
The Journal of Systems and Software 102 (2015) 88–108

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Progressive Outcomes: A framework for maturing in agile software

development

Rafaela Mantovani Fontana a,b,∗, Victor Meyer Jr. a, Sheila Reinehr a, Andreia Malucelli a

a Pontifical Catholic University of Paraná (PUCPR), R. Imaculada Conceição, 1155, Prado Velho, 80215-901 Curitiba, PR, Brazil
b Federal University of Paraná (UFPR), R. Dr. Alcides Vieira Arcoverde, 1225, Jd. das Américas, 81520-260 Curitiba, PR, Brazil

a r t i c l e i n f o

Article history:

Received 25 August 2014

Revised 2 December 2014

Accepted 15 December 2014

Available online 22 December 2014

Keywords:

Maturity

Agile software development

Software process improvement

Complex adaptive systems

Ambidexterity

a b s t r a c t

Maturity models are used to guide improvements in the software engineering field and a number of maturity

models for agile methods have been proposed in the last years. These models differ in their underlying

structure prescribing different possible paths to maturity in agile software development, neglecting the

fact that agile teams struggle to follow prescribed processes and practices. Our objective, therefore, was to

empirically investigate how agile teams evolve to maturity, as a means to conceive a theory for agile software

development evolvement that considers agile teams nature. The complex adaptive systems theory was used

as a lens for analysis and four case studies were conducted to collect qualitative and quantitative data. As a

result, we propose the Progressive Outcomes framework to describe the agile software development maturing

process. It is a framework in which people have the central role, ambidexterity is a key ability to maturity,

and improvement is guided by outcomes agile teams pursue, instead of prescribed practices.

© 2014 Elsevier Inc. All rights reserved.

b

b

H

l

m

i

t

m

(

t

a

v

a

fi

e

s

S

m

m

t

1. Introduction

Maturity models are tools to describe how an element evolves.

This element, which may be a person, an object, or a social system,

may use the description provided by maturity models to assess its

own situation and find guidance to improve in a specific focus area

(Kohlegger et al., 2009). In the software engineering field, process

improvement is based mainly on the guidelines given by the Capabil-

ity Maturity Model Integration for Development –CMMI-DEV (CMMI

Product Team, 2010) and the international standard ISO/IEC 15504

(ISO/IEC, 2004). Both CMMI-DEV and ISO/IEC 15504 share the un-

derlying assumption that organizational capabilities must be codified

in processes that are previously planned and designed (Maier et al.,

2012). The improvement for the organization comes from the def-

inition, institutionalization and quantitative management of these

processes (CMMI Product Team, 2010).

A number of agile software development teams have been im-

plementing these process improvement initiatives (Al-Tarawneh

et al., 2011; Anderson, 2005; Baker, 2006; Caffery et al., 2008; Cohan

and Glazer, 2009; Jakobsen and Johnson, 2008; Lina and Dan, 2012;

Lukasiewicz and Miler, 2012; Spoelstra et al., 2011; Sutherland et al.,

2007; Tuan and Thang, 2013). The benefits of such initiatives have
∗ Corresponding author at: Federal University of Paraná (UFPR), R. Dr. Alcides Vieira

Arcoverde, 1225, Jd. das Américas, 81520-260 Curitiba, PR, Brazil. Tel.: +55 4133614904.

E-mail addresses: rafaela.fontana@ufpr.br (R.M. Fontana), victormeyerjr@

gmail.com (V. Meyer), sheila.reinehr@pucpr.br (S. Reinehr), malu@ppgia.pucpr.br

(A. Malucelli).

r

s

p

a

p

m

http://dx.doi.org/10.1016/j.jss.2014.12.032

0164-1212/© 2014 Elsevier Inc. All rights reserved.
een recognized as a “magic potion”, as they provide a powerful com-

ination of adaptability and predictability (Sutherland et al., 2007).

owever, if teams are meant to keep agile in the highest maturity

evels, the improvement path cannot be based on current established

aturity models. The increasing processes definition hinders sustain-

ng agility (Lukasiewicz and Miler, 2012; Paulk, 2001).

If agile methods place people and interaction over processes and

ools (Beck et al., 2001; Conboy et al., 2011), the improvement road

ap for these methods should not be based on processes definition

Fontana et al., 2014). There are, for this reason, a number of agile ma-

urity models proposed in the literature (Leppänen, 2013; Ozcan-Top

nd Demirörs, 2013; Schweigert et al., 2012). They are built over agile

alues and the improvement paths they suggest consider sustaining

gility in the highest maturity levels. Two issues linger, though: the

rst is that they prescribe the practices the team should implement,

ven agile teams, which consider their work as a highly context-

pecific job to be prescribed (Fontana et al., 2014; Kettunen, 2012;

chweigert et al., 2012; Sidky et al., 2007); and the second is that the

odels still differ in their proposals, which indicates that the path to

aturing in agile software development has not been uncovered yet.

These two issues thus, motivated this study. Our objective was

o identify how agile software development teams evolve to matu-

ity. We conducted an empirical research, through a multiple-case

tudy approach, that identified how real agile teams evolve their

ractices and mature over time. The findings interest researchers,

s they innovate in the underlying theory for a maturity model; and

ractitioners, as they provide practical guidelines for improving agile

ethods.

http://dx.doi.org/10.1016/j.jss.2014.12.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.12.032&domain=pdf
mailto:rafaela.fontana@ufpr.br
mailto:victormeyerjr@gmail.com
mailto:victormeyerjr@gmail.com
mailto:victormeyerjr@gmail.com
http://dx.doi.org/10.1016/j.jss.2014.12.032

R.M. Fontana et al. / The Journal of Systems and Software 102 (2015) 88–108 89

S

f

s

i

S

2

b

d

p

t

m

fi

2

p

I

c

p

2

s

(

a

i

r

c

t

d

c

o

q

t

p

h

t

i

W

w

a

t

t

f

s

s

p

a

s

s

C

i

m

m

w

w

s

a

s

r

s

s

b

t

a

b

a

A

2

a

a

s

m

o

P

i

T

d

m

e

P

o

l

t

t

l

t

a

t

f

R

“

P

r

p

t

o

p

s

t

a

C

a

o

p

s

t

c

p

m

r

r

b

o

m

A

e

G

a

This paper is organized as follows: Section 2 outlines related work;

ection 3 discusses our theoretical foundation and the theoretical

ramework we used for data analysis; and Section 4 presents the re-

earch structure. The results of the multiple-case study are presented

n Section 5 and, finally, the findings are discussed and concluded in

ections 6 and 7, respectively.

. Related work

Improvement paths in software engineering are currently defined

y the guidelines given by CMMI-DEV and the international stan-

ard ISO/IEC 15504. The standard defines that software process im-

rovement is accomplished through implementation of processes

hat address software acquisition, supply, engineering, operation,

anagement, improvement, resources and infrastructure, reuse, con-

guration control, quality assurance and product quality (ISO/IEC,

004).

Besides the incremental implementation of such processes, the ca-

ability to execute the processes should follow an evolutionary path.

n ISO/IEC 15504 this capability is defined in terms of six levels: in-

omplete process, performed process, managed process, established

rocess, predictable process and, lastly, optimizing process (ISO/IEC,

004).

CMMI-DEV defines similar capability levels and, in addition, de-

cribes maturity levels to be followed for process improvement

CMMI Product Team, 2010). These levels are defined in terms of

set of processes that should be implemented and by the capabil-

ty in which these processes should be performed. The first matu-

ity level is named Initial, as processes here are usually ad hoc and

haotic; the second is called Managed, characterized by processes

hat lead projects to be performed and managed according to their

ocumented plans. Next, comes third stage, Defined, in which pro-

esses are well characterized, understood and standardized in the

rganization. In fourth stage, “the organization and projects establish

uantitative objectives for quality and process performance and use

hem as criteria in managing projects” (CMMI Product Team, 2010,

. 28) and for this reason it is called Quantitatively Managed. The

ighest maturity level is the Optimizing, in which improvement of

he processes is continuous and based on a quantitative understand-

ng of objectives and needs.

In the same path of CMMI two other models were created by

atts Humphrey: Personal Software Process (PSP) and Team Soft-

are Process (TSP). The first focuses on software individual discipline

nd the latter focuses on a disciplined group formed by PSP practi-

ioners (Humphrey, 1995). The main difficulty that one faces when

rying to use PSP is the amount of self-discipline that is required to

ully apply the method. The first challenge is the need to record every

ingle activity that the software engineer performs, the time that was

pent in the activity and all the breaks taken during the work. This ap-

roach creates a bureaucracy in daily work that does not match agile

pproaches emphasis on people and interaction. PSP is also based on a

even-step roadmap that leads developer from a complete immature

tate (PSP0 – Baseline Personal Process) to a full mature state (PSP3 –

yclic Personal Process). Similarly, TSP is a framework to be used

n teams composed by PSP trained members (Humphrey, 2010). The

odel is based on an eight-step cycle: launch, strategy, plan, require-

ents, design, implementation, test and postmortem. The difficulty

ith TSP is the same of the PSP: the bureaucratic and prescriptive

ay to evolve work processes.

In the field of agile software development, two main lines of re-

earch have been studying maturity. The first focuses on adapting

gile practices and principles to fit current software maturity models,

uch as CMMI-DEV. The second focuses on creating maturity paths

elated to agile software development values.

Since researchers and practitioners consider agile methods and

oftware process improvement models as means to get the best from
oftware development, there has been an increasing interest in com-

ining both approaches. Starting with Mark Paulk explaining how Ex-

reme Programming could be complementary to CMM (Paulk, 2001),

number of studies have either reported how companies have com-

ined agile methods to CMMI-DEV requirements, or proposed new

pproaches to perform this combination (Al-Tarawneh et al., 2011;

nderson, 2005; Baker, 2006; Caffery et al., 2008; Cohan and Glazer,

009; Jakobsen and Johnson, 2008; Lina and Dan, 2012; Lukasiewicz

nd Miler, 2012; Sutherland et al., 2007; Spoelstra et al., 2011; Tuan

nd Thang, 2013).

All these approaches result in adapting agile methods to fit as-

essment requirements in CMMI-DEV. They also accept that agile

ethods do not fit higher maturity levels, as the quantitative control

f processes does not apply to agility (Lukasiewicz and Miler, 2012;

aulk, 2001). However, these initiatives recognize the value of hav-

ng a combination of agility and disciplined processes (Boehm and

urner, 2004).

The second group of studies considers maturity in agile software

evelopment by keeping its focus on agility. The first agile maturity

odel we found published in the literature was the one by Nawrocki

t al. (2001). They present a 4-level maturity model for XP (Extreme

rogramming). The authors’ motivation was to identify if a specific

rganization is using XP or not. Typically, there are assessment prob-

ems because XP practices are not fully applied all the time. Thus,

hey say that a maturity model could be used as a reference point. For

hem, the model has to be hierarchical and identify practices for each

evel, such as CMMI-DEV.

The proposed model is called XPMM (eXtreme Programming Ma-

urity Model) and was created based on intersections between XP

nd CMMI-DEV. The first level, named “Not compliant at all” means

hat the team applies no or a few XP practices. The second, “Initial”,

ocuses on project teams and defines two process areas: Customer

elationship Management and Product Quality Assurance. The third,

Advanced” is focused on coding and, thus, the only process area is

air Programming. The last level, called “Mature”, has process areas

elated to the satisfaction of customers and developers. Here, the only

rocess area is Project Performance. To be assigned to a specific level,

he team has to follow the practices in this level and in the previous

nes.

The authors assume that assessment should not be based on rich

rocess documentation. They also state that many XP practices (e.g.

implicity, no functionality is added early) are difficult to assess. Then,

hey propose conversation and observation as assessment methods.

Another proposal for XP maturity model is the one presented by Lui

nd Chan (2005). They report a roadmap to aid the adoption of XP in

hinese inexperienced teams. They have analyzed the dependencies

mong XP practices and mapped them into a matrix. With the help

f a visual data mining tool, they identified the ideal sequence for

ractices implementation.

They arrived at a four-stage XP implementation road map. In

tage 1, the team should implement testing, simple design, refac-

oring and coding standard. In stage 2, the team should focus on

ontinuous integration. In stage 3, the team should implement pair

rogramming and collective ownership and, finally, in stage 4, the re-

aining XP practices would be adopted: metaphor, 40-h week, small

elease, on-site customer and planning game.

The model presented by Packlick (2007) is based on a single expe-

ience in Sabre Airline Solutions. He describes a different approach,

ased on the observation of real teams. The proposal is to use a goal-

riented approach because the author has observed that teams got

ore motivated to find out their own ways to get the job done. The

GILE Roadmap comprises five maturity levels that represent differ-

nt learning stages an agile team should accomplish.

The goals are related to the AGILE acronym: Acceptance criteria;

reen-bar tests and builds; Iterative planning; Learning and adapting;

nd, Engineering excellence. Each goal is detailed as a user’s story

90 R.M. Fontana et al. / The Journal of Systems and Software 102 (2015) 88–108

a

L

r

C

J

a

a

b

m

t

m

s

p

t

t

a

L

q

p

s

r

n

t

t

a

m

o

p

a

a

e

e

a

m

p

i

d

g

i

that describes what teams must accomplish and the agile roadmap is

defined by the intersection of such goals and maturity levels. The first

maturity level is “Awareness”, when the team understands the goals

and the value to accomplish them. The second, “Transformation”,

is when knowledge is put into practice on a regular basis. The third

level is “Breakthrough”, when practices are kept even under pressure.

The next, “Optimizing” level, in which improvements are continuous

(creative innovation) and, the last, “Mentoring” is when coaching is

performed by high performance teams to share knowledge in the

company.

The model proposed by Sidky et al. (2007) is part of a whole frame-

work to guide and to assist agile adoption. The framework comprises

an agility measurement index and a four-stage process to introduce

the practices in the organization. The measurement index (Sidky Agile

Measurement Index – SAMI) defines five agile levels named 1) Col-

laborative, 2) Evolutionary, 3) Effective, 4) Adaptive and 5) Encom-

passing. Each level is defined in terms of agile practices that should

be adopted according to agile principles. The first level focuses on en-

hancements in communication and collaboration; the second focuses

on software delivery – early and continuously; the third, focuses on

software quality; the fourth level has practices to develop the capa-

bility of responding to changes; and the last focuses on creating an

environment to sustain agility.

Qumer and Henderson-Sellers (2008) also proposed a framework

for agile adoption and the Agile Adoption and Improvement Model

(AAIM) is part of this framework. It defines six agile stages grouped

in three blocks. The first block – Prompt – has level 1) Agile Infancy.

The second block – Crux – comprises levels 2) Agile Initial, 3) Agile

Realization and 4) Agile Value. The last block – Apex – has the two

last levels: 5) Agile Smart and 6) Agile Progress.

