CONGRESSUS

NUMERANTIUM

VOLUME 81

DECEMBER, 1991

WINNIPEG, CANADA

A Persistent Quadtree to Store Graphic Images
M. K. Zand, H. Saiedian, and 1. Farhat

Department of Mathematics and Computer Science
University of Nebraska at Omaha
Omalha, Nebraska 68182-0243

email:zand@unocss.unomaha.edu

May 1, 1991

Abstract

This paper introduce the idea of persistent quadtree. Persistent quadtrees could
be used to store those images in which the sum of differences of points between two
consecutive images is not more than a fraction of all points. Three data structures are
examined for implementation of persistent quadtress. Comparative analysis of space
requirement and time performance of these structures is provided.

1 Introduction

Quadtrees are hierarchal structures designed to store two dimensional graphic images
[3, 6, and 8]. An ephemeral quadtree represents one frame (instance) of a graphic im-
age at a time and each new frame of object is stored separately. Suppose therc are a
sequence of k frames, such that the sum of differences of points (pixels) between ad-
jacent frames is not more than a fraction of all points in a [rame of the object. We
propose a modified quadtree to efficiently store these frames and to maintain direct
access to frames for the [ollowing operations: Retrieve frame f,, store new frame f,,
or delete frame f,. A quadtree structure in which could efficiently store and support
such operations is called Persistent Quadtree (PQ-tree). There are two major ways to
make a hierarchal structure like quadtree persistent: node copy (1] and path copy [5
and 7). We have extended the idea of persistent B-tree [9] to quadtrees. To store frame
i in this approach only differences between frames i and i — 1 (if frarne 7 — 1 exists and
modification on i— I is nol substautial) and side ellects of those modifications are stored.

Our proposed approach doesn’t need an ad hoc structure or methods to keep the
log of modilications. Each [rame f, is accessible individually and there is no need to
access previous frames to construct frame f,,. All operations on an ephemeral quadtree
are supported in PQ-tree.

2 Quadtree Structure

There are two major data [ormats to represent graphic images. Raster Formal ficst oue,
nmodels images as a collection of square cells of uniform size called puzel. The second
format, Veclor Formal, models images as ideal geometric spaces such as points, lines.
segments, polygons, etc [4].

The term quadiree is used to describe a class of hierarchical structures whose com-

mon property is that they are based on the principle of recursive decomposition of space.
Quadtrees are used to represent point data, regions, curves, surfaces, and volumes. In

CONGRESSUS NUMERANTIUM 81(1991), pp.173-182

this paper we focus on quadtree represcntation of graphic images utilizing raster for-
mat. This representation is based on the successive subdivision of the image array into
four equal-sized quadrants. If a quadrant is not covered by a unique element (such as
color or point) it is further partitioned into four equal-sized quadrants. The subdivision
applies recursively until all regions are covered by a uniform element. These regions
are either numbered as 0, 1, 2, and 3, or labeled as NorthWest (NW), NorthEast (NE),
SouthWest (SW), and SouthEast (SE) [2].

Figure [illustrates a quadtree representing a black and white graphic image shown
in the same figure. There are three types of nodes in the figure. Gray nodes are nonleaf
node and represent a partition in the region. There are two types of leaf nodes: black
and white. Black nodes represent an entirely black region and white nodes corresponed
to an entirely white (or background) region [3].

There are three main approaches to implementing a quadtree. The following section
briefly describes these data structures.

2.1 Quadtree implementation

The first method is encoding the quadtree as tree structure that uses pointers. In this
approach each internal node has four pointers for four subdivisions. Also, a bit is re-
quired to indicate whether the node is internal or external. This approach is considered
to be not space efficient because of the amount of space used for pointer fields.

The second approach is storing the reorder traverse of the tree. For example the
image shown in Figure 3 is represented by GWGWWBBGWBWBB. Although this ap-
proach is space efficient, makes it causes difficult to efficiently implement some of the
operations on graph.

The third approach utilizes locational codes to store external nodes. Each region is
represented by a pair of numbers. The first number is called the locational code and
the second is the level of the tree at which the node is located. For example (03,2)
represents region NW SE and level 2.

3 Bintree Structure

This approach was originally proposed to reduce the number of external nodes to rep-
resent a region of bintree. In this approach each region is partitioned into two regions.
At cach level of tree a region splits against one plain. For example at the first, Jevel a
region splits into two regions against the z plane and at the second level new regions
split against the y plane into four regions and so on. each tegion is checked to see if it
is covered by unique elements before splits happen. The process of check and split is
repeated until all regions of image are represented [4].

