
Looking Back at the Bell-La Padula Model

David Elliott Bell
Reston VA, 20191
December 7, 2005

Abstract

The Bell-La Padula security model produced conceptual
tools for the analysis and design of secure computer sys-
tems. Together with its sibling engineering initiatives, it
identified and elucidated security principles that endure to-
day. This paper reviews those security principles, first in
their own time, and then in the context of today’s computer
and network environment.

1. Looking Back

I look back at the Bell-La Padula Model over a career
in security engineering that began with a concentrated burst
of security modeling between 1972 to 1975. It is difficult,
therefore, to limit myself to modeling and to exclude secu-
rity topics without which real systems would never reach
the field. I choose, then, to look back on both the model-
ing work and its engineering siblings so as to highlight their
contributions to the DNA of network and computer secu-
rity. What follows is not a synthesized chronicle of every-
thing that happened but my own experiences and knowledge
since the publication of the Bell-La Padula model.

2. Before the Bell-La Padula Model

In the late 1960’s, developments in commercial operat-
ing systems suggested the possibility of tremendous cost
savings. Time-sharing was starting to provide commercial
customers the ability to share the leasing costs of IBM and
other big-iron computers through simultaneous or sequen-
tial use of the expensive mainframe computers. For those in
classified government circles, this new capability promised
even more savings. Before time-sharing, separate comput-
ers had to be used for each different security level which
was processed on computers, or careful “color changes” had
to be made so that the same equipment could be used se-
quentially to process information at different security levels
(referred to as “periods processing”). There was therefore

the possibility of sharing those computer systems across se-
curity levels, with an important proviso. It was crucial that
that processing artifacts of each security level (files, regis-
ters, data) be kept rigorously separate with a high degree of
confidence.

An initial effort in this direction was commissioning
computer experts to test the security robustness of computer
systems that were developed in response to market forces.
The experts were called “tiger teams.” The success of the
tiger teams was spectacular. “It is a commentary on contem-
porary systems that none of the known tiger team efforts has
failed to date” [1]. The situation was in reality even worse
than it first sounds. Tiger Teams, flush with success in at-
tacking and taking over system A, would try their successful
system-A attacks on system B. Alarmingly, many previous
attacks worked immediately. Even more worrying were the
possibilities opened by a successful attack. After captur-
ing the system and inserting a back-door entrance, penetra-
tors could report the initial flaw and gain a reputation for
good citizenship. This planting of back-doors, particularly
back-doors that would persist through system and compiler
recompilations, was documented in an Air Force report [2]
and was the direct stimulus for the back door Ken Thomp-
son described in his Turing lecture [3] [4].

The conclusions drawn from Tiger Teams included the
ultimate futility of “penetrate and patch” and the necessity
of designing and building computer systems using a sound
notion of “security” in computer systems. The U.S. Air
Force initiated a set of engineering tasks, paired with several
parallel modeling efforts to produce “. . . a formal statement
of what is meant by a secure system — that is a model or
ideal design” [5].

3. Bell-La Padula Model, 1972–1975

3.1. Problem Statement

In the summer of 1972, The MITRE Corporation ini-
tiated its task to produce a report entitled “Secure Com-
puter Systems.” The report was to describe a “mathematical
model of security in computer systems.” This task was one

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

of several in an overall security project, mostly engineering
tasks.

The modeling task fell to Len La Padula and me. Our ini-
tial review of available literature showed that some of exist-
ing papers were theoretical (emphasizing abstract computa-
tion), while others were intimately tied to specific computer
operating systems. Our plan was to stay free of system-
specific details, first identifying and investigating general
principles, and afterwards addressing specific solutions.

3.2. Mathematical Foundations

Definition. Our initial work focused on a definition of
“security” within a mathematical (conceptual) framework.
At the start, we viewed access monolithically, rather like
possession of a book from a lending library. Having just
completed abstract investigations into data sharing and ap-
preciative of the complexities of “deadly embrace,” we be-
gan to think about the complexities that would result when
an “object” (the generalization of all things that could hold
information) had its security level changed. Would the sys-
tem immediately change the security level? Would “sub-
jects” currently accessing the object have their access ter-
minated? Wouldn’t sudden termination of access imply that
the classification had been increased? A mole in the orga-
nization could cache copies of a wide array of documents,
determine when something was upgraded, and pass copies
along to her evil spy master. On the other hand, if one took
the tack of delaying the upgrade of the classification un-
til all users had voluntarily given up access, there was the
possibility of indefinite delay: user A has access; user B
requests and gets access; user A gives up access; user C
requests and gets access; user B gives up access; user A re-
quests and gets access. In the midst of these considerations
we attended a project status meeting and provided a brief
summary of the complexities of changing an object’s secu-
rity classification dynamically. We were directed to exclude
dynamic changes of classification from our investigations.
The direction to exclude dynamic changes of classification
seemed to remove all interest from the problem. We set
about to demonstrate that fact and to document our results.

