96

three amigos'vision of a standardized software development process.

The following article is the introductory chapter from The Unified Development Process by Ivar
Jacobson, Grady Booch, and James Rumbaugh. These “three amigos” have been influential in creat-
ing a standardized object-oriented analysis and design notation, UML. This offering describes the

—Steve McConnell, editor-in-chief

The-Unified Process

Ivar Jacobson, Grady Booch, and James Rumbaugh, Rational Software

I oday, the trend in software is toward bigger, more complex systems.
T This is due in part to the fact that computers become more powerful

every year, leading users to expect more from them. This trend has also

been influenced by the expanding use of the Internet for exchanging
all kinds of information—from plain text to formatted text to pictures to diagrams
to multimedia. Our appetite for ever-more sophisticated software grows as we learn
from one product release to the next how the product could be improved. We want
software that is better adapted to our needs, but that, in turn, merely makes the
software more complex. In short, we want more.

We also want it faster. Time to market is another important driver.

Getting there, however, is difficult. Our demands for powerful, complex software
have not been matched with how software is developed. Today, most people de-
velop software using the same methods that were used as long as 25 years ago. This
is a problem. Unless we update our methods, we will not be able to accomplish our
goal of developing the complex software needed today.

The software problem boils down to the difficulty developers face in pulling to-
gether the many strands of a large software undertaking. The software development
community needs a controlled way of working. It needs a process that integrates the
many facets of software development. It needs a common approach, a process that

IEEE Software ,g- May/June 1999

¢ provides guidance to the order of ateam's ac-
tivities,

¢ directs the tasks of individual developers and
the team as a whole,

¢ specifies what artifacts should be developed,
and

¢ offers criteria for monitoring and measuring a
project’s products and activities.

The presence of a well-defined and well-man-
aged process is a key discriminator between hyper-
productive projects and unsuccessful ones. The
Unified Software Development Process—the out-
come of more than 30 years of experience—is a so-
lution to the software problem.

THE UNIFIED PROCESS IN A
NUTSHELL

First and foremost the Unified Process is a soft-
ware development process. A software develop-
ment process is the set of activities needed to trans-
form a user’s requirements into a software system
(see Figure 1). However, the Unified Process is more
than a single process; it is a generic process frame-
work that can be specialized for a very large class of
software systems, for different application areas, dif-
ferent types of organizations, different competence
levels, and different project sizes.

The Unified Process is component-based, which
means that the software system being built is made
up of software components interconnected via well-
defined interfaces.

The Unified Process uses the Unified Modeling
Language when preparing all blueprints of the soft-
ware system. In fact, UML is an integral part of the
Unified Process—they were developed hand in
hand.

However, the real distinguishing aspects of the
Unified Process are captured in the three key
words—use-case driven, architecture-centric, and
iterative and incremental. This is what makes the
Unified Process unique.

THE UNIFIED PROCESS IS
Use-Case DRIVEN

A software system is brought into existence to
serve its users. Therefore, to build a successful sys-
tem we must know what its prospective users want
and need.

User's Software
requirement | Software development | System

process

Figure 1. A software development process.

The term user refers not only to human users but
to other systems. In this sense, the term user repre-
sents someone or something (such as another sys-
tem outside the proposed system) that interacts
with the system being developed. An example of an
interaction is a human who uses an automatic teller
machine. He or she inserts the plastic card, replies
to questions called up by the machine on its view-
ing screen, and receives a sum of cash. In response
to the user’s card and answers, the system performs
asequence of actions that provide the user with are-
sult of value, namely the cash withdrawal.

An interaction of this sortis a use case. A use case
is a piece of functionality in the system that gives a
user a result of value. Use cases capture functional
requirements. All the use cases together make up
the use-case model, which describes the complete
functionality of the system. This model replaces the
traditional functional specification of the system. A
functional specification can be said to answer the
question, What is the system supposed to do? The
use case strategy can be characterized by adding
three words to the end of this question: for each
user? These three words have a very important im-
plication. They force us to think in terms of value to
users and not just in terms of functions that might
be good to have.

