (COMPILER INTERFACE)
COMPILER
IDM: IDentification Mechanism LIS: Linkage System
LPDB: LIS Persistent DataBase MTIM: Module/Template
Inter-connection Mechanism
MTV: Module/Femplate Verificr PNET: Persistent NETwork
PHDB: Persistent History Datalbase PSBT: Persistent SymBol Table
SADB: Software Attriburt DataBase SCM: Soltware Control Mechanism

VCT:

Version Control Tree

12 J. SYSTEMS SOFTWARE
1993; 23:9-26
MODULE Example
BEGIN
Ti i=0
T2 DO WHILE i<n
BEGIN
T2.1 READ(cond)
T22 IF cond =1 THEN
i=i+2
ELSE
i=i+l
END IF
T2.3 PRINT (i)
END WHILE
T3 y :=prod * x
y={y+1i) ¥x
y=y+c¢
T4 IFy <0 . THEN
y:i=1

END {Example}
Figure 2. A hypothetical module.

template(s) that meet user requirements. Each mod-
ule is classified based on its function, environment,
and implementation attributes. The attributes (which
are stored in the software attribute data base
(SADB)) are used to identify the candidate
module(s).

2.3 Software Control Mechanism

The software control mechanism (SCM) is the ker-
nel of ROPCO. The main tasks of SCM include
arranging access to different versions of a module
(at module and template levels), coordinating the
compilation and recompilation tasks, and maintain-
ing variable consistency throughout the modules (and
the system). The main components of SCM are
introduced in the following subsections.

2.3.1 Program history data base (PHDB). This com-
ponent of SCM is designed to retain the information
required to access the root of the family tree of a
module /program and to hold information on how to
move from a specific version to the successor or
predecessor versions. To access the family tree (or
version tree) of a module, the header pointing to the
root of the version tree can be found in the module
record in PHDB. To move from one version to
another, information on incremental changes to each
version is also deposited in the module record of the
working module.

M. K. Zand, K. M. George, M. H. Samadzadeh, and H. Saiedian

2.3.2 Version control tree (VCT). VCT is con-
structed based on a persistent B-Tree [10]. Internal
nodes of the VCT serve as indices and its external
nodes contain addresses of the clusters that hold
code as well as a header for the chain of variables
used in each template. Each internal node has &
sets of child pointers and each pointer has a time
stamp to indicate the version number. Each external
node contains the address items related to the tem-
plate represented by the external node. The external
nodes are linked to maintain sequential access to
the clusters; this is in addition to the direct access
provided to the template clusters.

2.3.3 Persistent symbol table (PSBT). The symbol
table of a persistent programming environment for a
given program exists as long as the program itself
exists. The life cycle of the symbol table of a pro-
gram does not terminate at the end of the execution
of the program. The symbol table of a persistent
program should be able to support all versions of the
program. The main difference between this type of
persistent symbol table and the conventional symbol
table is that, in PSBT, one variable may be defined
in more than one context and thus can have differ-
ent types. However, only one type of variable is
allowed in each instance (version) of the table. Each
variable can have one or more records in the table.

2.3.4 Persistent network (PNET). PNET is designed
to facilitate the name-space consistency throughout
the system. Each unit of program which is allowed to
declare variables has one persistent symbol table.
Each template of a program has a chain of pointers
to the symbol table—one for each variable used in
the template. Each variable in the symbol table has
a chain of its uses in different templates. The two
sets of chains for all variables and templates consti-
tute the “use network” (i.e., PNET). When a decla-
ration is inserted into or deleted from a template,
the use chains are searched.to access the relevant
variables in the template.

2.3.5 Module / template verifier (MTV). MTV is de-
signed to check for compatibility of interconnec-
tion/substitution of modules and templates. This
subsystem of ROPCO uses an automatic verifier and
a semantic specification model to verify functional
consistency among the interconnecting components.

2.3.6 Module / template interconnection mechanism
(MTIM). MTIM is the subsystem responsible for
interconnection and substitution of modules/
templates. MTIM uses other SCM components to
perform its task.

An Interconnection Language

2.4 Interface

The interface is designed to facilitate microincre-
mental compilation between ROPCO and the lan-
guage-specific compilers. It prepares the templates/
modules that are altered or otherwise affected by
modification for compilation. As a postcompiling
activity, the interface transfers the address of the
newly created object code and symbol table to SCM.

2.5 Access and Update

The unit of access and update in ROPCO is the
template. Code and object code for each template
are stored in separate areas of secondary storage.
Once a specific version of a module is recalled for
reuse or modification, VCT is loaded into the pri-
mary memory and blocks of code and object code
are accessed and loaded by traversing the external
nodes of the given version of the module. Next, the
PSBT of the modules under consideration is loaded
into the memory to provide the current version of
the symbol table.

3. INTERCONNECTION MODELS

Perry [3] defines an interconnection model (IM) as
an ordered pair consisting of a set of objects and a
set of relations which represent the interconnections
that exist among the objects:

IM = ({objects}, {relations})

An IM is used to construct a graphic representation
for a system where objects are nodes and relations
are edges {17, 18].

Perry classified IMs into three categories. The
following sections present these three classes.

3.1 Unit Interconnection Model

A unit interconnection model (UIM) states the rela-
tionships that exist among components of a software
system (basically files and programs). The nature of
the relationships among these units is in the form of
dependency of one unit on some other unit(s). This
can be represented by the following ordered pair [4]:

UIM = ({units}, {*“depends on™})

The main advantage of this model is that it pro-
motes the notion of encapsulation and persistency
for units through modular construction of software
[3]. This model could be used to determine compila-
tion setting, recompilation strategy, and change
notification.