Précis. Our report [6] provided a conceptual framework
for talking about computer security, a vocabulary, and an
initial result that showed that security (as defined) is induc-
tive. We termed this result the “Basic Security Theorem,”
in contradistinction to the “Complex and Sophisticated Se-
curity Theorem” that we had hoped to produce1:

Basic Security Theorem. Let W ⊆ R×D×V ×V be any

1This theorem and those that follow are included to show general form
and changes to “the model” over time. The casual reader is not expected
to grapple with the theorems’ details. If the details are of interest, refer to
the original reports.

relation such that (Ri, Dj , (b�,M�, f�), (b, M, f)) ∈ W
implies

(i) f = f�

(ii) every (S, O) ∈ b� − b satisfies SC rel f�.

Σ(R,D,W, z) is a secure system for any secure state z.

3.3. A Mathematical Model

Our initial report left much to be explored. Finer-grained
access control reflecting modes of access was missing. Con-
sideration of access modes led to the unexpected identi-
fication of a hard-to-name information flow property, the
�-property. The relation W that conceptualized allowable
changes of state was not constructive and was therefore in-
sufficient for the analysis and formulation of core system
calls that change the security state.

Access Modes. There is a dilemma in dealing with
access modes in a general, conceptual way. One advan-
tage of speaking in terms of α and ρ, as was done in the
Bell-La Padula model, is that the mind focuses on the logic
of the argument, preventing connotations from words (like
“read” or “execute”) from biasing the analysis. This primes
the pump of readers’ intuitions. A disadvantage lies in the
same lack of connotation. In this volume, connotation-light
mathematical symbology was used throughout, with the no-
table exception of the naming of access modes. The access
modes within the model were r, w, a, e, and c, the first four
obvious cognates for operating-system access modes read,
write, append, and execute and the last representing “con-
trol” of extending or rescinding access to an object. (It was
clear that the variety of control in setting access controls jus-
tified deferring a more detailed treatment until later.) This
priming of the pump proved useful when the report was first
published. In later use however, the connotations of access
modes in actual computer systems caused some difficulties.
Engineers insisted that execute access required “reading”
the code before executing it. As a result, Multics’s execute
mode was later listed as corresponding to {r, e}. In later
modeling work, the original modes of r, w, a, and e were
replaced by the four combinations of view and alter access
modes, view indicating the ability to see an object’s con-
tents, and alter indicating the ability to modify its contents.

Origin of �-property. Careful consideration of gen-
eralized access modes led us to the realization that the
lending-library analogy had outlived its usefulness. In the
first volume, access was binary: either the file was ac-
cessed (checked out from the library) or not accessed (on
the shelves). With fine-grained access modes, many dif-
ferent patrons could have simultaneous access in different
modes. The important insight was that with files, unlike

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

physical books, a user could add marginalia without other
users realizing. Information could also be altered or re-

Figure 1. Information Flow

moved with no trace. Since unrestricted users could alter
the contents of files undetected, there was the danger of in-
formation being copied from one file to another. If a para-
graph from the intelligence summary could be copied into
the bowling scores, then the system would have lost accu-
rate control of the situation. Our analysis paralleled that in
[7], where it was observed that one cannot protect resources
with finer granularity than the protection mechanisms them-
selves support: different diamonds in a safety-deposit box
receive exactly the same level of protection. Preventing this
unwanted transfer of information admitted of two immedi-
ate solutions. One was to monitor every transfer of infor-
mation (every load instruction, every store, and every
copy). The other was to prevent simultaneous access to
two objects if flow of information between them could be
objectionable. The latter course was chosen, not least be-
cause of the overhead of making policy decisions for each
instruction. The approach taken to preventing an unwanted
transfer of information was to deny the second access re-
quest. That is, if the high-level object is successfully opened
for read, a subsequent request to open the low-level object
for write would be denied. If the first request is to write
the low-level object, the later request to read the high-level
object would be denied.

A condition to prevent deleterious flows was easily for-
mulated, but a descriptive name was elusive. When I first
raised the idea, I scribbled the heading “�-property” on the
blackboard over a figure much like figure 2. After a burst of
energetic discussion, I pointed out that if we didn’t change

Figure 2. Original �-property

the name right then, we’d be stuck with it forever. Nothing
came to us and we continued our discussion. “�-property”
it remained.

“Rule” Structure. W in the first volume was an un-
defined relation that conceptualized allowable changes of
state. In the first volume, a relation with structure was not
required in order to establish that volume-I security is in-
ductive. If the model were to provide direct assistance in
the formulation of core system calls, a more constructive
form was desirable. The approach adopted was to specify
W as a function of a set of “rules,” each addressing a partic-
ular change of state. The conditions limiting the assembly
of rules ω to define a complete relation W (ω) were mini-
mal: each had to address a well-formed class of request and
no two rules could have responsibility for the same request
for change of state. Within that structure, a set of rules gov-
erning every possible change of state was devised: getting
access to objects (in the four access modes, read, append,
execute, and write); releasing access; giving access to an-
other subject; rescinding other subjects’ accesses; changing
security levels; creating objects; and deleting them. Each of
ten rules was then proved to preserve simple-security (that
is, the subject’s classification is greater than the object’s
classification); discretionary-security (that is, the subject is
listed as having access to the object); and �-property. Any
combination of non-overlapping rules resulted in a concep-
tual system that stayed in secure states if it began in one.