AAIM Level 1 is focused on introducing basic agile properties

(speed, flexibility, and responsiveness). At AAIM Level 2, the focus

is to enable communication and collaboration. The next, AAIM Level

3 is represented by the use of executable artifacts and minimal doc-

umentation. At AAIM Level 4, the agile basis is established and the

focus is on valuing people and not ignoring tools and processes. AAIM

Level 5 focuses on learning and, lastly, AAIM Level 6 establishes a lean

environment, with high quality and minimum resources, sustaining

agility.

Patel and Ramachandran (2009) presented a proposal based on

the CMMI-DEV structure, but process areas and practices focus on

agile principles. Their levels are Initial, Explored, Defined, Improved

and Sustained. Maturity gain, as in CMMI-DEV, is related to increas-

ing process definition and control through metrics, based on agile

practices.

At the Initial level, the development environment is unstable. The

next level, Explored, means implementing project planning, story

cards-driven development, on-site customer and introduction to test-

driven development. The third level, named Defined, focuses on cus-

tomer satisfaction, communication enhancements, software quality

and improving coding practices. At the fourth level, Improved, the

objectives are: measuring the software process, achieving empow-

ered teams and rewards, implementing project management, assess-

ing project risks and working with simplicity and no working over-

time. The highest maturity team, at the Sustained level, continuously

improves software process, managing uncertainties, tuning project

performance and preventing defects on software.

Benefield (2010) presents his experience at British Telecom in

defining seven practices – or dimensions – that, together, lead to

significant improvement in agile solutions: automated regression

testing; code quality metrics; automated deployment and backout;

automated builds and configuration management best practices; in-

terlocked delivery and interface integration testing; test driven de-

velopment; performance and scalability testing.

These dimensions are implemented through five levels that de-

fine to what extent the practices are adopted within the team, or
cross teams. Level 1 is called Emergent Engineering Best Practices,

evel 2 is called Continuous Practices at Component Level, Level 3

epresents Cross Component Continuous Integration, Level 4 is called

ross Journey Continuous Integration and Level 5 is called On Demand

ust in Time Releases. At this higher level, teams are highly productive

nd new products are quickly delivered through a service-oriented

rchitecture.

The only model based on Scrum adoption is the one presented

y Yin et al. (2011): the Scrum Maturity Model. The purpose of the

odel is to aid organizations to improve software process based on

he customer and to help the adoption of Scrum in a staged and incre-

ental manner. It comprises five levels defined with goals, objectives,

pecific and suggested practices.

Level 1, Initial, represents the absence of goals for process im-

rovement. At Level 2, the Managed, Scrum practices are more struc-

ured and complete. At Level 3, Defined, the focus is on the rela-

ionship with customers. At Level 4, Quantitatively Managed, there

re metrics and management of the process performance. Lastly, at

evel 5, Optimizing, the focus is on performance management.

Our previous work (Fontana et al., 2014b) also presented a se-

uence for the adoption of agile practices, according to practitioners’

erception. The agile software development maturing process would

tart with agile values, involved customer, agile planning and agile

equirements. Then, in a second stage, the focus would be more tech-

ical, with the implementation of agile coding and agile testing prac-

ices. In this previous work, we also identified that a number of prac-

ices could be implemented at any time (such as software architecture,

gile physical environment, agile quality assurance and agile project

onitoring). The metrics, the definition of processes and the control

f processes were found to be optional practices to mature in agility.

These nine maturity models for agile software development

resent quite different structures, which suggest that maturity in

gile software development is still being defined. Various proposals

re still only published on the Internet (Buglione, 2011; Schweigert

t al., 2012). Scientifically tested models are either based on experi-

nces of specific cases, specific methods, or focus on the adoption of

gile methods.

To provide summarized evidence, we analyzed each of these nine

odels according to the directions presented by Maier et al. (2012,

. 149) for planning and developing of maturity models. The result

s shown in Table 1. The columns of the table present the following

ata:

• Audience: definition of the expected users of the model;
• Aim: the model may be applied to either one of two aims – analy-

sis or benchmarking. The first aim helps determine the necessary

improvements, while the second presents best practices for com-

parison by other organizations;
• Scope: defines if the model is generic or specific to a domain;
• Success criteria: Maier et al. (2012) suggest that models must have

criteria to define if the application was successful. They suggest

evaluating usability and usefulness;
• Process areas: process areas uncover the conceptual foundation

used in the development of the model and must be “mutually

exclusive and collectively exhaustive” (Maier et al., 2012, p. 150);
• Maturity levels: they must be based on a rationale that, according

to Maier et al. (2012), may be: existence and adherence to a struc-

tured process, modification of organizational structure, emphasis

on people, or emphasis on learning;
• Cell texts: the model must provide the characteristics in the inter-

section of process areas and maturity levels;
• Administration mechanism: definition of the mechanisms to apply

the model, that is, to conduct the assessment.

As one can realize, most of them are based on agile practices in

eneral, and focus mostly on analytic (rather than benchmarking)

mplementation, and define four to six maturity levels mainly based

R
.M

.Fo
n

ta
n

a
et

a
l./T

h
e

Jo
u

rn
a

l
o

f
Sy

stem
s

a
n

d
So

ftw
a

re
1

0
2

(2
0

1
5

)
8

8
–

1
0

8
9

1

Table 1

Analysis of the structure of agile maturity models.

Audience Aim Scope Success criteria Process areas Maturity levels Cell texts Administration mechanism

Nawrocki et al. (2001) Organizations

implementing XP

Analytic Only for XP No evidence Yes, based on intersections

between XP and CMM

4 levels, based on

existence an adherence

to a structured process

Yes, defined through

practices

Partial. Concludes that the

assessment is subjective

Lui and Chan (2005) Inexperienced XP teams Analytic Only for XP No evidence Yes, based on visual data

mining of XP practices

4 levels, based on learning No evidence No evidence

Packlick (2007) Agile teams at Sarbre

Airline Solutions

Benchmarking Agile in general Yes. Defined acceptance

criteria for goals areas

Yes, based on goals 5 levels, based on people Yes, defined through

user stories

Yes, presents how they

implemented it in the

company

Sidky et al. (2007) Agile teams Analytic Agile in general Yes. Defined project and

organizational assessment

Yes, based on agile

principles

5 levels, based on

existence and

adherence to a

structured process

Yes, defined through

practices

Yes, defines a four-stage

process for agile adoption

Qumer and

Henderson-Sellers

(2008)

Agile teams Analytic Agile in general No evidence No evidence 6 levels, based on

existence and

adherence to a

structured process

No evidence Partial. Describes two

implementation cases

Patel and

Ramachandran (2009)

Agile teams Analytic Agile in general Yes. Defined the assessment

process

Yes, based on agile practices 5 levels, based on

existence and

adherence to a

structured process

No evidence Yes, exemplifies how to

perform the assessment

Benefield (2010) XP teams at British

Telecom

Benchmarking Only for XP Yes. Defined the assessment

method

No, but defines 7

dimensions for

assessment

5 levels, based on

existence and

adherence to a

structured process

No evidence Yes, exemplifies how to

perform the assessment

Yin et al. (2011) Scrum teams Analytic Only for Scrum Yes. Defined metrics to

evaluate implementation

Yes, named as “Goals” 5 levels, based on

existence and

adherence to a

structured process

Defines practices for

each goal, but not

shown on paper

Partial. Briefly describes six

appraisals

Fontana et al. (2014b) Agile teams Analytic Agile in general No evidence No, argues that agile teams

dislike prescription of

practices

3 levels, with processes

that are optional and

others to be

implemented anytime

No evidence No evidence

92 R.M. Fontana et al. / The Journal of Systems and Software 102 (2015) 88–108

r

b

t

a

c

i

m

w

e

s

d

i

(

i

h

(

n

(

a

e

t

b

l

(

i

i

p

w

a

p

t

a

t

c

e

(

t

w

p

i

(

t

a

a

d

t

p

b

a

l

a

a

a

c

“

w

c

r

b

on existence and adherence to a structured process, probably because

of the influence of CMMI-DEV.

Although agile methods focus on people interaction over processes

and tools (Beck et al., 2001) and software process improvement guide-

lines for agile methods should be built over people, and not processes

(Fontana et al., 2014), Table 1 shows that most of current agile ma-

turity models still focus on adherence to structured process. The only

author that explicitly describes how team evolves is Packlick (2007).

He also considers the need to allow for self-organization in the team,

which is an agile principle (Beck et al., 2001).

His approach to describe how an agile team evolves diverges from

values that underlie TSP and PSP guidelines. These guides were de-

veloped to create an environment that enables software practition-

ers and teams to evolve to a maturity state in which they plan and

track their work using a commonly accepted set of measurements and

standards (Humphrey et al., 2010; Pomeroy-Huff et al., 2005). Using

guidelines given by PSP, individuals increasingly measure, plan and

improve their own work based on quantitative data (Pomeroy-Huff

et al., 2005). TSP argues that in a software team, members should fol-

low PSP and, accordingly, define and use structured processes, collect

data, analyze data and use statistical foundation for process improve-

ment in the team (Humphrey et al., 2010). In comparison with the

highest maturity level proposed by Packlick (2007), in which mature

teams focus on creative innovation and mentoring, there is clearly a

mismatch between the approaches.

According to TSP, the maturing process of the team starts in a

forming stage, in which the team comes together as a working group

and team members are highly dependent on leader. This team goes

then to a storming stage in which members start to claim for the

position among them and conflicts may occur. If the team evolves, it

goes to a norming stage, in which team members reach consensus and

trust grows. The last stage is the performing stage: the team works

as a unit and energy is channeled to performing tasks. Although TSP

argues that software teams should self-manage (Humphrey et al.,

2010, p. 14), it describes an evolvement path based on Tuckman’s

model for team development (Tuckman, 1965), which has currently

been recognized as hardly applicable to self-managing work teams

(Kuipers and Stoker, 2009).

Instead of following a linear path of development, Kuipers and

Stoker (2009) show that self-managing work teams develop through

three team processes that occur simultaneously: task management,

in which they develop activities linked to “team multifunctionality

and its capabilities to manage responsibilities and control” (Kuipers

and Stoker, 2009, p. 407); internal relations, in which team deals with

internal cooperative issues; and external relations and improvement,

in which team deals with relationship with other teams, customers

and suppliers. These teams evolve to greater self-management and,

thereby, increased performance and enhanced quality of working life.

This last approach seems to be more suitable to agile software de-

velopment teams, since agility encourages self-organizing and self-

managing behavior (Hoda et al., 2012; Moe et al., 2009), instead of

stimulating personal and team process definition and control. This

emphasis on people, interactions and self-organization lead to the

consideration that agile software development teams present a num-

ber of emergent capabilities, which characterize them as complex

adaptive systems (Augustine et al., 2005; Hoda et al., 2012; Vidgen

and Wang, 2009). It brings to light some considerations about the

management tools that are applicable to agile teams and, we argue,

for process improvement guidelines for agile teams, as shown in the

next section.

3. Theoretical foundation

Agile software development teams are complex adaptive systems

(Power, 2014; Vidgen and Wang, 2009). They consist of a number of

connected agents that “interact with each other according to sets of
ules that require them to examine and to respond to each other’s

ehavior in order to improve their behavior and thus the behavior of

he system they comprise” (Stacey, 1996, p. 10). These interactions

re not visible and not immediately understood (Perrow, 1981) and

omplex behavior emerges from interrelationships, interaction and

nteractivity of the elements or among the elements and the environ-

ent (Mitleton-Kelly, 2003).

These interactions create the “shadow networks” of the system,

here links between individuals are spontaneously and informally

stablished (Stacey, 1996). These networks define most of the deci-

ions made by the system and, for this reason, organizations are not

efined by those “charts [. . .] printed down on an organization meet-

ng room”, but by the ones that emerge from informal interactions

Hidalgo, 2011, p. 557). It leads to the acknowledgment that practices

n these systems are not codified, but emerge from praxis, as people

ardly-ever accomplish their jobs exactly as designed by the system

Campbell-Hunt, 2007; Stacey et al., 2000).

It challenges management, thus, to give to some in the orga-

ization a position responsible for shaping this emergent order

Campbell-Hunt, 2007). Complex adaptive systems cannot be man-

ged as “machine-like” systems, as it leads to trials to make work-

rs accomplish goals defined by management, and with no devia-

ion from plans (McDaniel Jr., 2007). Instead, complex systems must

e managed with processes of sensemaking (Weick et al., 2005),

earning from experience, and improvisation to deal with uncertainty

McDaniel Jr., 2007). In complex contexts, things are understood only

n retrospect and patterns may then emerge if leaders conduct exper-

ments that are safe to fail. Decision making may thus be based on

robing, sensing and responding (Snowden and Boone, 2007).

Our assumption is that the tools management should use for soft-

are process improvement should also shift. Maturity models such

s CMMI-DEV, ISO/IEC 15504, PSP and TSP focus on codifying work

rocesses to reduce uncertainty. However, in complex systems uncer-

ainty must be accepted (Tsoukas, 2005). As we have just recognized

gile teams as complex adaptive systems, we need to understand how

hese systems behave so that we can build improvement guides that

onsider this complex nature.

Complex adaptive system theory shows that complex systems

volve in a discontinuous way and this process involves instability

Eijnatten, 2003). This instability must be combined with stability

o generate a space called “edge-of-chaos” (Stacey, 1996, p. 97), in

hich creativity and novel solutions emerge. Studies show, for exam-

le, that dynamic capabilities in high-velocity markets are developed

n an “unstable state of slipping into too much or too little structure”

Eisenhardt and Martin, 2000, p. 1113).

Accordingly, March (1991) identified that for an adaptive system

o survive and to prosper, it needs to balance processes of exploration

nd exploitation. Exploration includes things captured by terms such

s “search, variation, risk taking, experimentation, play, flexibility,

iscovery, innovation”. On the other hand, exploitation includes such

hings as “refinement, choice, production, efficiency, selection, im-

lementation, execution” (March, 1991, p. 71). The successful com-

ination of these processes has been recognized as organizational

mbidexterity. Higher levels of ambidexterity have already been re-

ated to higher levels of performance (Gibson and Birkinshaw, 2004)

nd to the ability of the organization to adapt over time (O’Reilly III

nd Tushman, 2008).

Ambidextrous organizations are aligned and efficient in the man-

gement of current demands while simultaneously adaptive to

hange in the environment (Raisch and Birkinshaw, 2008). They have

the ability to both use and refine existing knowledge (exploitation)

hile also creating new knowledge to overcome knowledge deficien-

ies or absences identified within the execution of the work (explo-

ation)” (Turner et al., 2013, p. 320).

