Volume 5, Number 1 Spring 1993



On the design of intuitive user interfaces

Hossein Saiedian
Scott Ames
University of Nebraska, Omaha

Abstract

The design of user-interfaces is a complicated process be-
cause many factors have to be considered, and many of these
factors are usually difficult to overcome. The most difficult
factors to overcome are those that are directly related to the
users’ behavior. Users differ from one other and come from
different background and experience. To overcome these
factors, interface designers attempt to build interfaces that
are intuitive. Such interfaces are expected to be easily learned
by avariety of users. Inthis paper we discuss important issues
related to the design of intuitive user interfaces.

Introduction

User interface design has become increasingly important as
computer use grows. In fact, it has become a distinct design
activity during the development of many modern applica-
tions. Its goal is to establish the layout and interaction
mechanisms through which a user interacts with the com-
puter. If the interface is easy to use, intuitive and forgiving,
the user will be inclined to make good use of the application.
Since during the human-computer interaction, the visual,
tactile, and auditory senses of humans predominate, the
design of user interface design should encompass both the
study of users (e.g., who they are) as well as technological
issues. According to Fischer (1989), recent developments in
the area of interface design include:

- workstations with bitmapped displays and pointing de-
vices that provide a new technological base on which today’s
applications can be built,’

- innovative applications that have drawn attention to the
computer’s interaction capabilities, and

- the complexity of today’s software that has made better
communication techniques a necessity.

This paper looks at the possibility of designing intuitive user
interfaces. The userinterface canbe defined as everythingthat
the user interacts with when operating the computer. This
includes software, hardware, task procedures, documenta-
tion, and training materials. We must admit that this

is a very broad definition. A narrower definition would
emphasize the mechanisms through which a dialogue be-
tween software and humans is realized. This paper thus
focuses on software related issues. Issues of good and bad
interface design techniques are discussed. Some existing
interfaces are examined for those properties that help to
make an interface intuitive and those properties that make an
interface not so intuitive. In addition, we discuss the impor-
tance of maintaining consistency in the human-computer
interface and review the interface design process and the
importance of prototyping. Usability factors are discussed at
the end.

Design Factors

There are many factors that limit how intuitive a user
interface can be. The most important and difficult factor to
overcome is that people are different. What may be intuitive
for one person may be completely foreign to another.? In
some cases, previous computer experience will not playa role
in how difficult the system is to learn while in other cases the
amount of previous computer experience that a person has
does affect whether or not that person will find a user
interface intuitive. Someone with years of computer experi-
ence may find almost all interfaces intuitive. Someone new
to computers may find almost all interfaces foreign. For
these reasons, it is very difficult if not impossible to design
a user interface that will be intuitive to everyone. Thus
human skills, personality, cognitive style and background
may all play an important role. For example, a user’s skill
level will have a significant impact on the way she/he
responds to tasks that are generated because of interaction
with the computer, while a user’s personality (e.g., risk
taking vs. risk avoidance) or cognitive style (e.g., reflective
vs. impulsive) may demand a different accommodation.

Even though it might be impossible to design a user interface
that is intuitive to everyone, there are still some things that
the designer can do to help make a user interface intuitive for
some users. There are also some things that designers can do
to make user interfaces nonintuitive for almost everyone.
Rosson, Maass, and Kellogg (1988) have given certain
principles of user interface design based on questions given
to designers. These principles are shown in Table 1.