To represent a region two external nodes and one internal nodes could be enough in
the best case. This is a 50 percent reduction compared Lo four external and one internal
nodes required by quadtree representation. However, in the worst case bintree needs
three internal nodes and four external nodes while quadtree needs one internal node
and four external nodes. Average case analysis is more difficult than best and worst
case analysis. In average case a pointer-based implementation of bintree may or may
not be more compact than quadtree. An analysis of the worst case situation is provided
in a later section of this paper.

174

4 Persistent Hierarchical Structures

A typical data structure supports two types of operations: queries and updates. When
a data structure is updated, the state of the structure is changed and the previous
state of the structure is not recoverable. Sometimes, however, it is useful to retain the
past states ol a data structure. Ordinary data structures are called ephemeral while a
data structure in which past states are accessible is called persistent. Persistent data
structures are useful in the implementation of very high level programming languages
[5], in text editing where it is necessary to retain past versions of the text [5] and in
computational geometry [7].

To be more precise we provide [ollowing definition:

Suppose there is a sequence of k lists, such that the sum of diffcrences of items
between adjacent lists is not more than a fraction of all items in the lists. This set of
lists is called persistent.

We are interested in the following operations on the lists:

o retrieve at Lime t to Lime (L (I <= (t), ilem 7 or items #; for all j, where n > j > 1
inclusively. (n is all items in those lists)

e Insert at time /.
e Delete at time (.

There are two major approaches to make a tree structure persistent. ‘I'he first, idea
which is to copy only the nodes in which changes are made. Any node which contains
a pointer to a node that is copied must itself be copied. This means copying a node
causes a ripple of copying all the way up to the root, and this is called the path copy
method.

In the second approach, node copying, each node in the tree has p auxiliary pointers
in addition to its original set of pointers. For cach update the key information and last
pointers of the node are copied into a new node. Also a pointer in the parent pointer
list is set Lo point to the new node. If all pointers in a parent node are used, recursievly
access the parent node until a node with an unused pointer or the root is reached. The
auxiliary pointers in the node require a time stamp to indicate the ‘time’ at. which they
are set. Also a rool array is required Lo provide access to the root of the appropriate
version of the tree. More details on these two approaches can be found in [1, 7, and 9].

The Path copying method is versatile in the application it supports, i.e. it can up-
date any version of the tree, provided that an update is assumed to create an entirely
new version. But the space requirement for path copying is the major draw back of this
approach. For example, in a B-trec of L levels, for each update L nodes must be copied.
The larger size of persistent B-tree (PB-tree), stored in secondary memory, increases
access Lime and the paging requirement.

For the node copying method (NCM) relative to the path copying method (PCM)
the number of node copy operations is less for NCM, but the size of node for NCM
is greater than the node size for PCM. However, for PCM there is a side effect which
is defined as: the increased probability of performing node copy on cach of the nodes
on the path from parent of the copied node to the root node as a result of filling the
parent’s pointers. This side eflect is equal to:

e= (1= (1/B)")/(k 1)

where k is nunber of pointers per field and £ is level of the copied node. I estimating
number of nodes in an NCM persistent tree this side effect should be considered.

175

5 Persistent Quadtrees

An ephemeral quadtree represents one frame/instance of a graphic image al a time and
cach new frame of object is stored separately. Suppose there is a sequence of k frames,
such that the sum of differences of points (pixels) between adjacent frames is not. more
than a fraction of all points in a frame of the object. We may wish to maintain the
following operations on the frames:

Retrieve frame(s) fi (or f; to Ji y where i < k < j),
store a new frame f,
modify frame f;.

A quadtree structure in which could support such operations is called persistent
Quad-tree (PQ-tree).

Both linear and hierarchical encoding of quadtrees could be used to implement PQ-
tree. To make the linear encoding of quadtree persistent. the della approach is used. In
this approach each frame is assigned a time stamp. All external nodes of the first frame
(which are represented and stored by locational code) are stored as a whole. To store
the next frame, only differences between the first frame and the second framne are stored
and time stamped. Similarly, to store frame Ji only the differences belween frames fi
and fi_y, il fi_; exist are stored. The list of all differences between two consecutive
frames is called delta. In this method only the first frame is accessible individually. To
construct frame f;, the first frame, Jo must be accessed, and all modifications according
Lo sequence of deltas between Jo and f; should be incorporated. I'o retain the corrected
frames (or previous frames) backward correction is possible. Ior example, to go back
from frame f; to frame f; all deltas between theses two frames need to be lucorporaled
into frame f; to retain frame f;. Figure 2 illustrates the sequence of delta representing
modification on the first frame shown in Figure 3. ™ <” symbol denotes insertion of a
black region, and ” > ” denotes removal of a black region.

5.1 Hierarchical Presentation of PQ-trees

To provide direct access to each frame of quadtree we propose hierarchical PQ-tree struc-
ture. In this section both bintree and quadtiree representations of graphic images are
examined for iniplementation of hierarchical persistent structure. We show thaf space
and time performance of persistent, quadtree structures is better than persistent bintree.