Ambidexterity in organizations have been identified, for example,

y analyzing the perception of alignment – whether people in the

R.M. Fontana et al. / The Journal of Systems and Software 102 (2015) 88–108 93

Experiments

AMBIDEXTERITY

PRACTICES

Lead to

OUTCOMES

Generate new

2

3

COMPLEX ADAPTIVE
SYSTEM

1 TEAM

4

Fig. 1. Theoretical framework.

o

c

a

T

c

c

h

w

d

m

e

c

i

t

f

4

a

w

T

C

w

t

T

s

W

t

o

d

(

a

t

(

t

F

a

s

t

fi

i

a

f

v

d

(

w

d

c

s

2

c

b

a

w

e

v

p

p

4

t

a

C

a

t

t

f

c

s

i

t

t

t

c

a

o

a

information.
rganization work towards the same goals – and adaptability – the

apacity to reconfigure activities to meet changing demands (Gibson

nd Birkinshaw, 2004). Information flows among individuals, which

iwana (2008) calls “ties”, also characterize ambidexterity. It is ac-

omplished in a successful combination of strong ties – sharing of

ommon language, values and cooperative norms and bridging ties –

eterogeneity in experiences, knowledge and skills (Tiwana, 2008).

The essence of this theoretical foundation is, thus, that agile soft-

are development teams are complex adaptive systems. They are

riven by a self-organized behavior, which challenges the manage-

ent to use strategies that fosters experimenting and learning. The

volution – and the maturing – of this system is a discontinuous pro-

ess of combining exploitation and exploration. If this combination

s successful, it will lead to a higher performance through ambidex-

rous abilities. Next, four statements summarize our theoretical basis

or data analysis, as shown in Fig. 1.

1) An agile software development team is a complex adaptive system

that evolves in a discontinuous way;

2) Improvement in the work processes is performed through exper-

imentation, which is a way to probe new solutions;

3) High performance is achieved through ambidexterity; and

4) To accomplish that, teams develop dynamic capabilities pursuing

outcomes, and not following codified routines.

. Research approach

The objective of this study was to identify the mechanisms teams

pply to mature in agile software development. Our research question

as thus “how do teams mature in agile software development?”

o answer this question, we chose a multiple-case study approach.

ase study is a research strategy to understand the dynamics present

ithin single settings (Eisenhardt, 1989) and appropriate to answer

he “how” questions in research (Yin, 2005).

The unit of analysis was the agile software development team.

here were no specific choice criteria for teams: they could have any

ize, apply any method, no matter how long agile had been adopted.

e were searching for a pattern of evolution in agile teams and,

he most diverse these teams were in context, the better. The lack

f preference for a specific agile method, such as Scrum or XP, is

ue to the fact that agile methods are currently being highly tailored

Bustard et al., 2013) and current and future research in agile methods

re expected not to focus on a single method (Kurapati et al., 2012).

In a case study, a researcher may define a priori the constructs

o shape the research and to have a firmer empirical grounding

Eisenhardt, 1989). Thus, we defined our constructs – or proposi-

ions (Yin, 2005) – based on the theoretical framework presented in

ig. 1 and on our previous studies. We defined four propositions to be

nalyzed in the cases presented in Fig. 2. The figure shows the propo-
ition, the theoretical foundation point it relates to and the authors

hat provide a theoretical basis to it.

The study included four agile teams in Brazil with the pro-

les presented in Table 2. We collected qualitative data – through

nterviews – and quantitative data – through questionnaires. Table 2

lso shows the number of interviews and the period of data collection

rom each team.

We chose companies looking for different profiles of software de-

elopment (size, type of customer, company main activities, project

uration), to search for evidences of replication in different contexts

Eisenhardt, 1989). The primary activity of a company in the soft-

are development industry in Brazil is characterized by either 1) the

evelopment of software under demand; or 2) the development of

ustomizable software; or 3) the development of non-customizable

oftware; or 4) web portals and internet information services (Softex,

012). In our research, we included teams that match the first three

ategories of software development.

The overall process of our research followed the stages suggested

y Eisenhardt (1989). We started with data collection, within-case

nalysis and case report for each of the four teams. After all cases

ere reported individually, we cross-analyzed the results and gen-

rated the multiple-case report. All the team leaders we interviewed

alidated the report and, finally, we consolidated the results. Fig. 3

resents the overall research approach and the next subsections ex-

lain the details of each stage.

.1. Data collection

Data collection was performed through interviews with three

eam members: the team leader, the most experienced developer

nd the least experienced developer. One exception was Team 2 in

ompany B, in which the least experienced developer was not avail-

ble. The interviews took about 1 h each. We asked respondents to

ell us a story of how their agile practices evolved over time. For each

eam, the three interviews complemented each other. We used the

ramework proposed by Kirk and Tempero (2012) as a guide for data

ollection. Then, the practices described in the interviews were as-

igned for 1) defining, 2) making or 3) delivering the software. As the

nterviewee told us a story (Tsoukas and Hatch, 2005), we also placed

he practices they described in the past, in the present or in the future.

As a complementary quantitative approach for data collection, all

he team members answered a questionnaire. Two types of ques-

ionnaire were applied: the first was answered by the leaders and

omprised four parts: personal information, company information,

mbidexterity information and project success perception. The sec-

nd type of questionnaire was answered by the other team members

nd comprised two parts: personal information and ambidexterity

94 R.M. Fontana et al. / The Journal of Systems and Software 102 (2015) 88–108

The team plays a central role in agile soŌware development maturityBased on 1 in
Figure 1

Proposi on 1

McHugh et al., 2012 ; Middleton and Joyce, 2012 ; Packlick, 2007; Suominen and
Mäkinen, 2013

Teams get mature in agile soŌware development by combining
exploraƟon and exploitaƟon acƟviƟes, that is, through ambidexterity

Based on 2 and
3 in Figure 1

Proposi on 2

March, 1991; Turner et al., 2013 ; Gibson and Birkinshaw, 2004; Tiwana, 2008;
Vidgen and Wang, 2009

The exact set of pracƟces is not predefined at each maturing stageBased on 4 in
Figure 1

Proposi on 3

Eisenhardt and MarƟn, 2000; Coleman and O'Connor, 2008; Kirk and Tempero,
2012; Bustard et al., 2013; Fontana et al., 2014

Teams evolve in agile development starƟng with agile values, involve
customer, planning and requirements; and later invest in agile coding and

agile tesƟng

Based on
Fontana et al.

(2014)

Proposi on 4

Fig. 2. Propositions of the study.

Table 2

The companies profile.

Team Alias Profile Number of Period

interviews

Company A Team size

Company size

Main activity

Agile adoption time

Project duration

Customers

Develops software

8 people

100 people

Document Management

1 year and 3 months

1 year

Inside and outside the company

For its own use and software packages for

external customers

3 March, 2014

Company B – Team 1 Team size

Company size

Main activity

Agile adoption time

Project duration

Customers

Develops software

5 people

200 people

Educational Technology

5 years

6 months

Inside and outside the company (Brazil and

South America customers)

Under demand

3 April, 2014

Company B – Team 2 Team size

Company size

Main activity

Agile adoption time

Project duration

Customers

Develops software

7 people

200 people

Educational Technology

6 years

1.5 years

Inside and outside the company (Brazil, South

America, Europe and Asia customers)

Software packages and embedded systems

2 April, 2014

Company C Team size

Company size

Main activity

Agile adoption time

Project duration

Customers

Develops software

20 people

15,000 people

Telecommunications

3 years

6 months

Inside the company

Customizes or adapts existing software

3 April, 2014

R.M. Fontana et al. / The Journal of Systems and Software 102 (2015) 88–108 95

Data CollecƟon

Within-case Analysis

Cross-Case Analysis

Content Analysis Chi-Square Tests

For each team

Case Report

MulƟple Cases Report

ValidaƟon

For each team

Findings ConsolidaƟon

Fig. 3. Research approach.

s

1

i

(

a

T

T

s

c

a

4

t

w

T

(

p

s

T

f

o

“

f

f

n

A

t

a

u

w

s

p

i

i

c

a

p

t

h

s

t

i

t

t

i

i

p

e

4

r

s

a

s

c

s

r

t

m

r

c

m

r

a

v

4

b

fi

o

All the questions regarding ambidexterity information and project

uccess perception were answered in a five-point Likert scale (from

– completely disagree to 5 – completely agree). The ambidexter-

ty questionnaire evaluated performance, alignment and adaptability

according to the study performed by Gibson and Birkinshaw, 2004)

nd bridging and strong ties (according to the study performed by

iwana, 2008). The statements of the questionnaire are presented in

able A.1 in Appendix A. As suggested by Leppänen (2013), maturity

tudies should include the project success perception. Thus, we in-

luded this evaluation of the perceived projects success, based on the

gile methods success factors identified by Misra et al. (2009).

.2. Within-case analysis

Our within-case analysis included a qualitative and a quantita-

ive data analysis. For the qualitative data analysis, all the interviews

ere recorded and transcribed. The documents were stored in Atlas

I, which was the tool used to apply the content analysis technique

Bardin, 2011).

According to Bardin’s (2011) guidelines, for each interview, we

erformed the following steps: 1) scanning text; 2) codifying; 3) as-

igning each code to a category: define, make or deliver (Kirk and

empero, 2012); 4) assigning each code to either past, present or

uture; 5) creating memos when necessary and 6) association with

ther related codes.

While categorizing the codes for a team as a “define”, “make” or

deliver” practice (step 3), we also created three networks of codes

or each team (step 4): one network for practices in the past, one

or practices in the present and one for practices in the future (the

etwork for Company A – Past is shown in Fig. B.1 in Appendix B).

fter all the practices were mapped, we identified the outcomes the

eam was pursuing with specific sets of practices. Thus, we mapped
ll these pursued outcomes and kept a track of which practices led

s to the inference of each outcome. All this within-case information

as recorded in the Case Report (see Fig. 3).

For the quantitative data analysis, the questionnaires were tran-

cribed to spreadsheets and the data was consolidated. For each as-

ect evaluated of ambidexterity (performance, alignment, adaptabil-

ty, bridging ties and strong ties), the percentage of responses given

n the five-point Likert scale was grouped as “Disagree”, when the

lassification was 1 or 2, “No opinion”, when the classification was 3

nd “Agree”, for classifications 4 or 5.

Our objective with this analysis was to identify the ambidexterity

erception in the team. Thus, we performed statistical Chi-Square

ests for each frequency distribution considering the following null

ypothesis:

• Null Hypothesis 1 – This team disagrees with performance results

(same probability of agreement, disagreement or neutral opinion

regarding the evaluation of statements);
• Null Hypothesis 2 – This team disagrees about good alignment

perception;
• Null Hypothesis 3 – This team disagrees about bad alignment per-

ception;
• Null Hypothesis 4 – This team disagrees about adaptability per-

ception;
• Null Hypothesis 5 – This team disagrees about the bridging ties

perception;
• Null Hypothesis 6 – This team disagrees about the strong ties

perception;

All the null hypothesis for which the tests resulted in p-value

maller than 0.05 were rejected. In the Case Report, to present to the

eam leaders, we created graphs for each aspect evaluated, as shown

n Fig. C.1 in Appendix C, the example of Company C.

In the quantitative approach, we pursued evidences of ambidex-

erity abilities in the team. To accomplish that, we expected all of

he null hypothesis to be refused. That is, the whole team should be

n accordance with the perception of performance, alignment, flex-

bility, strong ties and bridging ties. In addition to that, the highest

ercentage of respondents should agree positively with each of the

valuated aspects.

.3. Cross-case analysis

Eisenhardt (1989) suggests that, in the cross-case analysis, the

esearcher performs the iterative tabulation of evidence for each con-

truct and searches for replication across cases. We conducted this

nalysis with the help of a mind mapping tool. Fig. D.1 in Appendix D

hows part of the mind map we used to record the outcomes across

ases.

The outcomes identified in each within-case analysis were in-

erted in the map and the evidences to the original team were duly

ecorded. The outcomes that appeared in the past were listed before

he ones that appeared in the present. The ones in the present were

apped before the ones in the future. As the map was being built, the

eplication of outcomes across cases was identified and the following

ategories of outcomes emerged: practices, team, deliveries, require-

ents, product and customer. For each category of outcome and their

elated sequence of outcomes, we traced the ones that each team had

ccomplished and included an overall view in the Case Report for the

alidation of the team leader.

.4. Validation

As the outcomes identified in the content analysis were inferred

ased on the stories told by practitioners and the practices we codi-

ed, it was necessary to validate these outcomes. Thus, we conducted

ne more interview with each team leader to show the Case Report

96 R.M. Fontana et al. / The Journal of Systems and Software 102 (2015) 88–108

c

c

5

v

a

c

i

c

a

u

d

p

u

n

A

T

W

r

e

p

[

w

fi

i

f

p

l

c

a

o

“

t

c

c

t

n

a

m

o

i

t

e

a

v

w

o

m

a

and receive feedback. In general, all findings were positively validated

with little changes. The transcription of the validation interviews was

also stored in Atlas TI, codified and, whenever necessary, code net-

works and individual cases reports were updated.

4.5. Threats to validity

The quality of a case study research may be evaluated under four

criteria: construct validity, internal validity, external validity and re-

liability (Yin, 2005). One threat to the construct validity in our study

was the use of narratives to identify the agile practices evolvement.

We recognize that the narrative approach for research is compatible

with the need to appreciate the complexity of organizations (Tsoukas

and Hatch, 2005). However, we had to rely on interviewees memories

to trace the agile practices adoption and there might be gaps in their

stories. This is the reason why we conducted more than one interview

in each team, so that one story could complement the others.

Another limitation of the narrative approach is that people usually

rationalize facts while they tell the story. It is the sensemaking of

the facts that makes individuals interpret past facts and try to find

explanations for what happened (Weick et al., 2005) and maybe blur

what really happened. To lessen this threat, during the interviews, we

asked practitioners to show us documents and tools they said they

were using as a means to confirm the interpretation they gave for the

facts. Likewise, the validation we performed with the team leaders

also helped validating our perception of their interpretations of the

sequence of facts.

Internal validity evaluation is applicable in our study regarding the

inferences we performed to identify the outcomes the teams pursue.

There is a threat to the validity when one considers the subjectivity

involved in the interpretation of the practices. Our initiative to lessen

this threat was conducting the validation of the research report with

the team leaders.

With respect to external validity, our approach was to pursue

analytical generalization (a trial to generalize a particular set of results

to a broader theory), using replication logic in the multiple-case study

(Yin, 2005). We grounded our data analysis in a theoretical framework

to reinforce the evidence for external validity. Yet, our findings may

be seen as a theory based on empirical research (Eisenhardt, 1989),

with practical relevance (Sjøberg et al., 2008), and subject to further

testing.

To assure the reliability of the research, we built a research proto-

col and recorded all the steps taken in the research. This manuscript

includes appendices with examples of the artifacts we generated in

each of these steps.