IBS Computing Quarterly, Spring 1993

17




Table 1: Principles of Interface Design

o Input/Output

— minimize input movements
— maximize input channels
— visually attractive

— careful use of language

— screen and key consistency

highly visual interfaces
e Dialog

— process continuity

— modeless or mode feedback
— use of menus, prompts

— context-dependent messages
— user control

— natural response time

e Conceptual Model

use of analogy, metaphor
match user expectations
start with user model

make examples concrete
minimize semantic primitives

novice-expert path

e General

easy-to-use
personalize
make it simple
follow standards
user friendly

understand user needs

e Physical

— screens look the same

— function keys to the same thing
¢ Dialog

— coherent dialog style, e.g. windows, menus
— same procedure works the same way

— same command has the same meaning
e Conceptual Model

— simulate the world
— use the same function across applications

— use generic actions

- Table 2: Characteristics of Consistent User Interface

18



Conceptual Models and the Role of Metaphors

Of the principles listed in Table 1, those listed under the
heading Conceptual Model are the most important for
creating intuitive user interfaces. Conceptual modeling in-
cludes establishing a user model. The user model must
include those profiles of the intended users that will affect the
interface design as well as user’s perception of the system,
i.e., the image of the system that the user carries in his or her
mind. When the users’ perception and the actual user
interface coincide, the users will feel comfortable with the
software and will use it effectively and efficiently. Thus the
objective of conceptual modeling is to create a user model of
the interface from the users’ perception.

One popular way to establish an effective conceptual model
is to use metaphors. A metaphor is a way of representing
objects in a computer system that users can equate with
concepts with which they are already familiar with. The idea
behind using a metaphor is that if the computer system is
similar to the original system on which the metaphor is
based, it will be easier for users to learn how to use the
computer system. In fact the power of metaphors has been
explored in other areas of information system. For example,
Mason (1991) examines the role of metaphors in strategic
information systems.

We have observed that one of the best examples of a metaphor
is the desktop metaphor used by many computers such as the
Macintosh. The desktop metaphor is a paper-based model of
apersons desk. Since most people have had some experience
with handling, writing, and manipulating paper-based infor-
mation, this model seems appropriate for a user interface.
Furthermore, we have noticed that one problem with this is
that if the paperless office ever comes, the desktop metaphor
will be obsolete. We have discovered that this is not just a
potential problem for the desktop metaphor. All metaphors
are frozen in time and could possibly become obsolete. We
believe this can be attributed to the fact that metaphors are
built to fit one situation. When that situation changes, the
metaphor needs to be replaced or modified to fit the new
situation.

Problems also arise when trying to pick a metaphor for a user
interface. We have observed that the more complex the
computer system, the harder it will be to find a good
metaphor. To be intuitive, the metaphor needs to be simple
enough so that even beginners can understand and use the
system. If the metaphor is complex and needs to be explained
tobeused, itis notintuitive. A metaphor based interface may
not even be appropriate for the application, so why spend
valuable design time trying to find one.

Another problem with using metaphors arises when the
metaphor is extended to include functionality not present in
the original system upon which the metaphor wasbased. The
perfect example of this is the trash can icon used in the

Macintosh interface. To eject a diskette, the user can throw
its icon in the trash. Rather than deleting the contents of the
disk as the trash can icon implies, the disk is ejected. This is
completely counter-intuitive. We have seenlooks of terror on
people’s faces when we have done this to their diskette..

Consistency in Interface

Another feature of design that helps to make a user interface
intuitive is consistency. To design a consistent interface,
consistency must first be defined. Grudin (1989) notes that
in a 2-day workshop in 1988, 15 experts could not define
consistency. Even if a definition for consistency cannot be
found, most people have an idea of what it means and can tell
the difference between a consistent interface and one that is
not consistent. Consistency implies that the interface com-
mands, menus, and windows should have similar formats. If
an interface is command-driven, then all parameters to
commands should be passed in a similar way, and the
punctuation should be similar. For example, if a command
accepts both flags and filenames (as in UNIX), then the way
flags and filenames are distinguished should be similar in all
commands. Furthermore, if a character such as k is used as
keep flag in one command, it should not be used as ki// flag
in another command. The same concept can be applied to
menu-driven interfaces. If the Escape key is used for exiting
from one menu, it should be used for the same purpose in all
other menus. The objectives in maintaining a consistent
interface is that when users learn about one command or
menu of the interface, that knowledge will be applicable to
all other commands and menus in the system. Rosson,
Maass, and Kellogg (1988) provide a number of character-
istics for the design of consistent interfaces. These character-
istics are shown in Table 2.