However, use cases are not just a tool for speci-
fying the requirements of a system. They also drive
its design, implementation, and test; that is, they
drive the development process. Based on the use-
case model, developers create a series of design and
implementation models that realize the use cases.
The developers review each successive model for
conformance to the use-case model. The testers test
the implementation to ensure that the components
of the implementation model correctly implement
the use cases. In this way, the use cases not only ini-
tiate the development process but bind it together.
Use-case driven means that the development
process follows a flow—it proceeds through a series
of workflows that derive from the use cases. Use
cases are specified, use cases are designed, and at

May/June 1999 % IEEE Software

97

the end use cases are the source from which the
testers construct the test cases.

While it is true that use cases drive the process,
they are not selected inisolation. They are developed
in tandem with the system architecture. That is, the

How are use cases and architecture related? Every
product has both function and form. One or the
other is not enough. These two forces must be bal-
anced to get a successful product. In this case func-
tion corresponds to use cases and form to architec-

ture. There needs to be interplay
between use cases and architec-

The architecture must be designed to/allowithe | e itisa-chicken and eggprob-

system to evolve, not only through its/initial

lem. On the one hand, the use

development but through future generations, | casesmust when realized fitin

98

use cases drive the system architecture and the sys-
tem architecture influences the selection of the use
cases. Therefore, both the system architecture and
the use cases mature as the life cycle continues.

THE UNIFIED PROCESS IS
ARCHITECTURE-CENTRIC

The role of software architecture is similar in na-
ture to the role architecture plays in building con-
struction. The building is looked at from various
viewpoints: structure, services, heat conduction,
plumbing, electricity, and so on. This allows a
builder to see a complete picture before construc-
tion begins. Similarly, architecture in a software sys-
tem is described as different views of the system
being built.

The software architecture concept embodies the
most significant static and dynamic aspects of the
system. The architecture grows out of the needs of
the enterprise, as sensed by users and other stake-
holders, and as reflected in the use cases. However,
itisalso influenced by many other factors: the plat-
form the software is to run on (such as computer ar-
chitecture, operating system, database manage-
ment system, and protocols for network
communication), the reusable building blocks avail-
able (such as a framework for graphical user inter-
faces), deployment considerations, legacy systems,
and nonfunctional requirements (such as perfor-
mance and reliability). Architecture is a view of the
whole design with the important characteristics
made more visible by leaving details aside. Since
what is significant depends in part on judgment,
which, in turn, comes with experience, the value of
the architecture depends on the people assigned
to the task. However, process helps the architect to
focus on the right goals, such as understandability,
resilience to future changes, and reuse.

IEEE Software % May/June 1999

the architecture. On the other
hand, the architecture must allow

room for realizations of all the required use cases,
now and in the future. In reality, both the architec-
ture and the use cases must evolve in parallel.

Thus the architects cast the system in a form. It
is that form, the architecture, that must be designed
50 as to allow the system to evolve, not only through
its initial development but through future genera-
tions. To find such a form, the architects must work
from a general understanding of the key functions,
that is, the key use cases, of the system. These key
use cases may amount to only 5 percent to 10 per-
cent of all the use cases, but they are the significant
ones, the ones that constitute the core system func-
tions. Here is the process in simplified terms:

¢ Thearchitect creates arough outline of the ar-
chitecture, starting with the part of the architecture
that is not specific to the use cases (such as plat-
form). Although this part of the architecture is use-
case independent, the architect must have a gen-
eral understanding of the use cases prior to the
creation of the architectural outline.

¢ Next, the architect works with a subset of the
identified use cases, the ones that represent the key
functions of the system under development. Each
selected use case is specified in detail and realized
in terms of subsystems, classes, and components.

¢ Asthe use cases are specified and they mature,
more of the architecture is discovered. This, in turn,
leads to the maturation of more use cases.

This process continues until the architecture is
deemed stable.

THE UNIFIED PROCESS IS ITERATIVE
AND INCREMENTAL

Developing a commercial software product is a
large undertaking that may continue over several
months to possibly a year or more. It is practical to
divide the work into smaller slices or mini-projects.