To make these structures persistent we propose the use of more than one pointer for
each region field and a time stamp for each of those pointers. Structure of an external
node of a PQ-tree is shown as follows:

E-node
region-field[4]
pointer(k]
timestamp[k)
colorbit[k]

For simplicity this structure assunies black and white graphs. Bintree represenlation
has the same structure but has only two region-fields.

The colorbit field is used to indicate the color of region. If the pointer field is set

the color field is not used. Adding this field to the quadtree or the biutree structure
eliminates the nced for external nodes to represent black and white graphic images.

176

Figure 1. Pointer encoding of Quadtree of image.

Figure

0011, 0110, 1100

< 1110
<1010, <1011

>0011, >0110, <0000, <0011

(a) Persistent bintree representing the
first four frames shown in Figure 3.
(b) Sequence of delt for same frames.

177

Since the number of external nodes is three times more than the number of internal
nodes, this results in a significant space saving. We also use the node copying approach
to make a quadtree persistent to reduce the number of internal nodes in.

5.2 Updating PQ-trees

Using the modified structure of quadtiree and bintree nodes, to store frame f; only
differences between frames f;_; (il f;—, exists and modifications on f;_; are not sub-
stantial) and side effects of those modifications are stored. Each frame f; is accessible
individually, there is no need to access previous frames to construct frame f;. Ad hoc
structure is not needed to keep the log of modifications. To retain the corrected frames
or go back to one of the previous frames the root of the tree at search time is accessed
(using the root header). And the tree is traversed following those pointers with the
largest. time stamp equal to or smaller than frame time stamp.

Modification of a region is actually insertion or deletion of one or more nodes. Dele-
tion of node(s) results in creation of a new version of tree. Deletion is preformed by
setting a colorbit to white, in related parent nodes, and stamping it to the deletion
time. Thus, no node is deleted and all "deleted” nodes (regions) are preserved. Inser-
tion happens either on the last frame, called present time, or one of the previous frames
called past frames. To insert in one of the past frames, f;, the root of the tree related
to fi is accessed and a copy of f — i is created. This new copy is stripped off from all
pointer ficlds with time stamp larger than i, insertion takes place in the newly created
tree and a new time stamp is assigned to this tree. To insert a new node in PQ-tree at
present time, first the root of the tree at insertion time is accessed. The given region is
found following region location directions and pointer ficlds, on the path from root to
the node representing region, with the largest time stamp.

Figure 2 illustrates an example of four frames of a persistent. bintree. This tree
represents four frames shown in Figure 3. Nunbers on the edges represent. time stamp
of the pointer shown by the edge.

Figures 3-5 illustrate the PQ-trec related to the graph frames in the same figure.
Figures imply that pointer field and colorbit are the same. This might be misleading,
neverbheless, both fields are combined in in one to make these figures less crowded. At
time 0" (or the first frame) PQ-tree has three nodes. The NE region docsn’t need a
node because it is all white. The node which represents NW region contains a black
colorbit in the SE region, shown by black color in the figure. This black colorbit is time
stamped to ”0” to indicate a black region in the SI region. All other colorbit fields are
left empty to indicate that those regions are all white. Accordiugly, nodes representing
SW and S each have one colorbit to indicate a black in NE and NW, respectively, and
both are time stamped to ”0” to indicate insertion time of black region.

At time 1, NE of the SE region is modified to black, therefore the NE field of that
node shows a black colorbit with time stamp 1. At time 2 a new node is created to
represent. two black regions in NE. At time 3, region SW is all white, therefore, there is
no need for a node Lo represent that region. A new colorbit in the SW field of the root
is set and is time stamped to ”3” to indicate the all while region at time 3.

Modifying NW and NE of the NE region, at time 4, results in consumption of all
color bits in this field, and another change in the same regions forces node copy action.
Figure 4 illustrates this case. At time 7, NE of NE region is split into two regions,
thercfore a new level is added to the tree. Also, NW region is changed to black and
a new colorbit is needed. Since all color bits in this field are consumed node copy is
required. This node copy is followed by another node copy in the root (all pointers in
NE field are consumed). Root header is updated to show the new root. And finally, at

178

<
=
=]
N
~
=
N
[]
=
|~
—L__ |
=]
=

T 11

Figure 3, Frames 0-3 and PQ-tree representing frames,

i

R SRV I SR

S CPNEN [i) el e b

Figure 4, Frames 5 and 6 and PQ-tree representing frames.

179

Table 1. Space requirement of PQtree and ephemeral quadtree.

Ephemeral Quadtree Persistent
number of bytes to store f
frames of an n*n image 1 4
3t‘nza=f4xt:ltp -§n2~(1+f*d~(1+c)*ktp
n=256, k=3, p=3
£=100, d=.05 26+10° 3.8+(1+c)*10°

Table 11. Space and time performance of PQ-tree and Persistent bintree at worst case analysis.