Grudin (1989) identifies three types of consistency. Internal
consistency is when the interface to one part of the software
system is consistent with the interfaces of all the other parts
of the software system. This has to do with such things as
physical layout, command naming, and selection techniques.
External consistency to other applications is when the inter-
face of one application is consistent with the interfaces to
other applications on the same computer system. This is very
important if an interface is to be intuitive. Since most people
use only one computer system, it is easier to learn a new
application if the new application is consistent with other
applications that the person already knows how to use.
External consistency to the real world is when the metaphor
used by the system is consistent with features found in the real
world. This is also important if the user interface is to be
intuitive.

Gould, Boies, and Lewis (1991) suggest that one way in
which designers can attempt to create consistent interfaces
is by creating interface design standards. Standards help to

IBS Computing Quarterly, Spring 1993

e




separate the style of the application from the content of the
application. According to Potosnak (1988), the problem with
standards is that they can only define a very low level of
consistency describing details of the user interface. This low
level of consistency does not make the system any easier to
use if the conceptual model of the task is wrong. For example,
ifit takes 17 pop-up menus to get to the most frequently used
function, consistent design of the pop-up menus doesn’t
make the system easy to use. If the system is not easy to use,
it is impossible for it to be intuitive. Furthermore, while it is
easy to set standards on paper, it is usually hard to meet
standards in design.

The User-Interface Design Process

Generally speaking, the software development life cycle
consists of four major phases. These phases include require-
ments analysis, software design, implementation, followed
by festing. During the requirements analysis, the software
scope is established, its requirements are identified, models
of information flow, and operational behavior are created.
During the software design, the designers produce a more
detailed representation of the software to be built later.
Implementation involves translating the design representa-
tions into code to be understood by the computer while testing
is the ultimate review and validation of the software specifi-
cations, design, and coding.

User interface design, as its title implies, is a design activity
and is dealt with during the design phase. However, since a
computer system always has a human element and since it is
the interface that defines the human computer interaction,’
it is important to analyze and specify the expected human-
computer interaction early during the analysis. That is, the
expected functions of the software under development have
tobe examined in the context of required interaction with the
human and the precise meaning of each function is to be
defined. Furthermore, other elements such as hardware,
database, operating systems, etc. that are combined with the
software to form the user’s environment must be studied to
plan the most effective user interface design.

The design phase itself has traditionally been divided into
preliminary and detailed design sub-phases. However, be-
cause of the increasing importance of human factors and
human-computer interactions, the design phase described by
most researchers includes a distinct set of activities known as
user interface design during which important human factors
are taken into consideration to design the most effective
interface.

The human-computer interaction part of design is variable
and complex. Traditional tools, methods, and techniques do
not work as well. New technology adds new input devices,
styles, and techniques, but programming languages do not
change to include these new technologies. Because of this,

new design methods that include human factor issues must
be adopted. While the problem with this is that it adds to the
design cost, the benefits are that it enhances the product and
helps to ensure its acceptance.

Gould, Boies, and Clayton (1991) offer four design activities
that will help designers create user interfaces. First, early
focus on the users is essential. Designers should have direct
contact with the users. This helps to ensure that the user
interface will be acceptable to the users. Second, the design
of the user interface must be integrated with the design of the
rest of the system. All aspects of the design should take place
in parallel. Third, early and continual user testing should
take place. This provides feedback to the designers about the
interface. Fourth, the design process should be iterative. The
designers should be able to goback to previous design phases
and modify the system based on the user’s feedback.

Gould, Boies, and Clayton further contend that following
these steps will lead to systems that are easy to learn, contain
the right functions, and are well liked. This goes a long way
in helping to make a user interface intuitive. By continually
getting feedback from the users of the system, designers can
redo the user interface until the users of the system find it
intuitive. This method does have problems because iterative
design is risky. Designers generally don’t want to have to go
back and redesign parts of the system. Another problem is
that interface design has not benefitted as much from
modularization and code reuse as other aspects of design
have. In typical software systems, one half of any new code
that is added to a new version of the system is related to the
user interface.