IMPORT in MODULA-2, #include in C, and

J. SYSTEMS SOFTWARE 13
1993; 23:9-26

with in Ada are examples of features in program-
ming languages that facilitate compilation setting
using the UIM approach. Other examples of the
application of UIM are Make and Software Code
Control System (SCCS) [19]. An extension of SCCS
uses the “depends on” relation information to in-
form the user of the effect of a change throughout
the software system. Cedar’s system modeler [20]
and the DOMAIN software engineering environ-
ment [21] use UIM in their environments.

While UIMs are practical in supporting modular-
ity, compilation, recompilation, and change notifica-
tion, they are applicable only to module-level inter-
connection and large-grained objects. They cannot
support fine-grained object interconnections, compi-
lation, recompilation, or change notification.

3.2 Syntactic Interconnection Model

A syntactic interconnection model (SYIM) is an
ordered pair of a set of objects and a set of relations.
SYIM focuses on the interconnections of objects
used in the creation of a software system. Further-
more, SYIM indicates the changes that have oc-
curred in the syntactic objects. An SYIM has the
following form [4}:

SYIM = ({functions, procedures, types, variables, ...},

{“is used at”, “is set at”, “calls’,... })

The objects set of an SYIM consists of procedures,
functions, types, and variables. The relations set of
an SYIM consists of the relationships existing among
its components or objects. The list of objects and
their relationships are language dependent (e.g.,
some languages support import and export, and some
do not). The main advantage of SYIM over UIM is
its ability to support the fine-grained units or com-
ponents of the software system and “provide rela-
tions among the syntactic elements of a program-
ming language” [4].

SYIM could be used for change management,
smart recompilation, and system modeling. The cross
reference generated by the compilers can be used to
detect the extent of the impact of the changes made
on the syntactic units [11]. For example, Interlisp
MasterScope [22] has a data base for relationships
among objects; change management is provided
through querying the data base.

Tichy [17] uses a syntactic model in Smart Recom-
pilation. The effect of changes on the syntactic ob-
jects within the model could be determined using
SYIM. In GANDALF’s system composition and ver-
sion control for Ada environment [12], system mod-
eling is mentioned as another example of the appli-
cation of fine-grained IM.

14 J. SYSTEMS SOFTWARE
1993; 23:9-26

3.3 Semantic Interconnection Model

The SYIM approach doesn’t provide any informa-
tion as to why the interconnections exist and how
the objects are intended to be used. The lack of
semantic information makes it difficult to provide
effective management of system evolution. To facili-
tate the building of a large software system from
small components, we need capabilities to represent
the purpose of the objects and how these objects are
to be used. Formal specification of objects is a
powerful tool for providing semantic information [3].

Although algebraic specification is perhaps more
suitable for describing the relationships among oper-
ations and expressing the purpose of the operations,
Hoare’s input /output predicates are more meaning-
ful in representing the interconnection points and
proving properties about a program fragment. A
semantic interconnection model (SEIM) has the fol-
lowing form [4]:

SEIM = ({functions, procedures, types, ..., predicates},

LRI Y EX IS

{~is used at”, “is set at”, “calls”,..., “satisfies’})

The SEIM is used in the design of the module
interface specification of INSCAPE.

4. ROPCO INTERCONNECTION MODEL
AND LANGUAGE

In the ROPCO environment it is not possible to use
a conventional MIL. Rather, we need a language
that provides capabilities to facilitate intraconnec-
tion of modules (i.e., substituting a template in a
module, assembling a number of templates within a
module, or creating a module as well as intercon-
necting a number of modules).

Using templates as units of reuse generally makes
the “gluing” process more complicated than it would
be if modules were used as units of reuse. This is
because local variables are not involved in intercon-
necting modules, while they must be considered in
interconnecting templates. This added complication
makes the design of an interconnection language
more difficult. However, this is a price to be paid for
potentially reducing the scope of recompilations and
for the availability of the microcompilation facility in
the software development environment. Since mod-
ule /template is selected as the unit of reuse in
ROPCO, this type of language is called M/TIL
(module /template interconnection language). To the
best of our knowledge, to date no M/TIL has been
reported in the open literature. Throughout the rest
of this article we will focus on the specification of
the template-related portion of M /TIL.

M. K. Zand, K. M. George, M. H. Samadzadeh, and H. Saiedian

The functions of M/TIL are transparent to a
programmer (user) who is concerned with the devel-
opment of a software system using reusable compo-
nents. The task of M/TIL is to provide the syntax
and semantics of modules /templates and to be used
to verify the consistency of the name space and the
functional integrity of a module after a template
replacement/insertion in the module or after the
creation of the module by assembling a number of
templates. Therefore, an M /TIL doesn’t necessarily
need to be self-expressive or easy to understand.
However, the environment should incorporate tools
such as a query language or graphic representation,
which are some of the typical tools used for ordinary
user interfaces. :

As mentioned earlier, some of the conventional
MILs are not concerned with the implementation
specification; nevertheless, M /TIL uses the imple-
mentation specification for the verification process.
The following sections provide the characteristics
rsand functions of ROPCO’s M/TIL (RMTIL) and
the verification process of M /TIL.

4.1 M/TILCharacteristics and Functions

An M/TIL should have the following characteris-
tics:

1. It should be a machine-processable and formal
specification language.

2. It should contain verification conditions for inter-
action with an automatic verifier.

3. It should contain features to enable it to interact
with the software environment to use the relevant
information about the modules/templates.

4. 1t should be designed to provide the syntax and
semantics of the modules/templates.