5. Data analysis

This section first presents the analysis of data collected in each

team and, later, the verification of the propositions considering the

cross-case results. The within-case data analysis section comprises

the description of each team’s: business context, analysis of the

evolvement of agile practices, ambidexterity data and project suc-
Sensemaking of work processes
Confident team

Expected frequent deliveries
Requirements gathering
High-level source code

Customer awareness of team
Team awareness of customer

AsserƟve t
Failures awa

Down to eart
Requirements

High-level deliver
Confident cu

Fig. 4. Agile evolvement an
ess perception. The cross-case data analysis section shows how the

ross-case results support – or not – our propositions.

.1. Within-case data analysis

Company A. The team in Company A had an ad hoc software de-

elopment process before agile adoption, which evidences that the

gile method was applied to help organizing the development pro-

esses. The main characteristic we could perceive in their business

s that they have frequent unplanned requirements, but they have to

ommit to long-term deliveries. They usually plan for three months,

lthough sprints are usually one-month long. They have one prod-

ct, sold to a number of customers, with little customization. In their

aily work dynamics, they have no commitment to follow established

rocesses, so they easily change the way they perform their job. They

se tools to support management and development, and experiment

ew technologies whenever they feel it necessary.

The agile evolvement analysis showed that the team in Company

started pursuing the outcomes listed in the left-hand box in Fig. 4.

hey used the agile method to help sensemaking the work processes.

e called it sensemaking because it was an effort to change the cur-

ent situation and the action was the focus, not the choice (Weick

t al., 2005). Sensemaking is a process of organizing, but people “make

lausible sense retrospectively, while enacting more or less order into

. . .] ongoing circumstances” (Weick et al., 2005, p. 409). This team

as created with experienced people, so they started with a con-

dent team. Another characteristic of this past experience was the

nitial understanding of customer demands, and also, the initiatives

or the customer to know the team. All the outcomes pursued in the

ast, and their related evidences – i.e., the practices in the team that

ed us to infer the pursued outcome – are listed in Table 3.

The middle box in Fig. 4 shows how the outcomes evolved. The

onfident team, for example, evolved to an assertive team, which is

team that strongly influences decisions. They started being aware

f their failures and implemented some initiatives to be able to make

down-to-earth” decisions. The pursuit for high-level source code in

he past evolved to a pursuit for high-level delivered software. The

ustomer evolved from being aware of the team to a customer that is

onfident about the team. For the future (right-hand box in Fig. 4), the

eam mentioned implementing practices that would allow them to

o longer delay deliveries (Defined frequent deliveries), practices to

utomate tests (Efficient coding) and practices to make the customer

ore dependent on the team’s decisions and positions. These and the

ther pursued outcomes, and their related evidences, are presented

n Table 3.

Table 4 shows the data for the ambidexterity analysis. It presents

he percentage of responses in disagreement, agreement or neutral to

ach of the aspects we analyzed (performance, good alignment, bad

lignment, adaptability, bridging ties and strong ties), as well as the p-

alue for the Chi-Square tests. For this team, all the six null hypotheses

ere rejected, which evidences the team agrees with the perception

f ambidexterity. The analysis of the percentage of responses of agree-

ent and disagreement also shows the team identifies ambidexterity

bilities in their practices.
eam
reness
h team
 quality

ed soŌware
stomer

Defined frequent deliveries
Efficient coding

Dependent customer

alysis for Company A.

R.M. Fontana et al. / The Journal of Systems and Software 102 (2015) 88–108 97

Table 3

Evidences for the outcomes in Company A.

Moment Outcome Evidences

Past Sensemaking of work processes Implementing the agile method to stop ad hoc development; organizing development processes, and adopting tools to

support the process dynamics.

Confident team Creating an experienced team; closely knowing each person in the team. Assigning the tasks to the team, but having the

members define tasks priorities and estimates.

Expected frequent deliveries Planning with sprints to control the coding cycle; estimating correctly.

High-level source code Performing pair programming; refactoring; caring about the code.

Customer awareness of team Getting the customer to know what is delivered.

Team awareness of customer Understanding the customers’ needs and their demands.

Present Assertive team Defining policies for the acceptance of unplanned requirements; maintaining a sustainable work pace; feeling secure about

delivering the software; having the team be able to change task assignments.

Failures awareness Considering time in the sprint for debugging, performing functional and unit tests; looking for improvement in the

software quality.

Down-to-earth decisions Drawing up thorough plans, reporting work status, planning longer sprints, adopting simple metrics.

Requirements quality Improving requirements definition (using recorded videos with requirements specification).

High-level delivered software Including a testing phase in the sprint; assuring that maintenance does not create new bugs; Improving code version

control.

Confident customer Formalizing new requirements orders; feeling customer trust; controlling requirements cycle; reducing delivered bugs.

Future Defined frequent deliveries Not delaying deliveries.

Efficient coding Automating unit tests.

Dependent customer Hypothesizing customers’ needs; defining the roles and rights of the information technology department.

Table 4

Company A ambidexterity data.

Performance Good alignment Bad alignment Adaptability Bridging ties Strong ties

Disagree 0.0% 0.0% 87.5% 0.0% 0.0% 0.0%

Neutral 12.5% 0.0% 6.3% 8.3% 0.0% 5.0%

Agree 87.5% 100.0% 6.3% 91.7% 100.0% 95.0%

p-value 0.000 0.043 0.001 0.000 0.000 0.000

Rejects H0 Yes Yes Yes Yes Yes Yes

Table 5

Projects success perception in Company A.

Company Other teams’ Std

A means dev

Reduced delivery schedules 4 5.0 0.0

Increased return on investment (ROI) 5 3.3 0.6

Increased ability to meet current

customer requirements

4 3.7 0.6

Increased flexibility to meet changing

customer requirements

5 3.7 1.5

Improved business processes 3 4.0 1.0

i

b

T

c

P

t

f

i

r

t

w

r

a

w

t

(

a

t

t

p

b

d

l

d

T

s

T

t

m

o

T

n

t

a

w

s

n

s

t

a

t

a

r

j

(

o

s

a

a

a

i

Finally, as suggested by Leppänen (2013), maturity studies should

nclude a means of measuring the success of the projects performed

y the team. In Company A, the perception of success is shown in

able 5. We see that there is a perception that the agile method

ontributed to all benefits, with the exception of Improved Business

rocess. In comparison with the means of responses from the other

eams, the project success was higher in three out of the five success

actors.

In summary, agile evolvement in Company A was not related to

ncreasing agility. In their context, they evolved practices for customer

elationship and the quality of the requirements, of the code and of

he software. Relating the ambidexterity results with project success,

e see a team with ambidextrous abilities that is satisfied with the

esults they achieve with their projects.

Company B – Team 1. This team adopted agile methods to meet

top-management decision. Before that, they had an ad hoc soft-

are development process. They are an inter-disciplinary team, as

hey develop educational software. Their customers are unknown

they respond to government public demands), so the company has

n infrastructure for customers relationship (phone and web con-

act) and the support of the delivered software is performed by other

eams. As they develop under demand, they have a wide variety of
rojects and products: each project implements a completely new

usiness, with new technology, for different target users. In their

aily working process, they change (or even abandon) the estab-

ished processes as needed and use tools to support management and

evelopment.

Fig. 5 shows the evolvement of the pursued outcomes in this team.

hey started using agile methods with the need to learn them; the

ensemaking of work processes came after learning was established.

hey lack the need for frequent deliveries. As the user is unknown,

he product is only delivered at the end of the project through the

arketing department of the company. Thus, their iterations focus

n finishing code – we called it “Expected frequent finished coding”.

hey had a confident team that evolved to an assertive team. They did

ot focus on the source-code quality; they just implemented practices

o have a high-level delivered software. This team has a specific char-

cteristic that, in the future, they may not use agile methods. They

ere about to go through an organizational reengineering that would

eparate teams by roles and the customer would be represented by a

ew department. This is what we called Specialist Team and Repre-

ented Customer in the right-hand box in Fig. 5. These outcomes and

he others identified for Company B – Team 1 are shown in Table 6

long with their evidences.

The ambidexterity data analysis for Team 1 in Company B showed

hat the team does not agree in the perception of good alignment

nd adaptability in management (the null hypothesis could not be

ejected). This means that the team feels like receiving conflicting ob-

ectives, as well as feels the lack of flexibility to meet customer needs

Table A.1 in Appendix A shows the statements evaluated in each

f the ambidexterity aspects). Table 7 shows the percentage of re-

ponses in disagreement, agreement or neutral to each of the aspects

nd the p-value for the Chi-Square tests. Analyzing the percentages of

greement and disagreement, one can verify that part of the team dis-

gree with a team’s good performance. According to the team leader,

n the validation presentation, these bad perceptions are due to the

98 R.M. Fontana et al. / The Journal of Systems and Software 102 (2015) 88–108

Confident team
Agile learning

Expected frequent finished coding
Requirements discovery

Third-people supported soŌware

AsserƟve team
Sensemaking of work processes

Failures awareness
Down to earth decisions

High-level delivered soŌware

Specialist Team
Represented Customer

Fig. 5. Agile evolvement analysis for Company B – Team 1.

Table 6

Evidences for the outcomes in Company B – Team 1.

Moment Outcome Evidences

Past Confident team Creating an experienced team; closely knowing each person in the team; having the team define tasks and priorities.

Agile learning Following an agile method “by the book”.

Expected frequent coding finished Not delivering at the end of the sprint; testing the software after the sprint finishes.

Third-people supportable software Creating documentation at the end of the process; using text documents to define requirements.

Present Assertive team Letting the team self-organize; having the team define tasks and priorities; playing to win.

Sensemaking of work processes Tailoring the agile method, for example, increasing sprint size.

Failures awareness Considering time in the sprint for debugging.

Down-to-earth team Drawing up thorough plans; defining requirements iteratively.

High-level delivered software Performing unit and functional tests; applying tools to support the development.

Future Specialist team Separating the team into one team for each role; formalizing software architecture definition; having a team perform

functional tests formally.

Represented customer Have a formal structure to represent customer.

Table 7

Company B – Team 1 ambidexterity data.

Performance Good alignment Bad alignment Adaptability Bridging ties Strong ties

Disagree 15.0% 40.0% 20.0% 60.0% 0.0% 0.0%

Neutral 5.0% 20.0% 0.0% 20.0% 0.0% 0.0%

Agree 80.0% 40.0% 80.0% 20.0% 100.0% 100.0%

p-value 0.001 1.000 0.030 0.223 0.000 0.000

Rejects H0 Yes No Yes No Yes Yes

Table 8

Project success perception in Company B – Team 1.

Company B – Other teams’ Std

Team 1 means dev

Reduced delivery schedules 5 4.7 0.6

Increased return on investment (ROI) 4 3.7 1.2

Increased ability to meet current

customer requirements

4 3.7 0.6

Increased flexibility to meet changing

customer requirements

5 3.7 1.5

Improved business processes 5 3.3 0.6

u

i

s

t

u

t

w

w

i

s

t

t

h

T

l

a

r

m

s

o

r

a

s

c

2

t

f

rigid structure of the company as a whole, and not regarding the team

itself.

When measuring the projects success perception in Company B

– Team 1, we got the data shown in Table 7. This table also shows

the mean perception for the other teams studied and the standard

deviation. The evaluation of all the success factors in this team was

higher than the mean of the other teams’ responses.

We conclude that Company B – Team 1 lack the need of delivering

continuously, but they still used and evolved agile methods to con-

trol coding and requirements. The agile evolvement was mainly on

learning and, later, sensemaking the process; as well as evolving the

team. There is a contradiction when we see that, although projects

success perception is good, the team does not present an agreement

on ambidextrous abilities.

Company B – Team 2. The context before agile adoption was an

ad hoc software development process, with a top-down agile adop-

tion initiative. Although this is the same company as Team 1, the

products they develop are completely different. This is a new prod-
ct development team, which creates its own requirements. Their

nter-disciplinary skills contribute to new ideas to emerge. They use

imple tools to support management and development; and adapt

he development process whenever needed.

The agile evolvement analysis in Fig. 6 shows that the team started

sing agile methods with focus on agile learning, which later allowed

hem to make sense of their processes. In the past, their iterations

ere used to control the coding; but it evolved to iterations to deliver

orking software. They had a specialist team, with roles separated

nto different groups, which evolved to the agile characteristic of a

ingle team with multiple roles. This team started the agile adop-

ion with a responsive characteristic and evolved to a confident team

hat is currently an assertive one. In the past, they did not focus on

igh-level source code, but started focusing on that in the present.

he practices to support “down-to-earth” decisions were also added

ater. In the future, the team plans to look for requirements quality

nd high-level delivered software. The strategy they plan to improve

equirements quality is to use system analysis diagrams in require-

ents definition. These and the other pursued outcomes are pre-

ented in Fig. 6 and Table 9 presents the evidences that support the

utcomes in this case.

The analysis of the ambidexterity perception of the team did not

eject the null hypothesis for good alignment, bad alignment and

daptability, as shown in Table 10. It means that there is not a con-

olidated perception in the team about the management alignment,

onflicting objectives and adaptability.

The perception of the project success factors in Company B – Team

is shown in Table 11. In comparison with the other teams means,

hey had higher or the same perception for three out of the five

actors.

R.M. Fontana et al. / The Journal of Systems and Software 102 (2015) 88–108 99

Agile learning
Expected frequent finished coding

Specialist team
Represented customer

Responsive Team
Confident Team

Interdisciplinary team
Requirements discovery

Sensemaking of work processes
Expected frequent deliveries

Down to earth decisions
High-level source code

Third-people supportable soŌware
Team awareness of customer
Customer awareness of team

AsserƟve team

Requirements quality
High-level delivered soŌware

Fig. 6. Agile evolvement analysis for Company B – Team 2.

Table 9

Evidences for the outcomes in Company B – Team 2.

Moment Outcome Evidences

Past Agile learning Following an agile method “by the book”.

Expected frequent coding finished Not delivering at the end of the sprint.

Specialist team Having functional tests performed in a separate team; having the roles separated into different teams.

Represented customer Having the top management define requirements priorities.

Responsive team Having responsive people who later left the team.

Confident team Hiring confident people.

Present Interdisciplinary team Having a team with multiple profiles; sharing knowledge.

Requirements discovery Validating requirements with customer; having the developers know requirements before starting to work;

formalizing architecture definition, having sprints to deliver documentation.

Sensemaking of work processes Organizing work processes; tailoring the agile method.

Expected frequent deliveries Delivering (late) at the end of the sprint.

Down-to-earth decisions Monitoring the project formally, with the help of a simple tool; having a better cost estimation.

High-level source code Integrating code daily.

Third-people supportable software Creating and updating documentation.

Assertive team Having the team help defining requirements.

Team awareness of customer Designing and publishing a work process.

Customer awareness of team Designing and publishing a work process.