The need for continual testing has led researchers to consider
using prototyping techniques for designing the user inter-
face. Prototyping techniques allow an iterative user-inter-
face design as follows:

- Create a user-interface design

+ Implement using prototyping tools

+ Allow users to evaluate the design

* Modify the design based on the users comments
until no more changes are requested.

To accommodate the above, a varicty of tools known as user-
interface development system (UIDS) have been developed.
These tools provide facilities for creating menus, windows,
management of input devices, scrolling mechanisms, and so
forth. Some tools (such as the X-window toolkit) even allow
the users to customize their interface (e.g., enlarging or
reducing the size of windows, changing the color of back- or
foreground, choosing font style, etc.). The prototyping cycle
takes the form shown in Figure 1. The first-level prototype
is created and shown to the users; the users evaluate the
efficacy of the interface and provide comments to the de-
signer. Interface design modifications are made to accom-
modate uset’s requests and the next-level prototype is cre-

IBS Computing Quarterly, Spring 1993

20



UIDS Prototype Tools

User Designer

Last
Prototype

Figure 1: User-Interface Prototype Cycle

Figure 2: Typical Features of UIDE

Table 3: Intuitive Interface Design Features

¢ simple and natural dialogue

e minimize the user’s memory load
e provide feedback

e provide shortcuts

e error prevention

o speak the user’s language

e be consistent

o provide clearly marked exits
o provide good error messages

21




ated. The cycle continues until no further changes are
requested by the users.

User Interface Management Systems

Fischer (1989) suggests that the key to helping designers
build better user interfaces is through the use of interface
design tools that provide exploratory programming environ-
ments and rapid prototyping methods. Accordingto Sutcliffe
and Wang (1991), the ideal situation would be to have
intelligent CASE toolsto aid the designer. Gould, Boies, and
Lewis (1991) discuss one type of design tool called a User
Interface Management System (UIMS). A UIMS helps a
software designer design the user interface for the software.
The advantage of using a UIMS is that it becomes possible
to separate the user interface code from the rest of the code.
This reduces the risks involved with making changes to the
interface. A UIMS also promotes the reuse of code. One
problem is that most UIMS work is still in the research stage.
Another problem isthat no oneis sure whetheror nota UIMS
can produce today’s advanced user interfaces. Until it be-
comes clear whether or not a UIMS can be used to produce
today’s advanced user interfaces, a UIMS is not going to be
sufficient to produce an intuitive user interface.

An advanced UIMS reported by Foley, Kim, and Kovacevic
(1989)is called User Interface Design Environment (UIDE).
Tt uses a knowledge-based representation of the interface’s
conceptual designbasedonan object oriented data model and
an operation oriented control model. UIDE allows a class
hierarchy of objects with single inheritance. Objects can
have properties and actions that can be performed on the
objects. Actions can have information associated with them
that are required by the action. Actions can also have
preconditions and postconditions.

This particular system works at a higher level of abstraction
than other UIMS. The focus is moved away from things such
as command names, screen design, and menu organization.
This allows the designer to focus more on the conceptual
model of the interface. A good conceptual model is essential
if a user interface is to be intuitive.

Figure 2 illustrates some of the features of UIDE. Once
definitions such as these are created, a series of transforma-
tions are applied to create the user interface.

Usability

For a user interface to be intuitive, it mustbe usable or easy
to use. Molich and Nielson (1990) offer usability principles
that are shown in Table 3.

Two of these features, feedback and good error messages, are
essential if a user interface is to be intuitive. Although one
should not be needed if the user interface is completely

intuitive, a good help system isalso required to makea system
usable.

Sutcliffe and Wang (1991) suggest that the system should
provide user feedback messages at various points during its
operation. Feedback should be given after input is accepted
to acknowledge the input. Guidance should be given before
input is expected explaining what input is required. Error
messages should be given when the user makes a mistake.
Status information should be given at the start of task
sequences and at subtask boundaries to inform the user about
what is happening.