Précis. The second volume [8] was a step away from
the totally conceptual towards the pragmatic engineering
needs of building a secure computer system. Aspects of
this direction are found in the inclusion of access modes

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

and the use of rules that addressed all conceivable actions
between subjects and objects rather than an undifferenti-
ated relation W . The original definition of security was re-
fined into simple-security, while nuances of different access
modes, discretionary-secrity and �-property were added.
With these underlying changes, a corresponding Basic Se-
curity Theorem was stated and proved:

Theorem 4-1. Let ω = {ρ1, ρ2, . . . , ρ10}, the ρi as de-

fined in the section entitled The Rules, and z0 be a secure

state which satisfies �-property. Then Σ(R,D,W (ω), z0)
is a secure system which satisfies �-property.

3.4. Refinement of a Mathematical Model

At the outset of the second year’s modeling work, there
did not seem to be many pending topics and only one staff
member (me) was assigned modeling duties. However,
the engineering tasks attempting to use the modeling re-
sults in building secure prototypes were having difficulties.
Their simplifications and frustrations led to a number of
euphemistically termed “refinements” to make the model
more usable and more attuned to the realities of computer
systems.

Object Hierarchy. The first refinement addressed
control of access privileges, based on the object hierarchy
within the operating system. For Multics (and by inheri-
tance, for Unix), control of objects (segments in Multics,
directories and files in Unix) is limited by access to the ob-
ject’s parent directory. As a result, applying the general no-
tion of control in volumes II and III to Multics required an
enormous amount of interpretation. The engineers build-
ing secure Unix prototypes and participating in securing
Multics wanted and needed some conceptual guidance on
the security implications of this variety of control. That is,
they preferred me to make the conceptual leap rather than
themselves. To deal with this diffuse, implicit control, the
model had to be extended to include an object hierarchy
H that indicates the structure of objects in any state. The
collection of rules for building and analyzing systems was
augmented by the addition of four alternative control rules:
rules to give and rescind access in a system with implicit
hierarchical control; and rules to create and delete objects,
with and without “compatibility.” The term “compatibility”
was used for systems where the security levels are mono-
tonically non-decreasing from the root directory down each
pathname. That is, each object has a security level the same
as or greater than that of its parent.

The development of compatibility is worth a brief dis-
cussion. Since metadata about a file resides in its parent
directory in a hierarchical file system, the accuracy and pro-
tection of the parent is crucial to the proper mediation of
access to the file. In many cases, files and directories are

even different instances of a single underlying operation
system construct, segment for Multics and file for Unix. I

Figure 3. Anti-Compatibility

believed that a parent should be more classified than its chil-
dren because it contains crucial information about them. As
a result, my position was that a pathname should be mono-
tonically non-increasing (staying the same or decreasing)
away from the root, except for the first step. Since the root
is already an exception (having no parent), an additional
exception did not seem of much concern. This way, no
subject could introduce errors into the metadata of any ob-
ject without having been granted a higher level of clearance
that the object itself. Researchers at Case Western Reserve
University argued the reverse [9]. Since pathname resolu-

Figure 4. Compatibility

tion requires reading all intermediate nodes, they asserted
that the path should be monotonically non-decreasing away
from the root (staying the same or increasing). This dis-
agreement was resolved by program direction, not by de-
bate. I incorporated the Case position into the model as
directed, terming it “compatibility” and giving Case credit,
subtly disavowing responsibility.

There are two items of note. One was the dynamic na-
ture of conceptual developments. The second was my error
of conflation: “if this is important, it must be highly clas-
sified.” With the hindsight of thirty years, I believe the is-
sue was not the sensitivity of the object’s metadata contents
but its integrity (accuracy and modification limited to au-
thorized agents). While some metadata can be read as half

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

of a covert channel, there is no conceptual reason that the
classification of an object and that of its metadata have any
particular relation to each other.2

Simplification of �-property. The second refinement

Figure 5. Revised �-property

simplified the �-property based on an engineering short
cut. Lee Schiller noted that the original formulation of
�-property required comparing the security level of a newly
requested object to that of every object to which the subject
currently has access. His simplification was to record each
subject’s “current security level” in a system variable and
to compare the new object’s security level to the current-
security-level, replacing many comparisons with a single
one. For viewing accesses, the current security level had
to be greater or equal to (or to “dominate”) that of the new
object. For altering accesses, the current security level had
to be less than or equal to (or be dominated by) that of the
new object. For access that included both view and alter,
the two security levels had to be the same. This engineering
short cut not only simplified the statement of the �-property
but also narrowed the gap between practical implementa-
tions and modeling versions. This refinement required the
addition of the current security level to the modeling def-
initions, then recasting rules ρ1, ρ2, and ρ4 (get-read, get-
append, and get-write) in terms of current security level.