Future Requirements quality Improving requirements definition (using UML), performing documentation review, prototyping before development.

High-level delivered software Automating functional tests, implementing test driven- development, having a team to test.

Table 10

Company B – Team 2 ambidexterity data.

Performance Good alignment Bad alignment Adaptability Bridging ties Strong ties

Disagree 3.6% 0.0% 35.7% 28.6% 0.0% 0.0%

Neutral 28.6% 42.9% 7.1% 9.5% 0.0% 5.7%

Agree 67.9% 57.1% 57.1% 61.9% 100.0% 94.3%

p-value 0.000 0.076 0.324 0.113 0.000 0.000

Rejects H0 Yes No No No Yes Yes

Table 11

Project success perception in Company B – Team 2.

Company B – Other teams’ Std

Team 2 means dev

Reduced delivery schedules 5 4.7 0.6

Increased return on investment (ROI) 3 4.0 1.0

Increased ability to meet current

customer requirements

3 4.0 0.0

Increased flexibility to meet changing

customer requirements

4 4.0 1.7

Improved business processes 4 3.7 1.2

t

t

w

i

s

t

t

t

a

h

f

t

c

t

m

i

s

p

m

t

p

o

w

i

e

d

l

d

a

t

c

In sum, Team 2 in Company B started an agile adoption from a

op-management initiative. They initially focused on implementing

he agile method “by the book” and on controlling their coding cycles

ith iterations. They evolved to have actual deliveries at the end of the

terations and to focus on a high-level source code. The team clearly

tarted as a responsive one, which became confident and, currently

hey are active actors in the projects. The initiatives to have the cus-

omer understand the team and vice-versa were not implemented in

he beginning of agile adoption, but in a later stage. The ambidexterity

nalysis did not yield the results expected, but the projects success

as been identified mainly by reduced delivery schedules.
Company C. The context for agile adoption in this team is quite dif-

erent from the other teams. They used to have a strong and defined

raditional development process. Their business context is mainly

haracterized by very strict delivery dates. They develop great cus-

omizations for various software platforms that comprise the infor-

ation technology infrastructure for telecommunication services. As

t is a big company, the roles are separated into different hierarchical

tructures. To develop the software projects, people are temporarily

laced physically together. The procedures in the software develop-

ent are rigid, so little space is left for process adaptation; however,

he team leader emphasized that little details change from project to

roject. To support daily activities, they have a strong infrastructure

f tools to support management and development.

The agile evolvement analysis shows that agile adoption started

ith the sensemaking of work processes. The iterations were initially

mplemented to control the coding process, which later evolved to

xpected frequent deliverables. These deliverables are not actually

elivered because the customizations they perform cannot be de-

ivered in parts. The practices that contributed to “down-to-earth”

ecisions where performed from the beginning, once they come from

traditional process. They reported a responsive team situation in

he present; thus, in the future there should be actions to improve

onfidence in team members. They feel the lack of standardization of

100 R.M. Fontana et al. / The Journal of Systems and Software 102 (2015) 88–108

Sensemaking of work processes
Expected frequent finished coding

Down to earth decisions
Requirements gathering

Customer awareness of team

Failures awareness
Requirements discovery

Expected frequent deliverables
Responsive team

High-level delivered soŌware
Confident customer

Requirements quality
StandardizaƟon of agile pracƟces

Confident team

Fig. 7. Agile evolvement analysis for Company C.

Table 12

Evidences for the outcomes in Company C.

Moment Outcome Evidences

Past Sensemaking of work processes Following an agile method “by the book”, but having each team use agile its own way.

Expected frequent coding finished Drawing up plans with sprints; having variable sprint sizes; integrating code by implemented feature.

Requirements gathering Having a heavyweight text documentation of requirements.

Customer awareness of team Performing user acceptance test at the end of the project.

Down-to-earth decisions Developing project scope using work breakdown structure diagrams; starting project only with a perceived scope

maturity; reporting work status; having people help with administrative tasks.

Present Failures awareness Considering time in the sprint for debugging and production support.

Requirements discovery Defining requirements based on a vague product description; including an analysis phase in the project; having the

requirements defined as stories and versioning stories.

Expected frequent deliverables Including a testing phase in the sprint; identifying a minimum releasable product, but not delivering at the end of the

sprint.

Responsive team Having the team define personal tasks, but the macro plan is defined by software architects; top management listens

to suggestions for improvement, but does not necessarily consider them.

High-level delivered software Including a testing phase in the sprint, implementing tools to automate integration of code in different environments.

Confident customer Helping customer to define business value.

Future Requirements quality Improving product description.

Standardization of agile practices Making agile practices similar across teams.

Confident team Development team does not take responsibility for the project.

Table 14

Project success perception in Company C.

Company Other teams’ Std

C means dev

Reduced delivery schedules 5 4.7 0.6

Increased return on investment (ROI) 3 4.0 1.0

Increased ability to meet current

customer requirements

4 3.7 0.6

Increased flexibility to meet changing

customer requirements

2 4.7 0.6

Improved business processes 3 4.0 1.0

t

c

a

a

y

p

5

t

h

agile practices across the teams is a problem, and it should also be the

focus of initiatives in the future, as well as the quality of the require-

ments definition. Fig. 7 summarizes the evolvement of the outcomes

for Company C and Table 12 presents the evidences we found for each

outcome.

The ambidexterity data analysis for Company C team is shown in

Table 13. The null hypothesis for good alignment, bad alignment and

adaptability were not rejected for this team, which means that there

is not a consolidated perception of the team about the alignment

to objectives, conflicting objectives and adaptability. In the valida-

tion presentation, the team leader showed to be concerned about the

83.3% of neutral opinion on the good alignment investigation. The

issue was taken to top management, who justified it as a problem

with cultural change and resistance to agile methods, the different

forms of application of agile methods around the company and too

many processes that are still hard to change because of established

applications and procedures.

With respect to project success perception, we verified that Com-

pany C responses were all lower than the mean of the other teams’

responses, with the exception of the reduced delivery schedules.

They still feel a poor ability to meet changing customer requirements

(Table 14).

The investigation of the team in Company C showed a scenario

where a cultural change was necessary for agile adoption. The team

started pursuing the sensemaking of work processes, with iterations
Table 13

Company C ambidexterity data.

Performance Good alignment Bad align

Disagree 8.3% 0.0% 41.7%

Neutral 33.3% 83.3% 16.7%

Agree 58.3% 16.7% 41.7%

p-value 0.006 0.131 0.959

Rejects H0 Yes No No
o control the coding process. The initiatives evolved to pursue out-

omes on requirements, customer confidence and high-level deliver-

ble software. The issue with this team was the members responsive

ttitude, which reflected in the bad results of the ambidexterity anal-

sis. From all the teams we analyzed, this was the one with the lowest

erception of projects success.

.2. Cross-case analysis

Based on the analysis of the four individual cases and on the pat-

erns that emerged in the cross-case analysis, we are able to evaluate

ow their empirical data support or not the propositions of the study.
ment Adaptability Bridging ties Strong ties

38.9% 0.0% 3.3%

33.3% 11.1% 6.7%

27.8% 88.9% 90.0%

0.320 0.000 0.000

No Yes Yes

R.M. Fontana et al. / The Journal of Systems and Software 102 (2015) 88–108 101

s

fi

t

s

p

t

h

p

t

a

d

d

a

p

c

c

a

b

w

u

t

t

s

i

i

c

t

t

o

b

A

c

O

c

e

t

p

w

c

C

e

T

a

a

a

W

s

o

t

f

p

d

r

c

w

i

p

g

(

t

w

p

s

i

p

I

p

c

i

w

d

t

a

t

s

t

e

w

l

d

w

w

c

m

a

p

d

c

o

f

i

t

i

w

t

l

h

g

s

n

d

t

o

Our first proposition stated that the team plays a central role in agile

oftware development maturity. To evaluate this proposition, we veri-

ed which position of the teams was in each case. Company A, with

he best results for ambidexterity and project success, had a team that

tarted working with agile methods feeling confident. They were ex-

erienced people and evolved to an assertive team. Company C, with

he worst results for ambidexterity and project success, reported to

ave problems with the team. It was characterized by responsive peo-

le that resisted engaging in the self-organizing behavior of confident

eams. Company B – Team 2 reported to initially have problems with

responsive team and, to evolve in agile adoption, the members that

id not engage in the process had to leave the team.

We also lack data that show the processes definition and stan-

ardization growing in the agile practices evolvement. Instead, teams

pply some practices to make their decisions more grounded (e.g.

roject tracking, report work status etc.) but evolvement is per-

eived in their behavior, and also in their relationship with the

ustomer.

Another evidence is to analyze the time the team has worked with

gile methods. Company A, less experienced with agile methods –

ut the one with the focus on experienced people – had good results

ith ambidexterity and project success. The other teams, with longer

se of agile methods – but with less focus on creating a high-level

eam – had worse results in ambidexterity or project success. We

hus conclude we have evidence to confirm our first proposition.

The second proposition speculated that teams get mature in agile

oftware development by combining exploration and exploitation activ-

ties, that is, through ambidexterity. This proposition can be verified

n our quantitative data. First considering that maturity is a state of

ompleteness (Maier et al., 2012) and that maturity should be related

o the success of the projects (Leppänen, 2013), we show in Table 15

he means for project success perception in each team and the number

f null hypothesis not rejected in the ambidexterity analysis.

Team 1 in Company B had the highest mean in project success,

ut two null hypotheses were rejected. Thus, we consider Company

the one with the best result: a project success perception mean

lose to the highest, but none of the null hypotheses was rejected.

n the other hand, Company C has the lowest project success per-

eption and, also, three null hypotheses not rejected. These relations

vidence that ambidexterity is related to project success and, thus,

o maturity in agile software development. This confirms our second

roposition.

Moreover, the experimentation processes (see point 2 in Fig. 1)

ere present in all teams. The openness to experiment new pro-

edures, tools and ways to work was very evident in Company A,

ompany B – Team 1 and Company B – Team 2. The one we lack the

vidence for experimentation culture was the team in Company C.

The conclusion for the third proposition is subjective, yet evident.

his proposition stated that the exact set of practices is not pre-defined

t each maturing stage. It has been confirmed by the lack of pattern

mong the contexts and practices in each team. They started their

gile adoption differently and the practices also evolved differently.

e could, however, conclude that the pursued outcomes are actually

imilar, and a pattern could be identified in the progression of these

utcomes. The variety of practices also shows the exploration of the

eams, experimenting different ways to get to outcomes, which rein-

orces our perception of the ambidexterity abilities in the maturing

rocess.
Table 15

Relationship of the perceptions of project success and of ambidexterity.

Comp

Mean for project success perception 4.2

Number of null hypothesis not rejected in the ambidexterity analysis 0
The fourth proposition, which posed that teams evolve in agile

evelopment starting with agile values, involved customer, planning and

equirements; and later invest in agile coding and agile testing, was not

onfirmed. As practices and contexts are too different among teams,

e could not identify this pattern of adoption in the teams included

n this study: there was not such a sequence of practices adopted.

Moreover, as a pattern in the outcomes emerged from the com-

arison of the cases, our cross-case analysis uncovered six cate-

ories of pursued outcomes and how they evolved in real agile teams

Fig. 8): practices, team, deliveries, requirements, product and cus-

omer. We named it the Progressive Outcomes framework for agile soft-

are development. Tables 3, 6, 9 and 12 show the practices the teams

articipating in this study implemented to pursue the outcomes de-

cribed in this section. One should argue that not all the outcomes

dentified in the cases are included in this framework. Indeed, the

ursued outcomes Standardization of agile practices, Specialist team,

nterdisciplinary team, Represented Customer, and Third-people sup-

ortable software were specific to the context and the moment a spe-

ific team was going through and, for this reason, were not included

n the general framework.

The practices category comprises the outcomes the teams pursue

hen they decide to change the way they work. In agile software

evelopment adoption, it starts with initiatives for agile learning. The

eams implement the agile method “by the book” and it evolves to

sensemaking of the work processes. This process includes taking

he method learned and tailoring it to particular needs, according to

pecific past experiences. Later, the teams start to invest in practices

hat pursue making “down-to-earth” decisions, which includes, for

xample, using tools to track the process, having the team report

ork status and simple metrics. This dynamics is similar to the three

evels of practice introduced by Cockburn (2007) as the Shu-Ha-Ri

istinction.

The team category describes how the team evolves in behavior

ith the use of agile methods. They start with a responsive behavior,

ith practices that demand a management position of command and

ontrol. This team may evolve to a confident team, in which team

embers start positioning themselves in the decisions and, later, the

ssertive team is the one whose members are active voices in the

roject and in the process improvement initiatives.

The deliveries category describes how the pursued outcomes for

eliveries evolve. Teams start investing on iterations to control the

oding process: they look forward to having a date to finish the code

f a specific requirement. This code is not delivered, it is kept for

urther testing and integration. The evolvement of this outcome is to

mplement processes that make this code ready for delivery. In the

eams included in this study, this initiative was related to implement-

ng a functional test phase that would assure the delivery is ready, but

ill not be delivered yet. This process of producing ready deliverables

hen evolves to actual deliveries at the end of the iterations – usually

ate deliveries. In a last step, the team starts working on practices to

ave a defined delivery, one that has a decrease in delay.

The requirements Progressive Outcomes start with requirements

athering, a process of eliciting requirements close to the traditional

oftware process, with most requirements being defined at the begin-

ing of the project. It evolves to practices that allow for requirements

iscovery, that is, the team starts to iterate the requirements elicita-

ion, to use stories, and requirements are allowed to change. The last

utcome they pursue is to improve the quality of the requirements to
any A Company B – Team 1 Company B – Team 2 Company C

4.6 3.8 3.4

2 3 3

102 R.M. Fontana et al. / The Journal of Systems and Software 102 (2015) 88–108

PRACTICES

DELIVERIES

TEAM

REQUIREMENTS

PRODUCT

CUSTOMER

Agile learning Sensemaking of work processes Down to earth decisions

Responsive team Confident team AsserƟve team

Expected frequent finished coding Expected frequent deliverables Expected frequent deliveries Defined frequent deliveries

Requirements gathering Requirements discovery Requirements quality

High-level source code Failures awareness High-level delivered soŌware Efficient coding

Team awareness of customer Customer awareness of team Confident customer Dependent customer

Fig. 8. The Progressive Outcomes framework for agile software development maturity.

p

d

t

b

w

w

t

t

b

L

t

n

n

s

t

n

6

t

c

t

make sure they meet customers’ expectations. Quite different prac-

tices appeared to accomplish this outcome, such as using videos to

record customer requirements, or using systems analysis diagrams.