Good error messages are very important if the interface is to
be intuitive. According to Nielson (1990), error messages
should restate the user’s input as it was interpreted by the
system. This allows the user to figure out what went wrong.
Nielson also observes that error messages should be specific
as to what is wrong. An example of an error message that
violates this property comes from the Macintosh computer
system. To execute an application, the user is allowed to
“double-click” on the icon of a document that was created
by that particular application. The application is supposed to
execute and automatically load the document that was
selected. This usually works, but sometimes there is an error
message that says the application is busy or missing. The
problem with this is that the solution to the problem depends
on whether or not the application is busy or if the application
is missing. If the application is busy, it is not a very serious
error. However, if the application is missing, the error is
more serious. The error message should specify whether or
not the application isbusy or missing so that theuser can take
the appropriate actions. If the user does not know what action
to take, then the user interface is not intuitive.

A good help system is also required if a computer system is
tobe intuitive. Carroll and Aaronson (1988) suggest thatone
way in which this can be done is to provide contextual help.
This is also referred to as context dependent or context
sensitive help. This type of help system provides help to the
user based on what the user is currently doing. For example,
if the system is asking the user for the page length, the user
should be able to get help on what the computer isasking for
at that particular moment.

Prager, Lamberti, and Gardner (1990) describe a system
called Real-time Explanation and Suggesti ON (REASON).
REASON is an intelligent user-assistant prototype for a
windowed, multitasking environment.* It uses an inference
engine to solve problems that arise from the user’s activity.
If the user makes a mistake, REASON can offer dynamically
generated suggestions. The user also has the ability to query
REASON in a natural language. Systems such as this can be
very helpful for the beginning user who is trying to learn a
new system. However, as an experiment by Carroll and
Aaronson (1988) shows, it can backfire.

IBS Computing Quarterly, Spring 1 993

22




Carroll and Aaronson carried out an experiment that simu-
lated an intelligent help system. Users thought that they were
using a system with intelligent help when it was really a
human that was generating the suggestions and error mes-
sages that the users were seeing. The messages were of two
types: how-it-works and how-to-do-it. How-it-works mes-
sages described goal based objectives without mentioning
specific procedures. How-to-do-it messages described the
actual procedures that should be followed by users to do
something. The experiment revealed several interesting
things. First, people are creative at generating errors and
misconceptions. This makes it very difficult for a computer
program to intelligently generate error messages. Second,
the line between being annoying and actually helping the
users is very fine. After the experiment, many users said that
many of the messages would appear at inappropriate times.
This also makes it difficult for a computer program to
intelligently generate error messages. It remains to be seen
whether or not an intelligent user assistant can make a user
interface intuitive.

Human Usability Factors

There are many human factors that determine whether or not
a particular interface will be considered usable by its users.
As stated earlier, skill level of the users may play an
important part in the user-interface. In fact, usability de-
pends heavily on the skill level of the users. Creating an
interface that isusable by all users is very difficult. Kantorowitz
and Sudarsky (1989) claim that proficient users will gener-
ally find a command line interface more usable than a menu
driven or icon-based interface. On the other hand, beginning
users may find a menu driven or icon-based interface easier
to use.

To solve the problem of different user skill levels, many
systems provide both command line interfaces and menu
driven interfaces. The problem with these systems is that
users must complete a task and then switch to a different
interface style. Kantorowitz and Sudarsky (1989) describe
anAdaptable User Interface (AUI). Itis capable of switching
dialoguc modes in the middle of a command. For example,
a user could start in a command line interface mode. Then,
if the user forgot some of the parameters, they could switch
toa menu driven mode where they could select the rest of the
parameters from a menu. This allows abeginning user to use
a completely menu driven user interface. A more experi-
enced user could use the command line user interface
combined with the menu interface until they learned all of the
parameters for the commands that they regularly use. An
experienced user could use only the command line user
interface without being bothered by the menus. A user
interface such as this is quite a bit more intuitive than a
system with only one fixed dialogue mode.