Bintrce Quadiree

Number of Internal
nodes 26-De2 *d‘f‘(% +C))*(24p»k) 4(’0'."’(4“1‘/(% +C))+(4=p+k)

Tree Level log, n? log, n’

possibility of 1/(2*k) 1/(4*k)
Node- copy (Equal
Distribution)

Possibility of 1k 1/k
Node-copy (Worst
Case)

180

‘time & the NE region is all black and the tree represents this change by setting a new
colorbit in the root to black at time 8.

At the end of this sequence of modifications the related PQ-tree contains two roots
and six nodes. All frames of the graph are directly accessible. For example to access
to the frame at time 3, we access the root via the pointer field of the root header time
stamped to "0 (the next time stamp in the header root is larger than the scarch time).
Then the tree is traversed through following all pointer fields with the largest time
stamp less than or equal to 3.

5.3 Space and Time Performance

In this section we examine space efficiency from two different aspects. First we compare
space requirement for the ephemeral quadtree to the PQ-tree requirement. Then space
requirements for PQ-tree and persistent bintree are examined.

Table I illustrates space requirements for ephemeral quadtrees and PQ-trees. Sym-
bols used in this table and Table II are defined as follows:

f denotes number of {rames,

p denotes size of pointers (in bytes)

d denotes average percentage of modifications between any two consecutive frames
¢ denotes probability of node-copy side effect after modification in a node

k denotes number of pointers per region field

An example provided in Table I shows an approximately 75 percent reduction in
required storage to store 100 frames in a PQ-tree comparing to storing those frames in
100 ephemeral quadtrees. It should be noted that to store an n * n frame only 1/3n?
node is needed.

Table IT illustrates a comparison between persistent, bintree and PQ-trec. Possibility
of node copy in persistent bintree is higher than possibility of node copy in PQ-tree.
This is due to the fact that an m x m region is represented by 1/3m? nodes in a PQ-
tree and by m? nodes in a bintree. Considering the higher possibility of node copy in
bintree, for stroing a given number of frames is more in a persistent bintree more than
a PQ-tree. The size of nodes in PQ-tree structure is almost twice the size of nodes
in persistent bintree; nevertheless, as is shown in Table 11 the storage requirement is
approximately twice as large in the persistent bintree approach.

Table 1I also shows the quadtree is shorter than bintree. This makes search and
traverse time shorter in the case of PQ-tree.

6 Summaries and Conclusions

In this paper we have introduced the idea of persistent structures for storing graphic
images. This idea is applicable to those images in which the sum of differences of points
between two consecutive images is not more than a fraction of all points in a frame. It
is shown that persistent structures for storing graphic hinages are much more efficient
than ephemeral structures. Hierarchical persistent structures are superior over linear
persistent structure because they provide direct access to cach frame. We have shown
that persistent quadtrees provide faster access to a given frame than persistent Bintree
and use about one-half the storage compared to persistent bintree in the worst case
analysis. However, persistent, bintrees could be more compact than PQ-trees in the
best case analysis.

181

References

(1

S
=

Cole, R., ”Searching and Sorting Similar Lists,” J. of Algorithms 1986, 202-
220.

Hunter, G. M., and Steiglitz, K. "Operation on Images Using Quadtrees”,
1ELE Transaction Patlern Anal. Mach. Intel. April 1979, 145-153.

Klinger, A., ”Pattern and Search Statistics,” Rustagi, J., ed Optimizing meth-
ods in Stalistics Academic Press, New York, 1971, 303-307.

Knowlton, M., ” Progressive Transmission of Grey-Scale and Binary Pictures
by Simple, Efficient, and Lossless Encoding Schemes,” Proc. IEEE, July 1980,
885-896.

Reps, T. and Teitelbaum, T, ” An Incremental Context Dependency Analysis
for Language-Based Editors,” ACM Transaclion on Programming Systems
and Languages, 5, 1983, 449-474.

Samet, H., Application of Spatial Data Structure: Compuler Graphics, Image
Processing and GIS, Addison-Wesley, Reading MA, 1990.

Sarnak, N. and Tarjan, R. E., " Planning Point Location Using Search Trees,”
Communication of ACM, 29, 1986, 669-679.

Waronock, J., ”A lidden Surface Algorithm for Computer Generated Half-
Tone Pictures”, Technical Report TR 4-15, Computer Science Department,
Universily of Utah, Salt Lake City, UT, June 1969.

Zand, M. and Fisher, D. D., " Deletion on a Persistent B-tree,” Procceding on
Applied Computing, ACM, 1989, 90-96.

W
L=}

g

Figure 5, The last three frames and related PQ-tree.

182