Each mini-project is an iteration that results in an
increment. Iterations refer to steps in the workflow,
and increments, to growth in the product. To be
most effective, the iterations must be controlled;
that is they must be selected and carried out in a
planned way. This is why they are mini-projects.

Developers base the selection of what is to be
implemented in an iteration upon two factors. First,
the iteration deals with a group of use cases that to-
gether extend the usability of the product as de-
veloped so far. Second, the iteration deals with the
most important risks. Successive iterations build on
the development artifacts from the state at which
they were left at the end of the previous iteration. It
is a mini-project, so from the use cases it continues
through the consequent development work—
analysis, design, implementation, and test—that re-
alizes in the form of executable code the use cases
being developed in the iteration. Of course, an in-
crement is not necessarily additive. Especially in the
early phases of the life cycle, developers may be re-
placing a superficial design with a more detailed or
sophisticated one. In later phases increments are
typically additive.

In every iteration, the devel-
opers identify and specify the rel-

evant use cases, create a design By ldentlfylng riSI_(S early in development,
using the chosen architectureas || EIMN@ [SPENT resolving occurs early when

loses only the misdirected effort of one iteration,
not the value of the entire product.

¢ Controlled iteration reduces the risk of not get-
ting the product to market on the planned sched-
ule. By identifying risks early in development, the
time spent resolving them occurs early in the sched-
ule when people are less rushed than they are late
in the schedule. In the “traditional” approach, where
difficult problems are first revealed by system test,
the time required to resolve them usually exceeds
the time remaining in the schedule and nearly al-
ways forces a delay of delivery.

¢ Controlled iteration speeds up the tempo of
the whole development effort because developers
work more efficiently toward results in clear, short
focus rather than in a long, ever-sliding schedule.

¢ Controlled iteration acknowledges a reality
often ignored—that user needs and the corre-
sponding requirements cannot be fully defined up
front. They are typically refined in successive itera-
tions. This mode of operation makes it easier to
adapt to changing requirements.

These concepts—use-case driven, architecture-
centric, and iterative and incremental develop-

aguide, implement the designin people are |eSS rUShed.

components, and verify that the

components satisfy the use cases.

If an iteration meets its goals—and it usually does—
development proceeds with the next iteration.
When an iteration does not meet its goals, the de-
velopers must revisit their previous decisions and
try anew approach.

To achieve the greatest economy in develop-
ment, a project team will try to select only the iter-
ations required to reach the project goal. It will try
to sequence the iterations in a logical order. A suc-
cessful project will proceed along a straight course
with only small deviations from the course the de-
velopers initially planned. Of course, to the extent
that unforeseen problems add iterations or alter the
sequence of iterations, the development process will
take more effort and time. Minimizing unforeseen
problems is one of the goals of risk reduction.

There are many benefits to a controlled iterative
process:

¢ Controlled iteration reduces the cost risk to the
expenditures on a single increment. If the develop-
ers need to repeat the iteration, the organization

ment—are equally important. Architecture provides
the structure in which to guide the work in the iter-
ations, whereas use cases define the goals and drive
the work of each iteration. Removing one of the
three key ideas would severely reduce the value of
the Unified Process. It is like a three-legged stool.
Without one of its legs, the stool will fall over.

Now that we have introduced the three key con-
cepts, itis time to take alook at the whole process, its
life cycle, artifacts, workflows, phases, and iterations.

THE LIFE OF THE UNIFIED PROCESS

The Unified Process repeats over a series of cy-
cles making up the life of a system. Each cycle con-
cludes with a product release to customers.

Each cycle consists of four phases: inception,
elaboration, construction, and transition. Each
phase is further subdivided into iterations, as dis-
cussed earlier. See Figure 2 (on the next page).

May/June 1999 % IEEE Software

99

®0ccccc0c00c000000000000000 00

Time

| Inception | Elaboration | Construction | Transition |
iteration | iteration iteration | iteration
#1 #2... #n-1 #n...

N

Releases

e

aninitial allocation of the be-
havior of the system to a set
of objects that provides the
behavior.

¢ A design model that
defines (a) the static structure
of the system as subsystems,
classes, and interfaces and (b)
the use cases realized as col-

Figure 2. A cycle with its phases and its iterations.