Untrustworthy and Trusted Subjects. The third re-
finement was a revision of the �-property that introduced
the concept of the “trusted subject.” The stimulus for this re-
vision came from the engineering task focused on building
a secure operating system prototype. The intention was to
apply the �-property to every process within the prototype.
Consider the scheduler. Its function is to swap jobs when
conditions require. If the current process were running at
TOP SECRET, then the scheduler would have to read all

2The cross-product of a data sensitivity lattice with an integrity lattice
happens to be a sublattice of a boolean lattice. Metadata integrity could
be handled with modern lattice policies, but that subtlety of thought came
later.

the current state information and write it into swap space.
If the next process were UNCLASSIFIED, the scheduler
would similarly have to read all swapped out information,
move it into place for execution, then kick off the new pro-
cess. In summary, the scheduler would have to read and
write TOP SECRET information and then read and write
UNCLASSIFIED information. “What security level,” the
engineers asked me, “shall we assign to the scheduler?” On
reflection, the premise of the original �-property was that
no subject could be trusted not to copy part of the intelli-
gence summary into the bowling scores. That assumption
clearly does not apply to the core of a secure operating sys-
tem where one can and would insist that the entirety of such
core processes be carefully and thoroughly reviewed. The
model was altered to identify a subset S′ of the full set S
of all subjects. These subjects were the subjects that “are
untrustworthy and may mix information as described” [10].
The concept of “�-property” was replaced by “�-property
relative to S′ ” and the subjects outside S (mathematically,
the set S − S′) were not subjected to the restrictions under
the original �-property. Subjects as a whole were divided
into two parts, “untrusted subjects” and “trusted subjects.”
Those “trusted subjects” were precisely those who “will
never mix information of different security levels” [11].

Précis. The three refinements all derived from engi-
neering experience in trying to apply the security model to
actual system implementations. Raising these issues to the
project modeler benefited both the modeling and the engi-
neers: the model was refined to represent actual computer
systems more faithfully and the modeling results provided
justification and more explicit guidance to system prototyp-
ing and implementation.

Revised BST [12]. If one desires a secure computer sys-

tem which exhibits only compatible states satisfying the

�-property, one can use the set of rules

ω′
iii = {ρ1, ρ2, ρ3, ρ4, ρ5, ρ12, ρ13, ρ15, ρ16, ρ17}

together with a compatible, secure initial state z0 which sat-

isfies the �-property [relative to S′].

Note that omitted rules ρ6 through ρ11 are the non-hierarchy
versions of giving and rescinding access, creating and delet-
ing objects, and changing the security level function f.
Those non-hierarchical rules were neither voided nor super-
seded and are available wherever they are applicable.

3.5. Unified Exposition & Multics Interpretation

Background. The first three volumes of the Bell-
La Padula model were produced during two fiscal years. In
the following year, there were other priorities. The year af-
ter that, an additional modeling effort was mounted. The

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

reasons were several. One was that the changes in the
model over three volumes made it difficult for readers and
engineers to keep the definitions and state-changes rules
straight. The other was the large conceptual distance be-
tween the model as it stood and the Multics operating sys-
tem that was in the process of being hardened and secured.

The “unified exposition” part of the tasking was easy for
us to understand. The “Multics interpretation” part required
an understanding of the Multics operating system. A re-
quest for information and assistance from the staff assigned
to securing Multics resulted in us receiving a copy of El-
liott Organick’s The Multics System: An Examination of Its
Structure [13] with an injunction to learn the system from
the book. Learning Multics from Organick was highly ed-
ucational. The exercise revealed operating system theory
and practice in a concentrated, focused way. Independent
study provided cross-training for systems engineering and
analysis, in addition to security modeling and “security en-
gineering.”

Précis. The fourth volume gathered the changing defi-
nitions and results into a single place [14]. It provided new
“rules” tailored to the Multics system. It provided proofs
for the new Multics-specific rules,

It also included a time-sensitive statement that sounded
like eternal truth: “All significant material to date on the
mathematical model has been collected in one place in the
Appendix of this report” [15]. This statement was true at
the time with the known audience (computer security spe-
cialists in 1974). It was not true for later readers that had
not worked in computer security during the 1970’s.

This volume completed the transition of Bell-La Padula
modeling from the purely conceptual to the system-specific.
The general conceptual tools, tempered by engineering use
and frustration, had been brought to bear on a specific sys-
tem problem, the securing of Multics.

Theorem A10 [16]. Let ρ be a rule and

ρ(Rk, v) = (Dm, v�), where v = (b, M, f, H) and

v� = (b�,M�, f�,H�).

1. if b� ⊆ b and f� = f, then ρ is ss-property-preserving.

2. if b� ⊆ b and f� = f, then ρ is �-property-preserving.

3. if b� ⊆ b and M�
ij ⊇ Mij ,, then ρ is ds-property-

preserving.

4. if b� ⊆ b, f� = f, and M�
ij ⊇ Mij , then ρ is secure-

state-preserving.

4. Observations on Modeling Results

4.1. Clear Definition

The Bell-La Padula Model demonstrated the importance
of a clear definition of the “security” being addressed. With-

out a clear definition, one faces unending complaints about
“essential” aspects of security being omitted. “How can you
call a system secure if it doesn’t prohibit (or require) ℵ?”

4.2. Grounded in Engineering Reality

The modeling also implicitly demonstrated the impor-
tance of being grounded in immediate engineering prob-
lems. A purely academic exercise in computer security
would not have unearthed and addressed the practical issues
in building or retrofitting an operating system for sound se-
curity.