An M/TIL should have the following capabilities:

1. It should provide explicit information about how
to put the modules/templates together.

2. It should provide the capability for microincre-
mental modification verification.

3. It should provide the ability to manage different
versions of a module /template.

4. Tt should provide the capability for semantic veri-
fication by an automatic verifier.

5. It should provide facilities for consolidating the
structure and capabilities of the software environ-
ment for module /template assembly.

6. It should provide interconnection and intracon-
nection commands among and within the mod-
ules.

RMTIL consolidates other development/mainte-

An Interconnection Language

nance components of ROPCO and uses the SCM
structures. Type checking for name-space con-
sistency' is not part of an automatic verifier; RMTIL
uses persistent symbol table and persistent use net-
work to perform this task. Therefore, the verifier’s
task is limited to checking for soundness of the
semantics of the replaced template (or assembled
templates) without worrying about type checking.

4.2 Module /Template Specification

This section presents the specification of an RMTIL
module. An RMTIL module provides four specifica-
tions for each software module that it represents, as
outlined below:

1. attribute specification, which includes environ-
ment, function, and version and family informa-
tion; -

2. module structure, which is the control flow infor-

mation;

. module interconnection specification;

4. template specification, which consists of template
pre- and postconditions, other verification condi-
tions, and the structure of the template (template
control flow), if the template is a composite.

W

Perry’s approach to the design of an interconnec-
tion language provides adequate power for module
interconnection (i.e., the SEIM part) [4] and is used
for the design and development of the MIL portion
of our M/TIL. The following section presents the
RMTIL model constructed based on the specifica-
tions given in this section.

4.3 The RMTIL Model

A typical M/TIL needs to provide semantic as well
as syntactic information. Since other components of
ROPCO are responsible for the task of syntax con-
sistency of the module involved, the RMTIL model
is concerned with semantic information only. The
RMTIL model is defined below.

RMTIL Model = ({objects}, (relations})
and

object = (M, 4,C, P, T),relation = §,
where

M is a module name

' Name-space consistency refers to checking for the consistency
of “names,” “objects,” or “variables” within the scope of the
module(s) under consideration.

J. SYSTEMS SOFTWARE 15
1993; 23:9-26

A is a set of module attributes include functipnal,
environment, and implementation attributes [16]

C is the module control flow represented in terms of
templates)

P is the module pre- and postconditions analogous
to Hoare’s input/output predicates and modify
set, which is list of all input objects modified by
the module

T is a set of one or more templates ¢ in the module

b2 N3

S is a set of properties such as “language is,” “ver-
sion is,” “satisfies,” “requires,” “flow is,” etc.

A template ¢ is defined as a tuple:
t=({id,,a,p,c}, s}
where

id is the template identifier

a is the set of template attributes (e.g., function,
main objects, and version information)

p,c, s are predicate conditions, control flow, and the
set of properties for the template, respectively.

This model provides all the information required
for interconnection as well as intraconnection and
version control. If the implementation is at the mod-
ule level, then C and T may be empty. Furthermore,
not all of the template attributes are required for
interconnection and verification. The function and
main objects attributes are used in the template
selection process and are stored in SADB. These
attribute are not required in RMTIL’s specification
of a module.

4.4 The RMTIL Language

The RMTIL language incorporates some of the con-
cepts put forth in the design of CLU [23]. CLU was
designed by Liskov et al. [24] in 1977 to implement
the concept of abstract data types. CLU has a rich
set of assertions for the module specification and
verification process, which are used in RMTIL. To
provide version handling, template specification, and
control flow and to enrich module specification, the
requisite features are added to the RMTIL. The
following features have been added to RMTIL.

ATTRIBUTE is a structure assertion to provide envi-
ronment information for the module.

The assertion symbols within the ATTRIBUTE are
the same as those for the module attribute defined
as A in subsection 4.4.

Template identifier and version number are added for
version control.

16 J. SYSTEMS SOFTWARE
1993; 23:9~26

CONTROL-FLOW and TEMP-CONTROL-FLOW

structure assertions are added to represent the
flow of the program.

CONTROL-FLOW represents module control flow
and has the following form:

CONTROL-FLOW: (t,,1,,...,t,),

where ¢,¢,,...,¢, are outermost templates in the
module.

TEMP-CONTROL-FLOW represents the struc-
ture of a composite template. Figure 3 illustrates
various control flow representations in RMTIL.

An RMTIL specification module consists of a
module header and a module body. The module
header, called MODULESP, contains the module
attribute, verification predicates, and control flow.
The body of a module, called TEMPLATESP, con-
tains the specification for one or more templates. A
formal representation of an RMTIL’s module struc-
ture is given in Figure 4. The MODIFIES and EF-
FECTS sets of a nonbasic template include those
objects whose scope of existence is not limited to the
scope of the template. For example, assume T; ;, a
template within 7}, contains the following segment
of code:

allocate (a);

F () |->(T|T)

M. K. Zand, K. M. George, M. H. Samadzadeh, and H. Saiedian

dispose (a);

or
open-file(afile);
read (afile, b);
close-file(afile);

a and gfile do not appear in the EFFECTS or
MODIFIES list of T,.

Figure 5 depicts the RMTIL specification for the
hypothetical module presented in Figure 2.

5. INTRACONNECTION OPERATIONS

This section is concerned with the operations incor-
porated into the RMTIL language to facilitate sup-
port for a programmer (user) who is building pro-
grams from reusable templates. Templates can be
reused in different ways to modify or construct a
module. The user may ask to add a template or
substitute one known template for another, list a
group of selected templates to be added/sub-
stituted, or look for a template to be substituted for
a given template.