Different people like to operate in different ways. To create

usable interfaces, user interface designers need to consider
this when designing interfaces. Habermann (1991) notes
that many current user interfaces use the concepts of win-
dows, menus, buttons, and mice. He claims that many people
do not think in these terms. For example, architects work
with sketch pads, not windows. Architects also do not select
a pencil from a menu, they just pick it up and use it. The
problem is that the concepts employed by architects is
different from the concepts provided by today’s interfaces.
Eventually, users will be able to work with an interface that
is designed on their own terms. Virtual reality systems will
makeit possible for anarchitect to pick up a virtual pencil and
draw. The architect will then be able to walk through their
creation. Because of their ability to let the user work within
a customized environment designed in terms of the user,
virtual reality systems are one of the most promising new
technologies that will help to make user interfaces intuitive.

To summarize, when planning an interface that would adapt
to the capabilitics and limitations of people, the designers
must consider the sociological context in which the software
will be used (e.g., the users skills and background) as well as
the psychological aspects (e.g., brightness, loudness) and
physical variables (e.g., intensity). The types of interaction
dialogue that would best suit the users need must be consid-
ered. The varieties include form-filling, function-key based,
menu-driven, natural language, command language, or
graphical interaction. Of importance is the Ievel of help that
the interface provides, such as instructive input prompts,
informative error messages, and useful status information
and feedback. An excellent discussion of related topics
regarding human-computer interaction and the design of
computer information system is given in (Garlach & Kuo
1991).

Designing a Usable Interface

With so many factors involved in whether or not a user
interface is usable, designers need to take many things into
account when designing user interfaces. Habermann (1991)
identifies three approaches for making user interfaces easier
to use. First, the designer can analyze current interfaces to
find places for improvement. Second, the designer can create
new interaction techniques using existing technology. Third,
the designer can create new technology for interaction. This
last approach is where things such as virtual reality and
multimedia fit in. Fischer (1989) offers the following points
that will help designers create usable user interfaces:

- take advantage of technology

- use user interface construction kits

- provide exploratory environments for users
- use prototypes for testing by users

- promote natural communication

- help the user make intelligent choices

IBS Computing Quarterly, Spring 1993

23




A question that arises during the design of a user interface is
what type of interface should be designed. Picking an
appropriate interface hasa lot to do with whether or nota user
finds an interface easy to use and, therefore, more intuitive.
Many people feel that an icon-based interface such as the
interface used by the Macintosh is very easy touse. However,
according to Potosnak (1989), research shows that the
interface style doesn’t determine ease of use. The way in
which the interface is designed is more important in deter-
mining ease of use. Potosnak also describes an experiment
performed by John Whiteside and others at Digital Equip-
ment Corporation with seven different systems. Two were
icon-based, one was menu driven, and four were command
line driven. 76 users participated in the experiment. The
users were divided into three different types. The first type
contained new users with very little computer experience.
The second type contained transfer users. Transfer users are
defined as people that use computers every day, but had never
used any of the seven systems before. The third type con-
tained system users. System users are defined as people that
use computers every day, and had used many of the seven
systems before. The experiment showed that new users
performed better on the command and menu driven inter-
faces than on the icon-based interface. Transfer users also
performed better on the command and menu driven inter-
faces. System users performed well on all three types of
interfaces.

One technique to help insure that an interface is usable is for
designers to perform a usability walkthrough. A usability
walkthrough is a systematic review of a user interface design
on paper. Three types of people do the walkthrough: repre-
sentatives for the expected users, the product developers, and
human factor professionals. These people are given a task to
perform and hard copies of screens. They are then asked to
describe how they would perform the task. The main advan-
tage of doing a usability walkthrough is that the data
collected canbe used during the design of the interface. Also,
ifthe users don’t think that the interface is very intuitive, the
entire interface can be thrown out and a new one designed.
This is possible because at the point that the usability
walkthrough is done, little money has been spend on the
design of the interface. A potential problem is that not
everything can be simulated on paper.