4.3. Toolbox Produced

Consider the Bell-La Padula modeling reports as a tool-
box for the design, analysis and implementation of secure
computer systems. After the first four reports had been pub-
lished, the toolbox was full and complete. It included a de-
scriptive capability: a precise definition of “security” that
incorporated information compromise, fine-grained control
of individuals to information objects, and preventive mea-
sures to prohibit information from flowing from high clas-
sification levels to lower classification levels. There were
general results guaranteeing that security would be present
provided the system began in a secure state and never intro-
duced a security violation during a change of state. There
were “rules” for handling a wide array of routine state
changes (getting and releasing access; giving and rescinding
access privileges; creating and deleting objects) as well as a
method of combining arbitrary sets of such rules to describe
a particular instance of a secure system. The complete set
of rules included both generic rules as well as rules closely
tailored to the Multics operating system, the first instance
of a specific modeling solution. I believed then as now that
no radical security modeling would be required later, with
two possible exceptions. One would be the need to analyze
a form of “security” beyond those specified: compromise,
fine-grained discretionary access control, and �-property-
like information flow. Another would be the need to ana-
lyze technology artifacts that did not patently correspond to
the descriptive machinery already available. Between 1975
and the present, both exceptions were experienced, but only
infrequently.

4.4. Avenues of Futility

At the time, no one felt it necessary to state that pin-
ning one’s security hopes on having smarter geeks than the
opposition was a failed concept. Neither did most experts
believe that market forces would produce secure systems:
they hadn’t produced systems that stopped the 1970’s tiger
teams. Moreover, prominent industry representatives were

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

arguing that the only security required was personnel secu-
rity, while technical security was bunk.

4.5. Strong, Built-in Security

Experts agreed that deep, significant security required
security being built in and being built for high confidence.
Today, we would say such systems require “high assur-
ance.”3 Commercial systems, even commercial systems
with some security labels, were not sufficient to keep in-
formation of adjacent collateral classification levels sepa-
rate: UNCLASSIFIED from CONFIDENTIAL, for exam-
ple. Too much was known about the weakness of such
systems through tiger team results to believe that feature
hardening or security appliques (security features added on
top, or inserted in the middle) could really protect one’s re-
sources from a dedicated, resourceful, and intelligent foe.
Imagine the devastation if your foe had the skills and re-
sources of the wily hacker [17], much less those of highly
skilled security specialists [18].

4.6. Self-Protection and Subversion

Both the engineering and modeling tasks had addressed
flanking attacks in the form of subversion. The last mod-
eling report discussed “sabotage” (“undesired alteration
or destruction of information by purposeful action of an
agent”) and integrity, noting that a system’s ability to pro-
tect itself is essential and that a lack of strong self-protection
makes conceptual analysis worthless [19]. The engineer-
ing tasks went further in demonstrating how penetration
and the insertion of backdoors and other maleficent logic
could completely undermine the intended security charac-
teristics of a system. Just as important, the demonstrated
harm that subversion could do necessitated anti-subversion
requirements, especially formal verification and trusted dis-
tribution.

It is worth including a description of one of the most
ominous subversion attacks. It is called the “two-card
loader,” through analogy to mainframe loaders. A general-
purpose loader could be packed into two punched cards.
The hard-wired loader would read those two cards into
memory then pass execution to the two-card loader. It
would then load any program for execution. A two-card
loader subversion would add a general-purpose program
loader to a system. The loader begins execution after receipt
of an obscure signal, similar to the signals used to unlock
“Easter eggs” in commercial software. This kind of addi-
tion to an allegedly secure system would allow an attacker

3By high assurance I mean confidence in proper design and implemen-
tation represented by systems at B3 and A1. Marketing claims that B1-like
systems are “high assurance” are purposefully misleading or a reflection
of ignorance.

to craft a pointed attack much later and launch that attack
on command. The possibility of commercial software hav-
ing covert two-card-loader logic makes tight controls over a
secure system’s configuration vitally important.

5. General Developments, 1975–2005

Engineering and conceptual efforts continued from 1975
through 1983, but I was not involved. When I returned to
security work in 1983, there were three parallel and inter-
related strands of security development: consolidating the
successes of computer security, a technology shift to smaller
computers and more networking, and initial glimmerings of
new security policies.

5.1. Consolidation

At the beginning of the 1980’s, there was a concentrated
effort to solidify and build on the successes of the 1970’s
work in computer security and to learn from the failures.
The various engineering tasks, conceptual tasks, and re-
search prototypes had identified security principles, meth-
ods and techniques and proved those techniques in exem-
plar systems such as the Kernelized Secure Operating Sys-
tem (KSOS) [20], the Provably Secure Operating System
(PSOS) [21], the Kernelized Virtual Machine (KVM) [22],
and Multics [23]. Steve Walker at the Office of the Sec-
retary of Defense initiated the Computer Security Initiative
with three goals: to formulate a metric for measuring the se-
curity of systems, to establish a center whose mission was
to measure commercial systems against that metric, and to
initiate a technical conference dedicated to computer secu-
rity. The metric was the Trusted Computer System Eval-
uation Criteria [24], published in 1985. The center was
the Department of Defense Computer Security Evaluation
Center (later the National Computer Security Center). The
conference was the Department of Defense/National Bu-
reau of Standards Computer Security Conference (later the
National Computer Security Conference).