The outcomes for the product category describe what the team

pursues when implementing the practices to improve the software

itself. It starts with a focus on a high-level source code: pair pro-

gramming and refactoring are examples of practices they perform

to have a good resulting source code. We named the next outcome

“failures awareness” because it is when the team realizes it delivers

bugs, that it has to fix them and that it has to adjust the processes

to accomplish that. After having a good code and the awareness of

the failures, the focus is to have a good delivered product. Then, a

next step is to focus on a high-level delivered software: they invest in

having a functional tester, or a test team, for example. The last out-

come is efficient coding, when practices such as test automation are

implemented to increase efficiency in the coding process, sustaining

the quality that was already obtained with the outcomes that were

accomplished previously.

The last category, the customer, comprises the outcomes the team

pursues when implementing practices to improve relationship with

the customer. They start with the team getting aware of the customer,

understanding the customer’s processes and needs. Then, when the

relationship evolves, the customer gets aware of the team, knowing

the team’s capabilities and the agile work processes. It evolves to a

confident customer, that knows when the deliveries are going to hap-
en and what is going to be delivered. The customer hence becomes

ependent on the team because there is so much confidence that the

eam helps defining requirements and solutions for the customer’s

usiness problems.

This framework represents a discontinuous process of agile soft-

are development evolvement. In the validation presentation we did

ith the team leaders, we presented which of the outcomes each

eam had accomplished (in a subjective assessment) and it was clear

hat each team evolves in the outcomes that are important to their

usiness contexts. For example, Company A did not invest in “Agile

earning”, as they hired an experienced team. Company C had “Down-

o-earth decisions” before agile adoption. Company B – Team 1 did

ot pursue any of the customers’ outcomes, as they did not have this

eed.

This section presented the results from the data analysis. We pre-

ented the findings for each case individually and the evaluation of

he propositions of the study, based on the cross-case analysis. The

ext section discusses these results and their relevance to practice.

. Discussion

This study aimed to identify how agile software development

eams evolve to maturity. We identified it is a discontinuous pro-

ess of experimentation, based on Progressive Outcomes, which the

eam pursues through the implementation of practices that cannot

R.M. Fontana et al. / The Journal of Systems and Software 102 (2015) 88–108 103

b

w

m

I

t

f

t

t

p

t

r

T

a

e

m

(

m

a

e

a

a

a

o

a

a

f

r

t

t

a

i

t

m

k

t

t

i

f

t

S

a

i

s

t

p

s

a

v

w

b

o

d

u

a

fl

k

o

w

i

a

b

u

p

t

t

e

c

s

p

i

i

c

1

t

a

i

o

t

t

a

a

e

c

d

i

c

2

a

i

t

a

s

t

s

fi

a

m

a

t

i

n

s

(

f

fi

(

n

O

a

a

s

i

M

i

d

l

c

t

b

u

c

c

2

d

Y

e prescribed. The team implements practices to chase outcomes in

ork practice, in its own behavior, in the deliveries, in the require-

ents, in the final product and in the relationship with the customer.

t is a framework that reflects an ambidextrous work experience: the

eam should be aligned with specific outcomes – exploitation, but

ree to adapt practices as they please – exploration.

Our findings have shown that the team plays a central role in

he agile software development maturing process. When we consider

hat people play this main role, the processes come in secondary

lace (Fontana et al., 2014). The implication of this finding is that

he current models for maturity in software development and their

equirements for assessment cannot be applied to our framework.

he majority of maturity models, in the software engineering field

nd elsewhere, are based on process definition and control (Maier

t al., 2012). However, people are the focus in any software develop-

ent initiative and they are particularly important in agile methods

McHugh et al., 2012). In the software process improvement efforts,

anagement should consider the agile software development team

s a self-organizing system (Hoda et al., 2012) and should focus on

mpowering the team, not on implementing control tools (Middleton

nd Joyce, 2012). The use of simple rules to drive the work is an ex-

mple of how the management may foster the emergent behavior in

gile teams (Power, 2014).

This central role teams play show the importance of the “Team”

utcomes evolvement in the framework we propose (Fig. 8). The over-

ll agile software development processes is conducted by the team

nd the way it evolves directly reflects in how processes are per-

ormed (Kettunen, 2014). Our study has shown, for example, that

esponsive teams define their on tasks, but in a personal level. Es-

imates and general decisions are made by software architects or by

he Scrum Master. They may suggest improvements, but these require

pproval from top management and, thus, do not create confidence

n the team. It leads the team to not taking responsibility. Confident

eams are those who take more general decisions – which influence

ore the project – as estimates and priorities. In these teams people

now each other closely and there is mutual trust. When evolving

o an assertive team, team members can change their assignments,

hey improve their own work processes and feel secure to define pol-

tics for unplanned requirements and, thus, protecting the team from,

or example, extra requirements during the sprint. We consider that

he three processes of team development described by Kuipers and

toker (2009) – task managing, internal relations, external relations

nd improvement – would be performed throughout this evolvement

n the team as well as in the relationship with customer.

Although Kuipers and Stoker (2009) say that “team development

hould not be regarded as a goal in itself [. . .], i.e. a team is a mean

o an end rather than the end in itself” (Kuipers and Stoker, 2009,

. 408), our findings are in accordance with Kettunen (2014) when he

uggests that improvements in agile software development may be

ddressed by improving team performance. Current literature pro-

ides a number of suggestions on how to improve teamwork and,

e believe, aid on the pursue of new outcomes. Fostering emergent

ehavior, for example, may be done by defining simple rules, instead

f prescribing practices (Power, 2014). Self-managed teams can be

eveloped by avoiding team members with a high degree of individ-

al autonomy and a Scrum Master focused too much on command

nd control (Moe et al., 2010). Other factors that also negatively in-

uence the creation of a self-managed team are: little feedback and

nowledge backup, increasingly specialization of team members, lack

f trust among team members and lack of a shared mental model of

hat the outcome of the project should be (Moe et al., 2010). Remov-

ng impediments to flow in work is also a way to improve processes,

ccording to Power and Conboy (2014). On team, it could be done

y reducing handovers, context switching, unnecessary motion and

nmet human potential. Choices of the team design are also an im-

ortant factor that impact team productivity. Melo et al. (2013) iden-
ified that full time team members contribute to team focus; mixed

eam members, as novice members contribute flexibility and experi-

nced ones contribute knowledge; small teams, which lead to better

ommunication, conflict management, commitment and sense of re-

ponsibility; and team collocation, which helps in negotiation and

lanning of requirements.

This team matures in agile software development by develop-

ng ambidextrous abilities – another evidence in our findings. Stud-

es in the agile software development field have shown benefits in

ombining these dual forces of exploration and exploitation (March,

991). For example, the importance of preserving disciplined prac-

ices when adopting agile methods (Boehm and Turner, 2004), as well

s the established trend to combine plan-driven and agile character-

stics in a single project (Baskerville et al., 2011). The synchronization

f exploration and exploitation has already been observed in agile

eams dynamics (Vidgen and Wang, 2009), and, likewise, ambidex-

erity (Ramesh et al., 2012). Even in the behavior of agile practitioners,

duality has been perceived: serious professionals with a free-spirit

nd joking behavior (Hazzan and Leron, 2010). The preference for

xploitation activities, with codified routines, hinders the dynamic

apabilities of the organization (Eisenhardt and Martin, 2000). This

ynamic capability, in software development process improvements,

s characterized by the “ability to improve software development pro-

ess with respect to changing circumstances” (Clarke and O’Connor,

011, p. 29).

Hence, in this study, we added the perspective of developing the

mbidextrous ability to mature in agile software development, which

s a challenge, given that there is not such a unique recipe for ambidex-

erity (Gibson and Birkinshaw, 2004). Our proposal is thus fostering

lignment (exploitation) with clear expected outcomes, but leaving

pace for the emergence of variety (exploration) by not prescribing

he practices the team should implement.

This space for exploration seems essential in the maturing process

ince the lack of pattern in the adoption of the practices was another

nding in the cases we investigated. There were, already, some clues

bout this in the existing studies in the agile software development

aturity field. In the model proposed by Sidky et al. (2007), for ex-

mple, a set of practices was defined for each maturity level but, in

he validation of the framework, practitioners pointed out that there

s a need for tailoring and considering the experiences of the orga-

izations. Kettunen (2012) got to a similar conclusion, as well as the

urvey performed by Schweigert et al. (2012). Our previous survey

Fontana et al., 2014b) indicated that agile practitioners see value in

ollowing a maturity model, only if space is left for tailoring. It con-

rms that the trend of tailoring agile methods is already established

Bustard et al., 2013) as agile teams focus on having the job done, and

ot on following specified processes (Adolph et al., 2012; Coleman and

’Connor, 2008). The one-size-fits-all approach is inappropriate for

gile software development (Armbrust and Rombach, 2011; Sheffield

nd Lemétayer, 2013). We confirmed this variety of practices in our

tudy and considered the need for allowing context-specific practices

n our framework.

In the development of dynamic capabilities, Eisenhardt and

artin (2000) observed that they imply equifinality – multiple start-

ng points to develop the same capability. Similarly, agile software

evelopment maturing process does not seem to be comprised of a

inear sequence of adoption of practices. It actually seems to be a dis-

ontinuous process, in which the team chases the outcomes simul-

aneously for the improvements in the work practice, in their own

ehavior, in the deliveries, in the requirements, in the final prod-

ct and in the relationship with the customer. The Progressive Out-

omes framework proposes a “semi-structure” for the maturing pro-

ess, contrasting with the current agile maturity models (Benefield,

010; Lui and Chan, 2005; Nawrocki et al., 2001; Patel and Ramachan-

ran, 2009; Qumer and Henderson-Sellers, 2008; Sidky et al., 2007;

in et al., 2011): there are neither stages, nor prescribed practices.

104 R.M. Fontana et al. / The Journal of Systems and Software 102 (2015) 88–108

p

s

s

a

w

fi

t

a

p

c

i

a

i

c

a

t

A

t

A

ential

ith the

fying

ity and

organ

organ

end up

organ

organ

rgani

y in th

iety of

and a

n amo

by hi

by m

by m

by pe
It considers that software process improvement is indeed a process

of emergent change, enabled and constrained by the context (Allison

and Merali, 2007). The emergence of the practices “is not simply a ran-

dom process, but something that occurs to achieve an intended vision

where the detail of that designed future is not fully understood at the

time of the action” (Allison and Merali, 2007, p. 678). This intended

vision is what we named pursued outcomes.

These findings, thus, uncover the subjectivity involved in the as-

sessment of agile practices. How can a maturity model be useful if it

lacks the support to assess the team current stage? Maier et al. (2012)

already pointed out that maybe organizational maturity is more sub-

jective than we are used to. The assessment in agile methods cannot

be based on extensive documentation (Nawrocki et al., 2001) and fur-

ther research should investigate how to assess if and how the Progres-

sive Outcomes have been accomplished in agile teams. Nevertheless,

we believe our approach answers the claim that “an agile approach

to software process improvement would be responsive and flexible

to local needs, encourage innovation in the process, build software

process improvement projects around those who are motivated, en-

courage self-organizing competent teams, and promote sustainable

development of the process” (Allison and Merali, 2007, p. 679).

7. Conclusion

This study presented a framework for maturing in agile software

development. We built this framework based on the analysis of qual-

itative and quantitative data in four Brazilian agile teams. Our the-

oretical foundation, based on complex adaptive systems theory, led

us to build a framework for agile software evolvement that considers

people as agents who play the key role in the maturing process, sees

ambidexterity as a key ability to maturity, and does not prescribe

practices, but describes outcomes teams actually pursue. Agile ma-

turity comes from a discontinuous process of pursuing Progressive

Outcomes in the practices, in the team, in the way deliveries are per-

formed, in the way requirements are defined, in the quality of the

final product and in the customer relationship.

A limitation of this study is that the conclusions are based on a

four-case study. Although researchers in qualitative studies cannot

Table A.1

Questions for ambidexterity evaluation and reference authors.

Reference author Aspect Question

Gibson and Birkinshaw

(2004)

Performance This team is achieving its full pot

People at my level are satisfied w

This team does a good job of satis

This team gives me the opportun

Good alignment The management systems in this

Bad alignment The management systems in this

People in this organization often

conflicting objectives

Adaptability The management systems in this

The management systems in this

The management system in this o

Tiwana (2008) Bridging ties Members of this team vary widel

Members of this team have a var

Members of this team have skills

Strong ties There is close, personal interactio

This project team is characterized

This project team is characterized

This project team is characterized

This project team is characterized
ursue statistical generalization (Eisenhardt, 1989), our results are

pecific to the contexts and the profiles of the teams included in the

tudy. Our future work considers analyzing more cases to replicate

nd to update these findings.

Considering the generalizability limits, we have proposed a frame-

ork based on a theory for agile software development maturity, con-

rmed through empirical data. The main implication for research is

he challenge of uncovering subjective ways to assess the agile teams

nd favor the application of such framework as a practical software

rocess improvement guide. For practitioners, our results address a

oncern agilists have about following prescribed models. In compar-

son with the other agile improvement guides available in industry

nd research, our framework brings a novel approach: sustaining ag-

le values in the maturing process and allowing the emergence of

ontext-specific practices.

Researchers in the field might consider further research on en-

bling the framework to become applicable in industry. We suggest,

hus, some research questions that could be addressed:

• How the proposed framework could comply with international

standards for process measurement frameworks, such as ISO/IEC

33003 (ISO/IEC, 2014)?
• Which are the assessment approaches that enable evaluation of

the maturity of an agile team in each of the categories of the

Progressive Outcomes framework? The structure suggested by the

Test Process Improvement model (Andersin, 2004) might be a

reference for this research question.
• Are there “common paths” for agile improvement, even consider-

ing the variety of contexts where agile teams have been perform-

ing their jobs? Although we still lack evidence that maturity stages

are applicable, there is a possibility that maturity paths could be

defined for different agile software development contexts.

cknowledgments

We would like to thank the team leaders and the practitioners for

elling us their stories and answering our questionnaires.

ppendix A

level of team performance

our customers

encouragement to do the best work I am capable of

ization work coherently to support the overall objectives of this organization

ization cause us to waste resources on unproductive activities

working at cross-proposals because our management systems give them

ization encourage people to challenge outmoded traditions/practices/sacred cows

ization are flexible enough to allow us to respond quickly to changes in our markets

zation evolve rapidly in response to shifts in our business priorities

eir areas of expertise

different backgrounds and experiences

bilities that complement each other’s

ng team members at multiple levels

gh reciprocity among members

utual trust among members

utual respect among members

rsonal friendship between members

R.M. Fontana et al. / The Journal of Systems and Software 102 (2015) 88–108 105

A

network for Company A – Past.

A

ppendix B

Fig. B.1. Example of code

ppendix C
Fig. C.1. Ambidexterity results in the Case Report. Example for Company C.