Conclusion

User interface design is a complicated process. There are
many factors that the designer needs to consider when
creating user interfaces. Many of these factors are difficult to
overcome. The most difficult factors to overcome are those
that are human related. People will always be different from
one another. They will always have different backgrounds
and experiences. Designing interfaces that take into account
even a small number of the possible variables dealing with
differences in people adds great complexity to the design

process. For this reason alone, it is very difficult to create an
interface that will be intuitive for every user.

Metaphors and consistency are two more important factors
in user interface design. These two factors can help a user
interface be intuitive. However, if done incorrectly these two
factors can make an interface nonintuitive. Unfortunately, it
is very easy to do these incorrectly.

A final very important factor is usability. If the user interface
isnot usable, it will not be intuitive. Thereare so many factors
that determine whether or not a user interface is usable that
it is impossible for a designer to consider all of them.
Unfortunately, if an interface is to be intuitive, all usability
factors should be considered.

Taken as a whole, all of these factors make it is very difficult,
if not impossible, using current techniques and technology,
to create a user interface that is intuitive. As newer, more
sophisticated software engineering techniques and tools
become available and as new technologies such as virtual
reality systemsand multimediabecome available, future user
interfaces may be able to advertise that they are truly
intuitive.

References

[1]Carroll, J. and Aaronson, A. “Learning by Doing with
Simulated Intelligent Help” Communications of the ACM,
September 1988.

[2]Fischer, G. “Human-Computer Interaction Software;
Lessons Learned, Challenges Ahead” IEFE Software, Janu-
ary 1989.

[3]Foley, J., Kim, C., Kovacevic, S. “Defining Interfaces at
aHigh Level of Abstraction” IEEE Sofiware, January 1989.

[4]Garlach, J and Kuo, F. “Understanding Human-Com-
puter Interactions for Information System Design,” MIS
Quarterly, 15:4, December 1991.

[5]Gould, John D., Boies, Stephen J., and Lewis, Clayton
“Making Usable, Useful, Productivity Enhancing Computer
Applications” Communications of the ACM, January 1991.

[6]Grudin, J. “The Case Against User Interface Consis-
tency” Communications of the ACM, October 1989,

[7]Habermann, F. “Giving Real Meaning to ‘easy-to-use’
Interfaces” IEEE Software, July 1991.

[8]Kantorowitz, E. and Sudarsky, O. “The Adaptable User
Interface” Communications of the ACM, November 1989,

[9]Lamberti, D. and Wallace, D. “Intelligent Interface De-

IBS Computing Quarterly, Spring 1993 24




sign,” MIS Quarterly, 14:3, September 1990.

[10]Mason, R. “The Role of Metaphors in Strategic Infor-
mation Systems,” Journal of Management Information
Systems, 8:2, Fall 1991.

[11]Molich, R. and Nielson, J. “Improving a Human-
Computer Dialogue” Communications of the ACM, March
1990.

[12]Nielson, J. “Traditional Dialog Design Applied to
Modem User Interfaces” Communications of the ACM,
October 1990.

[13]Potosnak, K. “Do Icons Make User Interfaces Easier to
Use?” 1EEE Software, May 1989.

[14]Potosnak, K. “What’s Wrong with Standard User
Interfaces?” IEEFE Software, September 1988.

[15]Prager, J., Lamberti, D., and Gardner, D.L. “REASON:
AnIntelligent User Assistant for Interactive Environments”
1BM Systems Journal, 29:1, 1990.

[16]Rosson, M., Maass, S., and Kellogg, W. A. “The
Designer as User: Building Requirements for Design Tools
From Design Practice” Communications of the ACM,
November 1988.

[17]Sutcliffe, A. G. and Wang, I. “Integrating Human-

Computer Interaction with Jackson System Development”
The Computer Journal, April 1991.

IBS Computing Quarterly, Spring 1993

25