The construction of the TCSEC was an exercise in giv-
ing partial credit. The best security known became the
highest security class, A1. The lower classes were devel-
oped as logical subsets of security requirements down to
“no security at all,” or D. Solid commercial systems with
good discretionary access control were expected to meet the
requirements of the C2 class, “Controlled Access Protec-
tion.” Adding security labels to some of the objects in the
system resulted in the B1 class, “Labeled Security Protec-
tion.” C2 and B1 systems were viewed as no stronger than
that required to keep order between cooperative colleagues.
At B2, “Structured Protection,” the first approximation of
a really secure system could be seen. At B3, “Security
Domains,” the system has its core (its “trusted computing

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

base”) minimized and it is the lowest class that is “highly
resistant to penetration.” A1, “Verified Protection,” added
life-cycle protection against changes to the hardware and
software (anti-subversion), trusted distribution of the sys-
tem and updates, and the use of “formal verification.”

I had doubts whether “formal verification” was nec-
essary, based on my reading of the 1970’s proofs-of-
correctness literature and more particularly on my co-
authorship of a MITRE report [25] on the topic of soft-
ware validation for certification. In the mid-1970’s, there
seemed to be a disconnect between most of the literature
on proof-of-correctness and the situation of validating a se-
cure system. Proofs-of-correctness had focused on simple
comparisons of an algorithm to a program embodying that
algorithm: a principal class of papers addressed bridge-
bidding programs, for example. The challenge for verifying
a secure system was avoiding insecurity and maintaining a
state of security. As the TCSEC was being finalized, I was
surprised to learn that past intentions to verify automatic
verification systems had been quietly abandoned. While at
the Computer Security Center, I became more familiar with
both the theory and practice of automatic verification sys-
tems and my reservations were not reversed. Work-arounds
to assure that the verification tools could process the large
specification files included manual stubs, drivers, and artful
commenting-out of sections of the specification to assure
that the tools could run to completion. In many ways, hu-
man brain-power provided a back-stop for the limitations of
the tools. Nevertheless, I came to feel that formal specifi-
cations held some value. My feeling was captured best by
Marv Schaefer, observing that the greatest benefit of for-
mal verification is gained in writing down the specification.
Normally loquacious verificationists were struck dumb.

Part of the original motivation for the TCSEC and the
Trusted Product Evaluation Program was to streamline and
regularize the formal process of approving Department of
Defense systems for operation – certification and accred-
itation (C&A). While there were policies and procedures
for assessing secure computer systems, there were problems
with having each acquisition’s engineering staff assess the
underlying operating system or systems for security compli-
ance. Not only was there no reuse of the analytical results,
but also there was no guarantee of consistency across acqui-
sitions. If all certification engineers facing, say, a Trusted
Solaris component could refer to a published summary of its
security properties in the context of its TCSEC rating of B1,
then redundant analyses would be avoided and consistency
across different acquisitions would be increased. Moreover,
since computer security was a specialty field, the acquisi-
tion engineering staff were not always trained and current
in the relevant security topics. The intention was to cen-
tralize and reuse the security evaluation results to obviate
redundant analyses, to assure consistent results, and thus to

provide an acquisition task with a solid, published product
evaluation report.

The Trusted Product Evaluation Program was begun im-
mediately after the Center was formed in 1981. The first
candidate systems included the commercial “archetype”
systems, the systems whose successes were the basis for the
requirements in the TCSEC. The initial set of candidates in-
cluded SCOMP at A1 (verified security) and Multics at B2
(structured protection). At the lower levels were Unisys’s
MCP/AS, IBM’s RACF, Hewlett Packard’s MPE V/E, CA’s
ACF2/VM, CA’s TOP SECRET/NVS, and CDC’s Network
Operating System at C2 (best commercial practice); and
Univac’s OS 1100 at B1 (labeled security protection). Over
time, many more C2-candidate systems entered the pro-
gram and completed evaluation. The most significant was
Windows NT 3.5 in 1995. The most significant almost-B1
system in today’s context is Trusted Solaris V2.5.1 which
received an EAL4/B1 rating in 1998. Both of these sys-
tems, of course, are inadequate to counter any focused at-
tack; their proper use is among cooperating friends. At the
higher levels, the successful systems were VSLAN, Mul-
tics, and Trusted Xenix at B2; XTS-300/400 at B3; and
SCOMP, GEMSOS, Boeing’s MLS LAN at A1. Honorable
mention also goes to DEC’s Security-Enhanced VMS (SE-
VMS), an A1 candidate nearing final evaluation when the
product was withdrawn from the market [26]. The success
of these systems was far less than might have been hoped,
but it was a substantial achievement.

5.2. Technological Changes

At the same time that the computer security successes
of the 1970’s were being consolidated, Moore’s Law and
general networking were changing the face of computing.
Computers began to shrink and traditionally clear categories
of computers (computers, minicomputers, microcomputers)
began to blur and overlap. The technological changes be-
gan to accelerate away from the assumptions and verities of
computer security just as they were being codified.