106 R.M. Fontana et al. / The Journal of Systems and Software 102 (2015) 88–108

se an

B

B

B

B

C

C

C

C

C

Appendix D

Fig. D.1. Cross-ca

References

Adolph, S., Krutchen, P., Hall, W., 2012. Reconciling perspectives: a grounded theory

of how people manage the process of software development. J. Syst. Softw. 85 (6),
1269–1286. doi:10.1016/j.jss.2012.01.059.

Allison, I., Merali, Y., 2007. Software process improvement as an emergent
change: a structurational analysis. Inf. Softw. Technol. 49 (6), 668–681.

doi:10.1016/j.infsof.2007.02.003.
Al-Tarawneh, M.Y., Abdullah, M.S., Ali, A.B., 2011. A proposed methodology for estab-

lishing software process development improvement for small software develop-

ment firms. Procedia Comp. Sci. 3, 893–897. doi:10.1016/j.procs.2010.12.146.
Andersin, J., 2004. TPI – A Model for Test Process Improvement. Seminar on Quality

Models for Software Engineering. Helsinki http://goo.gl/9JSFUQ.
Anderson, D.J., 2005. Stretching agile to fit CMMI level 3 – the story of creating MSF

for CMMI process improvement at microsoft corporation. Proceedings of the Agile
Conference (ADC’05), 24–29 July 2005, pp. 193–201. doi:10.1109/ADC.2005.42.

Armbrust, O., Rombach, D., 2011. The right process for each context: objective

evidence needed. ICSSP ’11: Proceedings of the 2011 International Confer-
ence on Software and Systems Process. New York, NY, USA, pp. 237–241.

doi:10.1145/1987875.1987920.
Augustine, S., Payne, B., Sencindiver, F., Woodcock, S., 2005. Agile project

management: steering from the edges. Commun. ACM 48 (12), 85–89.
doi:10.1145/1101779.1101781.

Baker, S.W., 2006. Formalizing agility, Part 2: how an agile organization embraced
the CMMI. Proceedings of the AGILE 2006 Conference, 23–28 July, pp. 146–154.

doi:10.1109/AGILE.2006.30.

Bardin, L., 2011. Análise de Conteúdo. Edições 70.
Baskerville, R., Pries-Heje, J., Madsen, S., 2011. Post-agility: what follows a decade of

agility? Inf. Softw. Technol. 53 (5), 543–555. doi:10.1016/j.infsof.2010.10.010
Beck, K. et al., 2001. Agile Manifesto. Available in http://agilemanifesto.org/. Accessed

in 2014, August.
alysis mind map.

enefield, R., 2010. Seven dimensions of agile maturity in the global enterprise: a
case study. Proceedings of the 43rd Hawaii International Conference on System

Sciences. Honolulu, HI, pp. 1–7. doi:10.1109/HICSS.2010.337.

oehm, B., Turner, R., 2004. Balancing agility and discipline: evaluating and
integrating agile and plan-driven methods. Proceedings of the 26th In-

ternational Conference on Software Engineering. 23–28 May, pp. 718–729.
doi:10.1109/ICSE.2004.1317503.

uglione, L., 2011. Light maturity models (LMM): an agile application. Pro-
fes ’11: Proceedings of the 12th International Conference on Product

Focused Software Development and Process Improvement, pp. 57–61.

doi:10.1145/2181101.2181115.
ustard, D., Wilkie, G., Greer, D., 2013. The maturation of agile software develop-

ment principles and practice: Observations on successive industrial studies in
2010 and 2012. 20th Annual IEEE International Conference and Workshops on

the Engineering of Computer Based Systems (EBCS). April 22–24, pp. 139–146.
doi:10.1109/ECBS.2013.11.

affery, F.M., Pikkarainen, M., Richardson, I., 2008. AHAA – agile, hybrid assessment

method for automotive, safety critical SMEs. ICSE ’08: Proceedings of the 30th
ACM/IEEE International Conference on Software Engineering. 10–18 May, pp. 551–

560. doi:10.1145/1368088.1368164.
ampbell-Hunt, C., 2007. Complexity in practice. Hum. Relat. 60 (5), 793–823.

doi:10.1177/0018726707079202.
larke, P., O’Connor, R.V., 2011. An approach to evaluating software process adaptation.

In: O’Connor, R.V. (Ed.). Software Process Improvement and Capability Determina-
tion: 11th International Conference, SPICE 2011, Dublin, Ireland, May 30–June 1,

2011. Proceedings, pp. 28–41. doi:10.1007/978-3-642-21233-8_3.

MMI Product Team, 2010. CMMI for Development, Version 1.3. Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, Technical Report

CMU/SEI-2010-TR-033. Available at http://goo.gl/kJzxiy.
ockburn, A., 2007. Agile Software Development: The Cooperative Game, second edi-

tion Addison-Wesley, Boston.

http://dx.doi.org/10.1016/j.jss.2012.01.059
http://dx.doi.org/10.1016/j.infsof.2007.02.003
http://dx.doi.org/10.1016/j.procs.2010.12.146
http://goo.gl/9JSFUQ
http://dx.doi.org/10.1109/ADC.2005.42
http://dx.doi.org/10.1145/1987875.1987920
http://dx.doi.org/10.1145/1101779.1101781
http://dx.doi.org/10.1109/AGILE.2006.30
http://dx.doi.org/10.1016/j.infsof.2010.10.010
http://agilemanifesto.org/
http://dx.doi.org/10.1109/HICSS.2010.337
http://dx.doi.org/10.1109/ICSE.2004.1317503
http://dx.doi.org/10.1145/2181101.2181115
http://dx.doi.org/10.1109/ECBS.2013.11
http://dx.doi.org/10.1145/1368088.1368164
http://dx.doi.org/10.1177/0018726707079202
http://dx.doi.org/10.1007/978-3-642-21233-8_3
http://goo.gl/kJzxiy
http://refhub.elsevier.com/S0164-1212(14)00290-8/bib0020
http://refhub.elsevier.com/S0164-1212(14)00290-8/bib0020

R.M. Fontana et al. / The Journal of Systems and Software 102 (2015) 88–108 107

C

C

C

E

E

E

F

F

G

H

H

H

H

H

I

I

J

K

K

K

K

K

K

L

L

L

L

M

M

M

M

M

M

M

M

M

M

N

O

O

P

P

P

P

P

P

P

Q

R

R

S

S

S

S

S

S

S

S

S

S

T

ohan, S., Glazer, H., 2009. An agile development team’s quest for CMMI maturity level
5. Agile Conference. 24–29 August, pp. 201–206. doi:10.1109/AGILE.2009.24.

oleman, G., O’Connor, R., 2008. Investigating software process in practice: a grounded
theory perspective. J. Syst. Softw. 81 (5), 772–784. doi:10.1016/j.jss.2007.07.027.

onboy, K., Coyle, S., Wang, X., Pikkarainen, M., 2011. People over process:
key challenges in agile development. IEEE Softw. 28 (4), 48–57.

doi:10.1109/MS.2010.132.
ijnatten, F.M., 2003. Chaordic systems thinking: chaos and complexity to explain

human performance management. In: Putnik, G.D., Gunasekaran, A. (Eds.), Business

Excellence 1: Performance Measures, Benchmarking and Best Practices in New
Economy. University of Minho Press, Portugal, pp. 3–18.

isenhardt, K., 1989. Building theories from case study research. Acad. Manage. Rev. 14
(4), 532–550. doi:10.5465/AMR.1989.4308385.

isenhardt, K.M., Martin, J.A., 2000. Dynamic capabilities: what are
they? Strateg. Manage. J. 21 (10-11), 1105–1121. doi:10.1002/1097-

0266(200010/11)21:10/11<1105::AID-SMJ133>3.0.CO;2-E

ontana, R.M., Fontana, I.M., Garbuio, P.A.R., Reinehr, S., Malucelli, A., 2014. Processes
versus people: how should agile software development maturity be defined? J.

Syst. Software. 97, 140–155. doi:10.1016/j.jss.2014.07.030
ontana, R.M., Reinehr, S., Malucelli, A., 2014b. Maturing in agile: what is it about? In:

Proceedings of the 15th International Conference, XP 2014. Rome, Italy, pp. 94–109.
doi:10.1007/978-3-319-06862-6_7

ibson, C., Birkinshaw, J., 2004. The antecedents, consequences, and mediat-

ing role of organizational ambidexterity. Acad. Manage. J. 47 (2), 209–226.
doi:10.2307/20159573.

azzan, O., Leron, U., 2010. Disciplined and free-spirited: ‘time-out behaviour’ at the
Agile conference. J. Syst. Softw. 83 (11), 2363–2365. doi:10.1016/j.jss.2010.06.018.

idalgo, C., 2011. The value in between: organizations as adapting and evolving net-
works. In: Allen, P., Maguire, S., McKelvey, B. (Eds.), The SAGE Handbook of Com-

plexity and Management. SAGE Publications, London.

oda, R., Noble, J., Marshall, S., 2012. Self-organizing roles on agile software develop-
ment teams. IEEE Trans. Softw. Eng. 39 (3), 422–444. doi:10.1109/TSE.2012.30.

umphrey, W., 1995. A Discipline for Software Engineering. Addison-Wesley Publish-
ing Company, Reading, MA, 789.

umphrey, W., Chick, T., Nichols, W., Pomeroy-Huff, M. 2010. Team Software Process
(TSP) Body of Knowledge (BOK), Software Engineering Institute, Carnegie Mel-

lon University, Pittsburgh, Pennsylvania, Technical Report CMU/SEI-2010-TR-020.

Available at http://goo.gl/x8frdu.
SO/IEC: 15504-1, 2004. Information Technology – Process Assessment – Part 1: Con-

cepts and Vocabulary. ISO/IEC, Geneva, Switzerland http://goo.gl/DZJfuS.
SO/IEC: 33003. 2014. Accessed in 2014, October. Information technology – Process

assessment – Requirements for process measurement frameworks. Under devel-
opment at http://goo.gl/LtmPpr.

akobsen, C.R., Johnson, K.A., 2008. Mature agile with a twist of CMMI. Agile Conference

2008, 4–8 August, pp. 212-217. doi: 10.1109/Agile.2008.10.
ettunen, P., 2014. Realizing agile software enterprise transformations by team per-

formance development. In: Cantone, G., Marchesi, M. (Eds.). XP 2014. LNBIP 179,
pp. 285–293. doi:10.1007/978-3-319-06862-6_22.

ettunen, P., 2012. Systematizing software development agility: towards an enter-
prise capability improvement framework. J. Enterp. Transform. 2 (2), 81–104.

doi:10.1080/19488289.2012.664610.
irk, D., Tempero, E., 2012. A lightweight framework for describing software practices.

J. Syst. Softw. 85 (3), 582–595. doi:10.1016/j.jss.2011.09.024.

ohlegger, M., Maier, R., Thalmann, S., 2009. Understanding maturity models results
of a structured content analysis. Proceedings of the I-KNOW ’09 and I-SEMANTICS

’09. 2–4 September 2009 http://goo.gl/hnw7uh.
uipers, B.S., Stoker, J.I., 2009. Development and performance of self-managing work

teams: a theoretical and empirical examination. Int. J. Hum. Resour. Manage 20 (2),
399–419. doi:10.1080/09585190802670797.

urapati, N., Manyam, V.S., Petersen, K., 2012. Agile software development practice

adoption survey. In: Wohlin, C. (Ed.). Agile Processes in Software Engineering and
Extreme Programming: 13th International Conference, XP 2012, Malmö, Sweden,

May 21–25, 2012. Proceedings, pp. 16–30. doi:10.1007/978-3-642-30350-0_2.
eppänen, M., 2013. A comparative analysis of agile maturity models. In: Pooley, R.

(Ed.), Information Systems Development: Reflections, Challenges and New Direc-
tions. Springer Science+Business Media, New York, pp. 329–343. doi:10.1007/978-

1-4614-1951-5_27.

ina, Z., Dan, S. 2012. Research on combining scrum with CMMI in small and
medium organizations. Proceedings of the International Conference on Com-

puter Science and Electronics Engineering, 23–25 March, Hangzhou. pp. 554–557.
doi:10.1109/ICCSEE.2012.477.

ui, K.M., Chan, K.C.C., 2005. A road map for implementing extreme programming. In:
Li, M., Boehm, B., Osterweil, L.J. (Eds.). Unifying the Software Process Spectrum:

International Software Process Workshop, SPW 2005. Beijing, China, pp. 474–481.

doi:10.1007/11608035_38.
ukasiewicz, K., Miler, J., 2012. Improving agility and discipline of software devel-

opment with the Scrum and CMMI. IET Softw. 6 (5), 416–422. doi:10.1049/iet-
sen.2011.0193.

aier, A.M., Moutrie, J., Clarkson, J., 2012. Assessing organizational capabilities: re-
viewing and guiding the development of maturity grids. IEEE Trans. Eng. Manage.

59 (1), 138–159. doi:10.1109/TEM.2010.2077289.

arch, J.G., 1991. Exploration and exploitation in organizational learning. Organ Sci.
2 (1), 71–87. doi:10.1287/orsc.2.1.71.

cDaniel Jr, R.R., 2007. Management strategies for complex adaptive systems:
sensemaking, learning and improvisation. Perform. Improv. Q. 20 (2), 21–41.

doi:10.1111/j.1937-8327.2007.tb00438.x.
cHugh, O., Conboy, K., Lang, M., 2012. Agile practices: the impact on trust in software
project teams. IEEE Softw. 29 (3), 71–76. doi:10.1109/MS.2011.118.

elo, C.O., Cruzes, D.S., Kon, F., Conradi, R., 2013. Interpretative case studies on
agile team productivity and management. Inf. Softw. Technol 55 (2), 412–427.

doi:10.1016/j.infsof.2012.09.004.
iddleton, P., Joyce, D., 2012. Lean software management: BBC worldwide case study.

IEEE Trans. Eng. Manage. 59 (1), 20–32. doi:10.1109/TEM.2010.2081675.
isra, S.C., Kumar, V., Kumar, U., 2009. Identifying some important success factors in

adopting agile software development practices. J. Syst. Softw. 82 (11), 1869–1890.

doi:10.1016/j.jss.2009.05.052.
itleton-Kelly, E., 2003. Ten principles of complexity & enabling infrastructures. In:

Mitleton-Kelly, E. (Ed.), Complex Systems and Evolutionary Perspectives of Organ-
isations: the application of complexity theory to organizations. Elsevier Science

Ltd, Oxford, UK.
oe, N.B., Dingsøyr, T., Dybå, T., 2009. Overcoming barriers to self-management in

software teams. IEEE Softw. 99 (99), 20–26. doi:10.1109/MS.2009.114.

oe, N.B., Dingsøyr, T., Dybå, T., 2010. A teamwork model for understanding an ag-
ile team: a case study of a Scrum project. Inf. Softw. Technol 52 (5), 480–491.

doi:10.1016/j.infsof.2009.11.004.
awrocki, J., Walter, B., Wojciechowski, A., 2001. Toward maturity model for extreme

programming. Proceedings of the 27th Euromicro Conference 2001. September
04–06. Warsaw, pp. 233–239. doi:10.1109/EURMIC.2001.952459.