What follows is an outline of the possible ways in
which intraconnection operations can be requested

CASE :(c; ¢y .ic) | = (T; Ty .3 T, | NEXT)

WHILE : ((-INVARIANT) | — (T, T, -.or

Ti.n’ ti) ‘ (NEXD)

UNTIL : (T, Tig, - Toa)y (GINVARIANT)) [((T;,, Tig, oo Ty) | (NEXT))
where

|- : the correspondent-or operator

5 : condition separator

, : sequence operator

t : basic or composite template

T Gy t), n>0

NEXT : next template in the control flow of the outermost template or a module

| and the | — operator is defined as follows

(€3 €5 w3 &) | = (T Ty ..; T, | NEXT)

IFc, THEN T,
ELSE IF ¢, THEN T,

ELSEIFc, THENT,

OTHERWISE NEXT
Figure 3. Control flow representations in RMTIL.

An Interconnection Language

by a user:

1. Substitute template ¢,, by f,, in module m:
Substitute (m, £,,4, t,e)

2. Add template ¢,,, in position p of module m:
Add (m,¢,,,, p)

3. Substitute the set of templates {¢,,,} by {t,,,} in
module m: Substituteall (m,{¢,,.}, {t,.,})

4. Link the set of templates {tf} with the given con-
trol flow to create a module m: Link ({t}, CON-
TROL-FLOW(m), m)

The above operations assume that the substituting
templates are known. In the cases where a template
is not known, a search in SADB is required to find
the desired template(s). Once the search is success-
fully carried out, one of the above operations will
take place. More detail about these operations is
provided in the next section.

Figure 6 illustrates a revised version of module
“example” shown in Figure 2. In this example, tem-
plate T2 is replaced by a new version of the tem-
plate. Figure 7 illustrates the RMTIL code for the
revised “example.” Figure 8 is a more realistic illus-
tration of Figure 7. In this figure, only the substi-

J. SYSTEMS SOFTWARE 17
1993; 23:9-26

tuted template is coded. Nonmodified templates are
referenced by their identifiers.

6. INTRACONNECTION PROCESS

The major tasks of the intraconnection process in-
clude checking for the overall consistency and in-
tegrity of the module that contains the template(s)
involved and invoking other components of the
ROPCO environment for required action. To per-
form the consistency check, ROPCO use an auto-
matic verifier. The next subsection provides a short
introduction to the module/template verification
process used in the ROPCO environment.

6.1 Verification Process

The details of constructing proofs of program veri-
fication in the ROPCO environment are beyond the
scope of this article. Verification of template addi-
tion /deletion /substitution is in general more com-
plex than the verification of module interconnec-
tions but less cumbersome than overall program
verification. Considering the fact that RMTIL as-

MODULESP ((NAME: xxx),

ATTRIBUTE :

(FUNCTION: yyy,
LANGUAGE: zzz,

ID-VERSION:),

VER-CONDITIONS :
(REQUIRES : (...), / module pre-conditions /
EFFECTS : (...), / module post-conditions /

MODIFIES : (..),
CONTROL-FLOW: (T,, Ty, ..., T))

END xxx.

TEMPLATESP ((IN xxx),
{template-id: (VERSION (x)),

Figure 4. Structure of an RMTIL module.

"[INVARIANT: (invariant for loops)],
[DECREMENT: (decrement for loops)],

REQUIRES: (requirements list),
MODIFIES: (modification list),
EFFECTS: (effects on the template objects)
[TEMP-CONTROL-FLOW: (list of template-ids [conditions])]
1)

END xxx.

Note: [} denotes an optional item and {} denotes one or more repetitions.

18 1. SYSTEMS SOFTWARE M. K. Zand, K. M. George, M. H. Samadzadeh, and H. Saiedian

1993; 23:9-26

MODULESP ((NAME : Example),

ATTRIBUTE :{
FUNCTION : hypothetical,
LANGUAGE : mixed,
ID-VERSION : xxx-12-4),

VER-CONDITIONS: (
REQUIRES :(...), /list of imported objects, required resources,

and input arguments/
EFFECTS :(...), /list of export objects and outgoing
arguments/
MODIFIES :{...)) /lists of all required objects modified by the
module/
CONTROL-FLOW (T1, T2, T3, T4))

END Example.
TEMPLATESP ((IN Example),

(T1: (VERSION (4),
REQUIRES :(),
MODIFIES :(i),
EFFECTS :(i := 0))),

(T2: (VERSION (1),
INVARIANT :(n > i),
DECREMENT :(n - 1),

REQUIRES :{(i := 0 & n > 0),
MODIFIES :(i, cond),

EFFECTS ({1 :=n) | (i >n)),

TEMP-CONTROL-FLOW((i < n) |- (£2.1, t2.2, t2.3, T2) | NEXT)))

(t2.1:(VERSION (1),
REQUIRES :(),
MODIFIES :(cond),
EFFECTS :())

(t2.2: (VERSION (3),
REQUIRES :(cond > 0},
MODIFIES :(1),
EFFECTS :(cond = 1 |—» (i := i + 2)|(1i := 1 + 1))))

(2.3 ...)

(T3: (VERSION (2),
REQUIRES :(),
MODIFIES :(y),
EFFECTS :(y := x%prod + xb + ¢)))

(T4: (VERSION (3),
REQUIRES : (),
MODIFIES :({y),
EFFECTS :(y => 0))))

END Example.
Figure 5. RMTIL specification of the module presented in Figure 2.