5.3. Policies

From the beginnings of the Computer Security Initia-
tive, there were objections that the Department of Defense
and the intelligence community security policies based on
classifications did not apply in the civilian and commercial
world. Work in security policies remained largely the baili-
wick of the classified world and pure academics until 1989.
Up until that time, new conceptual policies were primarily
minor alterations to existing policies, variations on discre-
tionary security, for example. When David Clark and David
Wilson published “A Comparison of Commercial and Mili-
tary Security Policy” [27] in 1987, it was widely hailed and

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

stimulated further consideration of novel security policies.
Its primary contribution to security policies was to introduce
access triples (user, program, file), where previous work
had used duples (user, file) or (subject, object). The follow-
ing year witnessed an explosion of Clark-Wilson response
papers (see for example Lee [28] and Shockley [29]). In
1989, Brewer and Nash published “The Chinese Wall Secu-
rity Policy” [30], abstracting British financial regulations.
Its contribution was a user’s free-will choice limiting future
actions in a non-discretionary way. The multiplicity of these
policies, however, was more apparent than real, as will be
described in paragraph 6.3.

5.4. Cross-Currents

The technology movement away from single logical plat-
forms well understood in the computer security world posed
a dilemma for the Computer Security Center with regard to
the TCSEC and the product evaluation program. A series of
initiatives focused on the special security issues, first in net-
works and later in database management systems. The re-
sults were the Trusted Network Interpretation of the Trusted
Computer System Evaluation Critieria (TNI) [31] and the
Trusted Database Interpretation of the Trusted Computer
System Evaluation Critieria (TDI) [32]. Absent clear pro-
mulgated guidance on networking issues, product evalua-
tion faced a hard choice: exclude networking (unrealistic)
or include networking without clear guidance (risky). Nei-
ther choice was good. Caution led to the exclusion of net-
working features in the early days.

The growth of networking brought the “composition
problem” to the fore: what are the security properties of a
collection of interconnected components, each with known
security properties? Efforts were made to derive methods
and principles to deal with the unconstrained composition
problem, with limited success. In the sense of product eval-
uation and eventual system certification and accreditation,
one needed to leverage the conclusions about components
to reach conclusions about the whole without having to re-
analyze from first principles. Unfortunately, closed-form,
engineering-free solutions were not discovered and may not
be possible.

6. Conceptual Design, 1975–2005

6.1. Consolidation

Part of consolidation was the inclusion of a requirement
for security policy modeling for higher security products
(B2 and above) in the TCSEC. In addition, the TCSEC listed
the Bell-La Padula model as a good representative of a
model with the characteristics required. As a result, I un-
dertook modeling interpretation several times in early prod-

uct evaluations (Multics at B2 and SCOMP at A1). Later,
I produced a modeling interpretation for Trusted Xenix as
part of a product evaluation [33].

The formulation of interpretations of the TCSEC for net-
works (TNI) and later for databases (TDI) necessarily in-
cluded the topic of mathematical modeling. Conceptual-
izing networks, in particular, pivoted on the scope of the
network components being considered. A homogeneous
network (one viewable as a single virtual networked sys-
tem) admits of a conceptual design. Not so with an ad hoc
heterogeneous network (one without a single worldview).
The problem was precisely the unconstrained composition
problem and the need to consider engineering interfaces in
a general way, as described below.

6.2. Technology Changes

In the early 1980’s the A1 security modeling require-
ment was levied on Blacker Phase 1 (BP1), an inherently
networked system [34]. The conceptual difficulties were
several. BP1 was composed of three different components,
often geographically remote. The three componens had dif-
ferent design specifications and only working in concert did
they achieve the requirements of the overall system. In ad-
dition, the networking nature of the BP1 components raised
puzzling questions about all the A1 requirements. Specifi-
cally, each of the components was a trusted computer sys-
tem in itself, while participating with its siblings to produce
a “trusted network system.” The dual faces of the A1 re-
quirements were documented for the project and were later
provided as input to the invitational workshop in New Or-
leans, convened to begin work on guidance for trusted net-
works. Application of traditional modeling results to the
individual components was straightforward, but addressing
the larger BP1 network was not at all obvious. Eventually,
it became clear that the system itself was concerned with an
entirely different set of subjects and objects than were the
operating systems of the components. The system admin-
istered a policy concerning the labeled “connections” that
subscriber hosts could establish. Thus, at the network level,
the active entities were “hosts” and the resources were “con-
nections.” This realization led to a modeling interpretation
of the Bell-La Padula model that conceptualized hosts and
connections (called liaison in the model) [35]. Note that this
interpretation did not build on the Multics-specific rules, but
on the general rules in volume 3, augmented by rules con-
structed to address the specific topic of access-controlled
liaison. This was an example of modeling being required
because available resources did not patently apply.

In the TNI, composition is addressed at length, but com-
position there is tightly constrained. In broad outline, it
is similar to the approach taken in BP1. To evaluate an
network composed of independently evaluated components,

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

one must have network policies for identification and au-
thentication, audit, discretionary access policy and manda-
tory access policy; a network architecture; protocols for
communicating user identification, authentication, audit, la-
beling; and defined interfaces for reporting events to audit
components. This constitutes a network-view together with
engineering limits and requirements that made the TNI us-
able and successful [36].