100

The product

Each cycle results in a new release of the system,
and each release is a product ready for delivery. It
consists of a body of source code embodied in com-
ponents that can be compiled and executed, plus
manuals and associated deliverables. However, the
finished product also has to accommodate the
needs, not just of the users, but of all the stake-
holders, that is, all the people who will work with
the product. The software product ought to be more
than the machine code that executes.

The finished product includes the requirements,
use cases, nonfunctional requirements, and test
cases. Itincludes the architecture and the visual mod-
els—artifacts modeled by the Unified Modeling
Language. In fact, it includes all the elements we
have been talking about in this chapter, because it
is these things that enable the stakeholders—cus-
tomers, users, analysts, designers, implementers,
testers, and management—to specify, design, im-
plement, test, and use a system. Moreover, itis these
things that enable the stakeholders to use and mod-
ify the system from generation to generation.

Even if executable components are the mostim-
portant artifacts from the users’ perspective, they
alone are not enough. This is because the environ-
ment mutates. Operating systems, database sys-
tems, and the underlying machines advance. As the
mission becomes better understood, the require-
ments themselves may change. In fact, it is one of
the constants of software development that the re-
quirements change. Eventually developers must un-
dertake a new cycle, and managers must finance it.
To carry out the next cycle efficiently, the develop-
ers need all the representations of the software
product (Figure 3):

¢ Ause-case model with all the use cases and
their relationships to users.

¢ An analysis model, which has two purposes:
to refine the use cases in more detail and to make

IEEE Software ,g- May/June 1999

laborations among the sub-
systems, classes, and inter-
faces.

¢ An implementation model, which includes
components (representing source code) and the
mapping of the classes to components.

¢ Adeployment model, which defines the phys-
ical nodes of computers and the mapping of the
components to those nodes.

¢ Atest model, which describes the test cases
that verify the use cases.

¢ And, of course, a representation of the archi-
tecture.

The system may also have a domain model or a
business model that describes the business context
of the system.

All these models are related. Together, they rep-
resent the system as a whole. Elements in one model
have trace dependencies backwards and forwards
with the help of links to other models. For instance,
a use case (in the use-case model) can be traced to
ause-case realization (in the design model) to a test
case (in the test model). Traceability facilitates un-
derstanding and change.

Phases within acycle

Each cycle takes place over time. This time, in
turn, is divided into four phases, as shown in Figure
4. Through a sequence of models, stakeholders vi-
sualize what goes on in these phases. Within each
phase managers or developers may break the work
down still further—into iterations and the ensuing
increments. Each phase terminates in a milestone.
We define each milestone by the availability of a set
of artifacts; that is, certain models or documents
have been brought to a prescribed state.

The milestones serve many purposes. The most
critical is that managers have to make certain crucial
decisions before work can proceed to the next phase.
Milestones also enable management, as well as the
developers themselves, to monitor the progress of
the work as it passes these four key points. Finally, by
keeping track of the time and effort spent on each

Use-case specifiéd k;y RSN
model \i S T T
2 realized by "~
@) ‘)
Ny dlstrlbuted by
Analélsils |mplemented by
mode
De5|gn verlﬁed by
model /a
Deployment
model OK

Implementation
model

\

o

Test model

Figure 3. There are dependencies between many of the models of the Unified Process. As an example, the depen-
dencies between the use-case model and the other models are indicated.

phase, we develop a body of data.
This data is useful in estimating
time and staff requirements for
other projects, projecting staff
needs over project time, and con-
trolling progress against these
projections.

Figure 4 lists the workflows—

Core
workflows

Requirements

requirements, analysis, design, Analysis

implementation, and test—in

the left-hand column. The curves)
Design

approximate (they should not be
taken too literally) the extent to
which the workflows are carried
out in each phase. Recall that
each phase usually is subdivided
into iterations, or mini-projects. A
typical iteration goes through all
the five workflows as shown for
an iteration in the elaboration
phase in Figure 4.