An Interconnection Language

MODULE Example {new version}

BEGIN
T1 i=0
T2 DO WHILE i<n
BEGIN
T2.1 READ(cond,c)
T2.2- IF cond =1 THEN
i=i-c
ELSE
i=i+c
END IF
T2.3 PRINT (i)
END WHILE
T3 y :=prod * x
y=(F+1i)*x
y=y+c
T4 IFy <0 THEN
y:=1

END {Example}

Figure 6. Revised version of module “example” in Figure
2,

signs the task of name-space consistency to other
parts of ROPCO (PNET and PSBT), the required
verifier needs only to check for the consistency of
modules. Qur approach to verification in the
ROPCO environment is to compare the pre- and
postconditions of the templates involved (or the new
template) with those of the surrounding templates.

Unlike module interconnection, template intra-
connection could have a local effect on other parts
of a module. This local effect is not limited to
name-space inconsistency; it might have an impact
on the preconditions of the following template(s) as
well. Therefore, the required verifier must be capa-
ble of performing the following tasks:

1. Determine the effect of the new template on the
verification conditions of other templates.

2. Isolate and resolve the potential inconsistency of
the affected template(s).

3. Approximate the impact of changing the affected
template(s).

These tasks are somewhat analogous to the tasks of
a sophisticated program verifier [25].

Since the intraconnections of the operations in
RMTIL could be defined in terms of Add and Sub-
stitute, we will provide verification rules for these
two cases in the subsections that follow. We use
transformations to represent the Add and Substitute

J. SYSTEMS SOFTWARE 19
1993; 23:9-26

operations on a sequence of templates. Substitute is
represented as follows:

TT,...T,...T, = T\T,...T,...T,
Add is represented as follows:
T Ty...T Ty ... Ty = Ty . T T, - T,

6.2 Substitute

This operation can be characterized in terms of the
pre- and postconditions of the two templates in-
volved. Based on the following definitions, two tem-
plates can be either functionally identical or func-
tionally compatible with possible side effect.

Two templates are functionally identical

L=

if they can be used interchangeably without any
unanticipated results.

Two templates ¢, and ¢; are functionally compati-
ble

LD

if ¢; could be used in place of ¢; and still provide the
behavior required by the system.

A template and its associated verification condi-
tions are denoted by

Pre,{t,}Post,,, Modify,

where Pre, is the set of minimum conditions re-
quired for execution of template n, Post, is the set
of expectations from template n, and Modify, is the
set of all objects whose states are modified in tem-
plate n. pre, C pre, indicates that pre, is a subset of
pre,, which means that it does not assume more
than pre,. post, D post, indicates that post, is a
superset of post,, which means that the new tem-
plate guarantees all postrequirements.

The following propositions characterize the no-
tions of being functionally identical or compatible
for templates.

Proposition 1. Two templates 1., and ¢,,, are
functionally identical if and only if:

Pre
Post,,,,,
MOdlfYnew = MOdlfyald

Proof. Since the pre- and postconditions and the
modify set are identical in both templates, all re-
quirements of the succeeding templates will be ful-
filled by the new template precisely the same way it
was satisfied by the old template. Therefore, re-
placement of ¢,,, with z,,, will not affect the pre-
and postconditions of the succeeding records. On

new = Preold

= Post 1,

20 J. SYSTEMS SOFTWARE M. K. Zand, K. M. George, M. H. Samadzadeh, and H. Saiedian

1993; 23:9-26

MODULESP ((NAME : Example),

ATTRIBUTE :{
FUNCTION : hypothetical,
LANGUAGE : mixed,
ID-VERSION : xxx-12-5),

VER-CONDITIONS: {
REQUIRES :(...), /list of imported objects, required resources,

and input arguments/
EFFECTS :(...), /list of export objects and outgoing
arguments/) .
MODIFIES :(...)) /lists of all required objects modified by the
module/
CONTROL-FLOW (T1, T2, T3, T4))

END Example.
TEMPLATESP ((IN Example),

(T1: (VERSION (4),
REQUIRES :(),
MODIFIES :(i),
EFFECTS :(i := 0))),

(T2: (VERSION (2),
INVARIANT :(n > i),
DECREMENT :(n - i),
REQUIRES :(i := 0 & n > 0),
MODIFIES :(cond, c),
EFFECTS :({i :=mn) | (i > n),
TEMP-CONTROL-FLOW((i < n) Fﬁ (t2.1, t2.2, t2.3, T2) | NEXT)))

(t2.1:(VERSION (2),
REQUIRES :(),
MCDIFIES :(cond, c¢),
EFFECTS :())

(t2.2: (VERSION (4),
REQUIRES :(cond > 0),

MODIFIES : (i),
EFFECTS :(cond =1 | (i := i + ¢)}(i := 1 - ¢))))

(£2.3 ...)

(T3 : (VERSION (2),
REQUIRES : (),

MODIFIES :(y).
EFFECTS :{y := x°prod + xb + c)))

(T4: (VERSION (3),
REQUIRES : (),
MODIFIES :(y).
EFFECTS :{(y => 0))))

END Example.
Figure 7. RMTIL specification of the module presented in Figure 6.

An Interconnection Language

MODULESP ((NAME : Example),

ATTRIBUTE :(

FUNCTION : hypothetical,
LANGUAGE : mixed,
ID-VERSION : xxx-12-5),

VER-CONDITIONS: (

1. SYSTEMS SOFTWARE 21
1993; 23:9-26

REQUIRES :(...), /list of imported objects, required resources,
and input arguments/

EFFECTS :{...
arguments/
MODIFIES
module/

CONTROL-FLOW (T1, T2, T3, T4))

END Example.