’Reilly III, C.A., Tushman, M.L., 2008. Ambidexterity as a dynamic capability: resolv-

ing the innovators’ dilemma. Research in Organizational Behavior 28, 185–206.
doi:10.1016/j.riob.2008.06.002.

zcan-Top, O., Demirörs, O., 2013. Assessment of agile maturity models: a multiple
case study. In: Software Process Improvement and Capability Determination, 13th

International Conference, SPICE 2013, Bremen, Germany, June 4–6. Proceedings,
pp. 130–141. doi:10.1007/978-3-642-38833-0_12.

acklick, J. 2007. The agility maturity map – a goal oriented approach to agile im-

provement. Agile Conference 2007. 13–17 August, pp. 266-271. doi 10.1109/AG-
ILE.2007.55.

atel, C., Ramachandran, M., 2009. Agile maturity model (AMM): a software process
improvement framework for agile software development practices. Int. J. Softw.

Eng. 2 (1), 3–28 Available at http://goo.gl/FGe0eE.
aulk, M., 2001. Extreme programming from a CMM perspective. IEEE Softw. 18 (6),

19–26. doi:10.1109/52.965798.

errow, C., 1981. Normal accident at three mile island. Society 18 (5), 17–26.
doi:10.1007/BF02701322.

omeroy-Huff, M., Mullaney, J., Cannon, R., Sebern, M., Humphrey, W. 2005. The Per-
sonal Software Process (PSP) Body of Knowledge, Version 1.0, Software Engineer-

ing Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, Special Report
CMU/SEI-2005-SR-003. Available at http://goo.gl/fCBzUi.

ower, K., 2014. Social contracts, simple rules and self-organization: a perspective

on agile development. In: Cantone, G., Marchesi, M. (Eds.). Lecture Notes in
Business Information Processing, 179, pp. 277–284. doi:10.1007/978-3-319-

06862-6_21.
ower, K., Conboy, K., 2014. Impediments to flow: Rethinking the lean concept of

"waste" in modern software development. In: Cantone, G., Marchesi, M. (Eds.). XP
2014. LNBIP 179, pp. 2013–2217. doi:10.1007/978-3-319-06862-6_14.

umer, A., Henderson-Sellers, B., 2008. A framework to support the evaluation, adop-
tion and improvement of agile methods in practice. J. Syst. Softw. 81 (11), 1899–

1919. doi:10.1016/j.jss.2007.12.806.

aisch, S., Birkinshaw, J., 2008. Organizational ambidexterity: antecedents, outcomes
and moderators. J. Manage. 34 (3), 375–409. doi:10.1177/0149206308316058.

amesh, B., Mohan, K., Cao, L., 2012. Ambidexterity in agile distributed development: an
empirical investigation. Inf. Syst. Res. 23 (2), 323–339. doi:10.1287/isre.1110.0351.

chweigert, T., Nevalainen, R., Vohwinkel, D., Korsaa, M., Biro, M., 2012. 289-294. In:
Mas, A. (Ed.), Agile maturity model: oxymoron or the next level of understanding.

SPICE doi:10.1007/978-3-642-30439-2_34.

heffield, J., Lemétayer, J., 2013. Factor associated with the software develop-
ment agility of successful projects. Int. J. Proj. Manag. 31 (3), 459–472.

doi:10.1016/j.ijproman.2012.09.011.
idky, A., Arthur, J., Bohner, S., 2007. A disciplined approach to adopting agile prac-

tices: the agile adoption framework. Innov. Syst. Softw. Eng. 3 (3), 203–216.
doi:10.1007/s11334-007-0026-z.

jøberg, D.I.K., Dybå, T., Anda, B.C.D., Hannay, J.E., 2008. Building theories in software

engineering. In: Shull, F. (Ed.). Guide to Advanced Empirical Software Engineering,
pp. 312–336. doi:10.1007/978-1-84800-044-5_12.

nowden, D.J., Boone, M.E., 2007. A leader’s framework for decision-making. Harvard
Business Review. 85 (November (11)), 68–76 Available athttp://goo.gl/6NpWe.

oftex. 2012. Software e Serviços de TI: A Indústria Brasileira em Perspec-
tiva. Year 2012. vol. 2. Available in http://publicacao.observatorio.softex.br/_

publicacoes/index.php.

poelstra, W., Iacob, M., Van Sinderen, M., 2011. Software reuse in agile development or-
ganizations – a conceptual management tool. SAC ’11: Proceedings of the 2011 ACM

Symposium on Applied Computing, pp. 315–322. doi:10.1145/1982185.1982255.
tacey, R., 1996. Complexity and Creativity in Organizations. Berret-Koehler Publishers,

San Francisco.
tacey, R., Griffin, D., Shaw, P., 2000. Complexity and Management: Fad or Radical

Challenge to Systems Thinking?. Routledge, London and New York.

utherland, J., Jakobsen, C.R., Johnson, K., 2007. Scrum and CMMI level 5: the magic
potion for code warriors. Agile Conference 2007, 13–17 August. pp. 272-278. doi:

10.1109/AGILE.2007.52.
iwana, A., 2008. Do bridging ties complement strong ties? An empirical examination

of alliance ambidexterity. Strateg. Manage. J. 29 (3), 251–272. doi:10.1002/smj.666.

http://dx.doi.org/10.1109/AGILE.2009.24
http://dx.doi.org/10.1016/j.jss.2007.07.027
http://dx.doi.org/10.1109/MS.2010.132
http://refhub.elsevier.com/S0164-1212(14)00290-8/bib0024
http://refhub.elsevier.com/S0164-1212(14)00290-8/bib0024
http://dx.doi.org/10.5465/AMR.1989.4308385
http://dx.doi.org/10.1002/1097-0266(200010/11)21:10/11<1105::AID-SMJ133>3.0.CO;2-E
http://dx.doi.org/10.1016/j.jss.2014.07.030
http://dx.doi.org/10.1007/978-3-319-06862-6_7
http://dx.doi.org/10.2307/20159573
http://dx.doi.org/10.1016/j.jss.2010.06.018
http://refhub.elsevier.com/S0164-1212(14)00290-8/bib0031
http://refhub.elsevier.com/S0164-1212(14)00290-8/bib0031
http://dx.doi.org/10.1109/TSE.2012.30
http://refhub.elsevier.com/S0164-1212(14)00290-8/bib0033
http://refhub.elsevier.com/S0164-1212(14)00290-8/bib0033
http://goo.gl/x8frdu
http://goo.gl/DZJfuS
http://goo.gl/LtmPpr
http://dx.doi.org/10.1007/978-3-319-06862-6_22
http://dx.doi.org/10.1080/19488289.2012.664610
http://dx.doi.org/10.1016/j.jss.2011.09.024
http://goo.gl/hnw7uh
http://dx.doi.org/10.1080/09585190802670797
http://dx.doi.org/10.1007/978-3-642-30350-0_2
http://dx.doi.org/10.1007/978-1-4614-1951-5_27
http://dx.doi.org/10.1007/11608035_38
http://dx.doi.org/10.1049/iet-sen.2011.0193
http://dx.doi.org/10.1109/TEM.2010.2077289
http://dx.doi.org/10.1287/orsc.2.1.71
http://dx.doi.org/10.1111/j.1937-8327.2007.tb00438.x
http://dx.doi.org/10.1109/MS.2011.118
http://dx.doi.org/10.1016/j.infsof.2012.09.004
http://dx.doi.org/10.1109/TEM.2010.2081675
http://dx.doi.org/10.1016/j.jss.2009.05.052
http://refhub.elsevier.com/S0164-1212(14)00290-8/bib0055
http://refhub.elsevier.com/S0164-1212(14)00290-8/bib0055
http://dx.doi.org/10.1109/MS.2009.114
http://dx.doi.org/10.1016/j.infsof.2009.11.004
http://dx.doi.org/10.1109/EURMIC.2001.952459
http://dx.doi.org/10.1016/j.riob.2008.06.002
http://dx.doi.org/10.1007/978-3-642-38833-0_12
http://goo.gl/FGe0eE
http://dx.doi.org/10.1109/52.965798
http://dx.doi.org/10.1007/BF02701322
http://goo.gl/fCBzUi
http://dx.doi.org/10.1007/978-3-319-06862-6_21
http://dx.doi.org/10.1007/978-3-319-06862-6_14
http://dx.doi.org/10.1016/j.jss.2007.12.806
http://dx.doi.org/10.1177/0149206308316058
http://dx.doi.org/10.1287/isre.1110.0351
http://dx.doi.org/10.1007/978-3-642-30439-2_34
http://dx.doi.org/10.1016/j.ijproman.2012.09.011
http://dx.doi.org/10.1007/s11334-007-0026-z
http://dx.doi.org/10.1007/978-1-84800-044-5_12
http://goo.gl/6NpWe
http://publicacao.observatorio.softex.br/_publicacoes/index.php
http://dx.doi.org/10.1145/1982185.1982255
http://refhub.elsevier.com/S0164-1212(14)00290-8/bib0078
http://refhub.elsevier.com/S0164-1212(14)00290-8/bib0078
http://refhub.elsevier.com/S0164-1212(14)00290-8/bib0079
http://refhub.elsevier.com/S0164-1212(14)00290-8/bib0079
http://refhub.elsevier.com/S0164-1212(14)00290-8/bib0079
http://refhub.elsevier.com/S0164-1212(14)00290-8/bib0079
http://dx.doi.org/10.1002/smj.666

108 R.M. Fontana et al. / The Journal of Systems and Software 102 (2015) 88–108

P
m

a

V
B

h
p

a

a
E

i
o

p

S
i

C
o

q

A
E

s

t
o

s

Tsoukas, H., 2005. Complex Knowledge: Studies in Organizational Epistemology. Oxford
University Press, New York.

Tsoukas, H., Hatch, M.J., 2005. Complex thinking, complex practice: the case for
a narrative approach to organizational complexity. In: Tsoukas, H. (Ed.), Com-

plex Knowledge: Studies in Organizational Epistemology. Oxford University Press,
Oxford.

Tuan, N.N., Thang, H.Q., 2013. Combining maturity with agility – lessons learnt from a
case study. Proceedings of the SoICT’13, December 05–06. Danang, Viet Nam, pp.

267–274. doi:10.1145/2542050.2542072.

Tuckman, B.W., 1965. Developmental sequence in small groups. Psychol. Bull. 63 (6),
384–399 http://dx.doi.org/10.1037/h0022100.

Turner, N., Swart, J., Maylor, H., 2013. Mechanisms for managing ambidexterity: a re-
view and research agenda. Int. J. Manage. Rev. 15 (3), 317–332. doi:10.1111/j.1468-

2370.2012.00343.x.
Vidgen, R., Wang, X., 2009. Coevolving systems and the organization of agile software

development. Inf. Syst. Res. 20 (3), 355–376. doi:10.1287/isre.1090.0237.

Weick, K.E., Sutcliffe, K.M., Obstfeld, D., 2005. Organizing and the process of sensemak-
ing. Organ Sci. 26 (14), 409–421. doi:10.1287/orsc.1050.0133.

Yin, A., Figueiredo, S., Silva, M.M. (2011) Scrum Maturity Model: validation for IT or-
ganizations’ roadmap to develop software centered on the client role. ICSEA 2011,

The Sixth International Conference on Software Engineering Advances, pp. 20–29.
23–29 October, Barcelona. Available at http://goo.gl/SklUZr.

Yin, R.K., 2005. Estudo de Caso: Planejamento e Métodos, 3ª ed Bookman, Porto Alegre.

Rafaela Mantovani Fontana has a Bachelor’s degree in Computer Science and a Mas-
ter’s Degree in Systems and Production Engineering. She is a doctoral student at the

Pontifical Catholic University of Paraná and a professor at the Federal University of
araná. Her research interests include agile software development methods, project
anagement, software process improvement, software quality and complexity theory

pplied to management.

ictor Meyer Jr. is Professor of Strategic Management at the Post Graduate Program in
usiness Administration, Pontifícia Universidade Católica do Paraná, Brazil. He received

is Master and Doctorate degrees from the University of Houston, USA and conducted
ostdoctoral studies at the University of Michigan, USA. He has been a visiting professor

t the School of Public Services, DePaul University, Chicago and the author of books

nd academic journal articles published in Brazil and abroad. He is a member of the
ditorial Board of the Universidade em Debate, a Brazilian journal devoted to the main

ssues in the field at both national and international contexts. His main research focuses
n strategic management in complex organizations, with special interest in strategic

ractices in higher education institutions and hospitals.

heila Reinehr has a Bachelor’s Degree in Mechanical Engineering, a Master’s Degree
n Informatics and a Doctorate in Engineering. She is a professor at the Pontifical

atholic University of Paraná and an experienced researcher in the following areas
f computer science: software engineering, software process improvement, software

uality, project management, software product lines and metrics.

ndreia Malucelli has a Bachelor’s Degree in Informatics, a Master’s Degree in Electrical
ngineering and a Doctorate in Electrical and Computing Engineering. She is a profes-

or at the Pontifical Catholic University of Paraná and an experienced researcher in

he following areas of computer science: software engineering, artificial intelligence,
rganizational learning, ontologies, multiagent systems and healthcare information

ystems.

http://refhub.elsevier.com/S0164-1212(14)00290-8/bib0083
http://refhub.elsevier.com/S0164-1212(14)00290-8/bib0083
http://refhub.elsevier.com/S0164-1212(14)00290-8/bib0084
http://refhub.elsevier.com/S0164-1212(14)00290-8/bib0084
http://refhub.elsevier.com/S0164-1212(14)00290-8/bib0084
http://dx.doi.org/10.1145/2542050.2542072
http://dx.doi.org/10.1037/h0022100
http://dx.doi.org/10.1111/j.1468-2370.2012.00343.x
http://dx.doi.org/10.1287/isre.1090.0237
http://dx.doi.org/10.1287/orsc.1050.0133
http://goo.gl/SklUZr
http://refhub.elsevier.com/S0164-1212(14)00290-8/bib0091
http://refhub.elsevier.com/S0164-1212(14)00290-8/bib0091

	Progressive Outcomes: A framework for maturing in agile software development
	1 Introduction
	2 Related work
	3 Theoretical foundation
	4 Research approach
	4.1 Data collection
	4.2 Within-case analysis
	4.3 Cross-case analysis
	4.4 Validation
	4.5 Threats to validity

	5 Data analysis
	5.1 Within-case data analysis
	5.2 Cross-case analysis

	6 Discussion
	7 Conclusion
	 Acknowledgments
	 Appendix A
	 Appendix B
	 Appendix C
	 Appendix D
	 References