Implementation

Test

Phases
Inception Elaboration | Construction Transition
| . Aniteration in the
! elaboration phase
iter. iter. . . . o iter. iter.
#1 #2 i #n-1 #n

During the inception phase, a

good ideais developed into a vi-
sion of the end product and the
business case for the product is

Figure 4. The five workflows—requirements, analysis, design, implementation,
and test—take place over the four phases: inception, elaboration, construction, and
transition.

presented. Essentially, this phase
answers the following questions:

¢ What is the system primarily going to do for
each of its major users?

¢ What could an architecture for that system
look like?

¢ What is the plan and what will it cost to de-
velop the product?

A simplified use-case model that contains the
most critical use cases answers the first question. At

this stage the architecture is tentative. Itis typically
just an outline containing the most crucial subsys-
tems. In this phase, the most important risks are
identified and prioritized, the elaboration phase is
planned in detail, and the whole project is roughly
estimated.

During the elaboration phase, most of the prod-
uct’s use cases are specified in detail and the system

May/June 1999 % IEEE Software

101

102

architecture is designed. The relationship between
the architecture of a system and the system itself is
paramount. A simple way to put it is that the archi-
tecture is analogous to a skeleton covered with skin
but with very little muscle, the software, between
the bone and the skin—just enough muscle to allow
the skeleton to make basic movements. The system
is the whole body with skeleton, skin, and muscle.

Therefore, the architecture is expressed as views
of all the models of the system, which together rep-
resent the whole system. This implies that there are
architectural views of the use-case model, the analy-
sis model, the design model, the implementation
model, and the deployment model. The view of the
implementation model includes components to
prove that the architecture is executable. During this
phase of development the most critical use cases
identified during the elaboration phase are realized.
The result of this phase is an architecture baseline.

At the end of the elaboration phase, the project
manager is in a position to plan the activities and
estimate the resources required to complete the pro-
ject. Here the key question is, Are the use cases, ar-
chitecture, and plans stable enough, and are the
risks under sufficient control to be able to commit
to the whole development work in a contract?

During the construction phase the product is
built—muscle, the completed software, is added to
the skeleton, the architecture. In this phase, the ar-
chitecture baseline grows to become the full-
fledged system. The vision evolves into a product
ready for transfer to the user community. During this
phase of development, the bulk of the required re-
sources is expended. The architecture of the system
is stable, however, because the developers may dis-
cover better ways of structuring the system, they
may suggest minor architectural changes to the ar-
chitects. At the end of this phase, the product con-
tains all the use cases that management and the
customer agreed to develop for this release. It may
not be entirely free of defects, however. More de-
fects will be discovered and fixed during the transi-
tion phase. The milestone question is, Does the
product meet users'needs sufficiently for some cus-
tomers to take early delivery?

The transition phase covers the period during
which the product moves into beta release. In the
beta release a small number of experienced users
try the product and report defects and deficiencies.
Developers then correct the reported problems and
incorporate some of the suggested improvements
into a general release for the larger user community.

IEEE Software ,g- May/June 1999

The transition phase involves activities such as man-
ufacturing, training customer personnel, providing
help-line assistance, and correcting defects found
after delivery. The maintenance team often divides
these defects into two categories: those with suffi-
cient effect on operations to justify an immediate
deltarelease and those that can be corrected in the
next regular release.

The Unified Process is component based. It uses
the new visual modeling standard, UML, and
relies on three key ideas—use cases, architecture,
and iterative and incremental development. To
make these ideas work, a multifaceted process is re-
quired, one that takes into consideration cycles,
phases, workflows, risk mitigation, quality control,
project management, and configuration control.
The Unified Process has established a framework
that integrates all those different facets. This frame-
work also works as an umbrella under which tool
vendors and developers can build tools to support
the automation of the process, to support the indi-
vidual workflows, to build all the different models,
and to integrate the work across the life cycle and
across all models. 0

Adapted from Chapter 1 of The Unified
Software Development Process, by Ivar Jacob-
son, Grady Booch, and James Rumbaugh,
ISBN: 0-201-57169-2. Reprinted by permission
of Addison Wesley Longman, One Jacob Way,
Reading, MA 01867. All rights reserved. Contact
Addison Wesley Longman at (781) 944-3700,
http://www.awl.com/cseng/.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