TEMPLATESP ((IN Example),
(Tl:(xxx-12-4:T1))
(T2: (VERSION (2),

INVARIANT :{(n > i),
DECREMENT :(n - 1),

), /list of export objects and outgoing

:(...)) /lists of all required objects modifyied by the

REQUIRES :{(i := 0 & n > 0),
MODIFIES :(cond, c},
EFFECTS :((i :=mn) | (i > n),

TEMP-CONTROL-FLOW((i < n) |- (t2.1, t2.2, t2.3, T2) | NEXT)))

(t2.1: (VERSION (2),
REQUIRES : (),
MODIFIES :(cond, c),
EFFECTS < ())

(t2.2:(VERSION (4),
REQUIRES :(cond > 0),
MODIFIES :{i),
EFFECTS

(£2.3:(xxx-12-4:t2.3))

(T3: (xxx-12-4:T3))

(T4: (xxx-12-4:T4))

END Example.

:(cond = 1 |- (i

=1+)i =1 -¢))))

Figure 8. RMTIL specification of the module presented in Figure 6. Nonmodified templates are

represented by their Id.

the other hand, if ¢,, and t,, are functionally
identical, by definition, they can be interchanged
without any unexpected results. Therefore, there
must be no change in the modify set. The justifica-
tion for adding Modify to the verification equation is
that Modify could contain a set of modified objects
in a template which may or may not be in the
postcondition set. Ignoring members of this set may
lead to overlooking the possibility of side effects on
the subsequent templates. O

Proposition 2. Two templates t,, and ¢, are
functionally compatible, with possible side effect, if

Pre,,,,, C Pre,,

new

Post

new

D Post, 4

Proof. Since Pre,,, C Pre,,, by definition, pre
will be satisfied whenever pre,,, is satisfied. Also,
since Post,,,, D Post,,, all postrequirements for
post,,, are guaranteed. However, some results may

22 J. SYSTEMS SOFTWARE
1993; 23:9-26

be produced that can affect the succeeding precon-
ditions (side effect). If the behavior of a new tem-
plate is the same as the old one, i.e.,

MOdl:ﬁ’new = MOdifyald

there would be no further side effects; otherwise
additional side effects are possible. O

The process of substitution of template old with a
functionally compatible template, new, is similar to
the process of Add, which is described in the next
subsection.

6.3 Add

To add a template to a module, an automatic verifier
can be used to compare the existing pre- and post-
conditions at the insertion position with the corre-
sponding template conditions. The precondition for
the insertion position could be found as follows.

If a template is being added at position p in the
control flow of a program, then the precondition of
position p, R,, is determined by equation 1 below.
This is analogous to Dijkstra’s discussion of strongest
preconditions [26]. The new template satisfies the
insertion-point precondition if one of the following
conditions exist:

Pre, = Pre,,,

or

Pre » 2 Pre

new

The postcondition Post, of the new template needs

to be examined for possible side effects (the new
templates may do more than the old one) on the
preconditions of the subsequent templates.

R, ={...{{R(t;)) ¥ {QUt YU MO(1)}}
v {Q(1,)U MO(1,)} ... (Q(1,_ YU MO,)} (1)

where R and Q denote pre- and postconditions, MO
stands for the Modify set, f),t,,...,1,_, are the
preceding templates, and the Y operation, called
Precedence-OR, is defined as follows. Let L, R and
S be sets and m be a member which exist in both L
and R denoted by m, and m,, after execution of

S=LY¥R

S would contain m,. For example, if
pre;:{a =10, b:=5, c¢:=12}

and

post;: {a == 20, b =5}

M. K. Zand, K. M. George, M. H. Samadzadeh, and H. Saiedian

then

pre; = pre; Mposti

produces

pre;,:{a =20, b=35, c:=2}.

6.4 The Template-Substitute Algorithm

Figure 9 presents the Template-Substitute algo-
rithm. This algorithm is designed to control the
substitution of a template in a module. It first checks
for name-space consistency between the candidate
template and the module. If inconsistency exists, it
calls the editor facility to remove the inconsistency,
if possible. Once the template has been successfully
checked for type/object consistency, the algorithm
calls an automatic verifier to check for function
compatibility between the present and candidate
templates. Based on the verifier results, the algo-
rithm proceeds by adding the template to the mod-
ule and updating the relevant information. The last
step is to call for compiling the template to generate
the object code of the template.

6.5 Template Substitution when Substitutes are
Not Known

Figure 10 depicts an outline for the Search & Substi-
tute algorithm. This algorithm first calls FindTem-
plate to find one or more templates that satisfy the
given specification based on the attribute list given.
FindTemplate returns templist, which contains the
set of pointers to the location of the template’s code
and its interconnection specification,” and the root
of the VCT tree.

The templates are sorted based on their relevance
to the given attlist. The algorithm selects one tem-
plate at a time and calls the Template-Substitute
algorithm. Based on the result of Template-Sub-
stitute, it either selects another template from the
templist or terminates.

6.6 Substitution of Known Templates

The Substituteall and Link operations defined in
section 5 could be described in terms of the Substi-
tute and Add operations. Substituteall could be writ-
ten as follows:

Algorithm Substituteall (m, set,,,, set,,,)
BEGIN

2 The location of the specification for each template is stored in
the template node in the family tree in VCT of the SCM compo-
nent of ROPCO.

J. SYSTEMS SOFTWARE 23

An Interconnection Language
1993; 23:9-26

Algorithm Template-Substitute (module, templ, presentempl) RETURNS subscond

Edit: PROCEDURE {activates an interactive editor to modify templ
using modules PSBT and PNET, returns conditions of edit in
editcond}

Verify: PROCEDURE {activates an automatic verifier to verify
newtempcond against oldtempcond and returns verification
conditions}

Add~-PNET: PROCEDURE {adds objects in the templ to the PNET)}

Typecheck: PROCEDURE {checks for name-space consistency between the

candidate template and the module, returns the type check
status in typecond}

inconsislist: SET {set of inconsistent objects returned from Edit}
newtempcond: POINTER {to the pre- and post-conditions of the candidate
template}
oldtempcond: POINTER {to the pre- and post-conditions of the present
template)
module: {module id}
BEGIN
REPEAT
typecond := Typecheck(templ, module, presentempl,
inconsislist)
IF typecond = INCONSISTENT
editcond := Edit (module, templ, inconsislist)
E-Flag := ON

END IF

IF {it is not possible to adapt the template}
subscond:= INCONSISTENT
EXIT

END IF '

UNTIL typecond # INCONSISTENT & editcond = SUITABLE

IF E-flag = ON & editcond = SUITABLE
modify newtempcond if necessary
subscond := Verify(newtempcond, oldtempcond)

END IF

IF subscond = COMPATIBLE
Add-PNET (module, module-control-flow, templ)

update PHDB

IF E-flag = ON
Update PSBT
Update ADB
Update newtempcond
compile template and update VCT

END IF

END IF
END {Template-Substitute}

Figure 9. Algorithm Template-Substitute.

WHILE (set,,,} # EMPTY and Link could be written as follows:
t,.q = Next(set,;,)
t,.. = Next(set,,,) Algorithm Link (set_tem, CONTROL-FLOW, m)
Template-Substitute (m,1,,,,, 514) BEGIN

END WHILE WHILE set_tem = EMPTY

END {Substituteall} ¢t == Next(set__tem)

24 1. SYSTEMS SOFTWARE
1993; 23:9-26

Algorithm Search&Substitute()

FindTemplate:
position-template:

M. K. Zand, K. M. George, M. H. Samadzadeh, and H. Saiedian

PROCEDURE {returns the set of templates in templist which satisfy the attlist}
PONITER {to the template to be substituted by the new one}

Next: PROCEDURE {returns the next element in a list; if the List pointer points to the
header of the list, it retrns the first element of the list}

attlist:
templist:

RECORD ({specification of the desired template}
RECORD ({pointers to the location of the template’s code, its inter-connection

specification, and the root of the related VCT tree}

BEGIN

Get(attlist)
FindTemplate(attlist, templist)
current := Next(templist)

DO WHILE current # NULL
templ := templist(current)

IF templ needs modification THEN

editcond := Edit(module, templ, inconsislist)

END IF

subscond := Template-Substitute (module, templ, position-template)

CASE subscode

UNSOLVABLE : display "unsolvable case"

current := Next(templist)

INCOMPATIBLE : current := Next(templist)

COMPATIBLE : current ;= NULL

END CASE

END WHILE
END {Secarch&Substitute}
Figure 10. Algorithm Search & Substitute.

p = Position(t, CONTROL-FLOW)
Add (m, ¢, p)
END WHILE
END {Link)

The Add algorithm is essentially the same as the
Substitute algorithm with two exceptions. First, to
add a template to a module, all names in the tem-
plates that would not cause type inconsistency in the
module name space need to be copied from the
declaration template (template 0) in the source
module into the target module. Second, the verifica-
tion process for addition of a module is different
from that for substitution.

6.7 The Template-Addition Algorithm

The template addition algorithm is basically the
same as the Template-Substitute algorithm with two

differences. First, the third input parameter of the
Add algorithm is the position of the insertion. Sec-
ond, the verifier checks the verification conditions of
the insertion point against the new template. All
other steps are exactly the same as the Template-
Substitute algorithm.

7. SUMMARY

The objective of this article was to present the
design of an interconnection language for the
ROPCO environment to facilitate the selection, cus-
tomization, and interconnection of reusable compo-
nents.

An interconnection language is a machine-pro-
cessable specification language which provides the
means for a system designer to represent the system
in a concise, precise, and verifiable form. Once the
system structure has been designed, it can be coded

An Interconnection Language

in an interconnection language. This code is used to
verify the design completeness and detect inconsis-
tencies before the system is actually linked together.

Automatic processing of such formal specifica-
tions requires system-integrity and intermodule-
compatibility verification. Conventional MILs are not
concerned with the specification information (func-
tion of the system) or the detailed design informa-
tion (how the modules implement their functions);
they are concerned with architectural design infor-
mation (how the modules fit together).

Conventional MIL models were examined, their
strength and weakness were discussed briefly, and a
new type of model for interconnection of modules/
templates was introduced. In the ROPCO environ-
ment, it is not possible to use a conventional MIL.
Rather, a model and language is needed that pro-
vide capabilities to facilitate intraconnecting (i.e.,
substituting a template in a module, assembling a
number of templates within a module, or creating a
module) as well as interconnecting modules. This
new language, which is based on CLU, is called
RMTIL.

The RMTIL module provides four specifications
for each software module which it represents: at-
tribute specification, module structure, module in-
terconnection specification, and template specifi-
cation. Template specification consists of template
pre- and postconditions, other verification condi-
tions, and the structure of the template (template
control flow) if the template is composite.

RMTIL is part of the ROPCO environment and is
specifically designed to use and interoperate with
the other components of ROPCO. RMTIL consoli-
dates other parts of ROPCO and uses the SCM
structures, i.e., VCT, PSBT, PNET, and PHDB. Type
checking for name-space consistency is not one of
the tasks of the automatic verifier in the ROPCO
environment; RMTIL uses PSBT and PNET to per-
form this task.

The ROPCO environment is under implementa-
tion and testing. The VCT, identification mecha-
nism, PNET, PSBT, and tools for reverse engineer-
ing are being implemented in the Department of

Mathematics and Computer Science of the Univer-

sity of Nebraska at Omaha and the Computer Sci-
ence Department of Oklahoma State University [15,
27, M. K. Zand and D. Hiesterkamp, unpublished
data].

ACKNOWLEDGMENTS

We thank the reviewers for their constructive comments on
earlier drafts of this article.

J. SYSTEMS SOFTWARE 25
1993; 23:9-26

REFERENCES

1. R. Prieto-Diaz and J. M. Neighbors, Module Intercon-
nection Languages, J. Syst. Software 6, 307-334 (1987).

2. W. Tichy and M. C. Baker, Smart recompilation, in
Conference Record of the 12th Annual Symposium on
Principles of Programming Languages, AMC, New York,
1985, pp. 236-244.

3. D. E. Perry, Version control in the Inscape environ-
ment, in Proceedings of the 9th International Conference
on Software Engineering, 1987, Monterey, CA, IEEE
Computer Society, pp. 142-149.

4. D. E. Perry, Software interconnection models, in Pro-
ceedings of the 9th International Conference on Sofiware
Engineering, Monterey, CA, IEEE Computer Society,
1987, pp. 61-69.

5. J. A. Goguen, Reusing and Interconnecting Software
Components, [EEE Comp. 19, 16-28 (1986).

6. D. E. Perry, The constructive use of module interface
specifications, in Proceedings of the 3rd International
Workshop on Software Specification and Design, Lon-
don, IEEE Computer Society, 1985, pp. 179-180.

7. D. E. Perry, The Inscape Program Construction and
Evolution Environment, Technical Report, Computer
Technology Research Laboratory, Murray Hill, NJ,
AT & T Bell Labs, 1986.

8. W. F. Tichy, Software Development Control Based on
System Structure Description, Ph.D. Thesis,
Carnegie-Mellon University, Pittsburgh, Pennsylvania,
1980.

9. N. Hebrman, et al., A Compendium of Gandalf Docu-
mentation, Carncgie-Mellon University, Pittsburgh,
Pennsylvania, 1981.

10. W. Tichey, Smart Compilation, ACM Trans. Progr.
Lang. Syst. 8, 273-291 (1986).

11. S.S. Yau and J. I. Tsai, Knowledge Representation of
Software Component Inter-Connection for Large-
Scale Software Modifications, [EEE Trans. Software
Eng. SE-13, 355-361 (1987).

12. D. M. Ritchie, The C Programming Language, Refer-
ence Manual, Murray Hill, NJ, AT & T Bell Labs, 1980.

13. B. W. Lamson and E. E. Schmidt, Organizing Soft-
ware in a Distributed Environment, ACM SIGPLAN
Not. 18 (1983).

14. D. B. Leblang and G. D. Mclean, Computer-Aided
Software Engineering in a Distributed Workstation
Environment, SIGPLAN Not. 19, 104—112 (1984).

15. M. K. Zand, M. H. Samadzadeh, and K. M. George,
ROPCO—An environment for micro-incremental
reuse, in Proceedings of IEEE International Phoenix
Conference on Computers and Communications, Om-
aha, NE, pp. 347-355.

16. W. Teitelman and L. Mainster, The Interlisp Program-
ming Environment, Computer 14, 637654 (1985).

17. G. E. Kaiser and A. N. Habermann, An environment
for system version control, in CompCon ’83, IEEE
Computer Society Press, 1983, pp. 415-420.

26

18.

19.

20.

21.

22,

J. SYSTEMS SOFTWARE
1993; 23:9-26

W. I. Tracz, Software Reuse: Motivations and In-
hibitors, Proceedings of COMPCON87, 1987, Washing-
ton, DC, IEEE Computer Society, pp. 358-368.

C. Withrow, Error Density and Size in Ada Software,
IEEE Software (1992).

M. K. Zand, M. H. Samadzadeh, and H. Saiedian,
Version Management for ROPCO-A Micro Incre-
mental Reuse Environment, Technical Report UNO-
CS8-TR-92-4, Math and Computer Science, University
of Nebraska at Omaha, Omaha, Nebraska, 1992.

M. K. Zand, ROPCO—An Environment for Micro-
Incremental Reuse, Ph.D. Thesis, Computer Science
Dept., Oklahoma State University, Stillwater, Okla-
homa, 1990.

M. K. Zand, M. H. Samadzadeh, and K. M. George,

23.

24.

25.

26.

27.

M. K. Zand, K. M. George, M. H. Samadzadeh, and H. Saiedian

Minimizing ripple recompilation in a persistent soft-
ware environment, in Proceedings of the ACM Com-
puter Science Conference, 1990, pp. 166-172.

B. Liskov and J. Guttag, Abstraction and Specification
in Program Development, The MIT Press, Cambridge,
Massachusetts, 1988.

B. Liskov, et al., Abstraction Mechanisms in CLU,
Commun. ACM 564-574 (1977).

M. S. Moriconi, A Designer / Verifier’s Assistant, IEEE
Trans. Software Eng. 387401 (1979).

E. W. Dijkstra, A4 Discipline of Programming,
Prentice-Hall, Englewood Cliffs, New Jersey, 1976.

L. E. Swanson and M. H. Samadzadeh, A reusable
software catalog interface, in Proceedings of the
SA4C’92, ACM, pp. 1076~1083.