In conceptualizing heterogenous networks, the general
composition problem is unavoidable and one faces enor-
mous difficulties in the absence of a network-view like
that of the TNI. With the increasing use of networking and
systems construction from smaller quasi-independent parts,
understanding the security properties of a collection of con-
nected secure systems is extremely important. I found none
of the conceptual and modeling results fully satisfying (pri-
marily because they ignored the engineering issues included
in the TNI) and therefore was unconvinced. From a purely
modeling point of view, there is an explicit presumption of
a global awareness of all aspects of the conceptual system.
Few security models (if any) even include a way of talk-
ing about an interface to another system. It is therefore
hard to see how two different models, even two instances
of the same model, could relate to each other and produce
a single security model. In a broader context, the TCSEC
requirements outside the modeling requirements are even
more difficult to satisfy. In fact, I conjectured that there is
no closed-form solution to the composition of several secure
systems that does not include a network-view and engineer-
ing interfaces and protocols.

Consider two identical A1 systems. Those systems might
be combined so that they mesh perfectly, both operationally
and theoretically, in an A1 composite. They could also be
also be combined so badly that the composite has no se-
curity at all (and would be rated D). One could probably
artfully adjust the requirements failed in such as way as to
make the composite any TCSEC level between D and A1.
It is the engineering details of the interface that determine
whether systems complement and enhance each other or un-
dermine each other’s original security qualities.

The unavoidability of heterogeneous networks and the
lack of a purely conceptual way to analyze their security
properties was a hard dilemma. One could not stand in the
way of the network tide coming in. Nor could one insist on
homogeneous networks throughout. In the absence of mul-
tilevel networking equipment that shielded unilevel hosts
and networks, there were very few practicable courses of
action.

What was generally chosen was to deploy isolated net-
works. The rationale was that if all users and all hosts on a
particular network were cleared for the information on that
network and were trusted with the network’s operational
mission, then one could manage without multilevel secure

networks. Unfortunately, the isolation between networks
was incomplete. There were and are operational needs to
move information between networks of different classifica-
tions and sensitivity levels. Those connections were accom-
plished with guards and other dedicated equipment whose
function was to enforce the rules about communication be-
tween the networks. Over time, the multilevel nature of
these components came to be ignored, abetted by the usual
way of viewing networks with their details hidden. A prime
example is the network cloud. It is important to remember
that the cloud is made up of processing platforms and com-
munication lines. Hence, a thin line between two separate
network clouds is, on closer inspection, a combination of
communications lines and computing platforms. That be-
ing the case, the following “Computer Security Intermedi-
ate Value Theorem” (CS-IVT) becomes important:

CS-IVT. If computer A at security level α is connected

to computer B at security level β through a network cloud

and α �= β, then some processing platform in the cloud is

multilevel.

Figure 6. Intermediate Value Theorem

Proof Sketch: If it were not so, then each node on any path
through the cloud to the distant end would be single-level at
the same security level as its immediate predecessor. As
a result, the first and last nodes would be operating at the
same level, a contradiction.

The irreducible complexity of computer security cannot
be eliminated by assigning a multilevel function to a com-
ponent that is represented by a line in a network cloud or a
wiring diagram. Claims that highly secure systems can be
constructed from low-security or untrusted system compo-
nents and lines on a blackboard have been roundly criticized
every time they have been propounded, and with good rea-
son: they have to contend with the CS-IVT. Connecting two
isolated networks with a slim line creates a single network
with a single cut-point. The CS-IVT then says that some

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

platform is multilevel. If neither cloud is multilevel, then
the slim line is. This is an illustration of the conservation of
complexity: you can relocate the complexity of multilevel
security, but you cannot eliminate it. Unfortunately, some
have forgotten this lesson or are trying to ignore it.

6.3. Policies

In 1987 before the explosion of new policies stimulated
by Clark-Wilson, I began to ponder a remark made by Marv
Shaefer. I had just made a presentation on lattices for com-
mercial isolation. As I was returning to my seat, Marv ob-
served that we could not then support a policy expressed as
an OR. “Why not?” I wondered. I began a personal investi-
gation which quickly turned into self study in lattice theory
using Birkhoff’s classic text [37]. I came to realize that
naive use of lattice theory in computer security’s infancy
had led to an identification of the fundamental elements in
a policy (which I termed “policy alphabet”) with the lat-
tice’s “atoms” (the elements directly above the � element.
This realization justified the working solution I had earlier

Figure 7. CANUKUS

crafted for multilateral sharing, such as CANUKUS infor-
mation (information shared in various combination between
the governments of Canada, the United Kingdom, and the
United States). Further, a fundamental boolean lattice result
had implications for security policies and for implementa-
tions. That result is as follows [38]:

Thm 11. The meet-irreducibles of the boolean lattice on

the alphabet A are ∧

a∈A

s(a),

where s(a) is either a or ¬a for a in the alphabet A.

Since there are many different-seeming formulations of
boolean lattices, one can choose the formulation that is most
familiar. All representations lead to the same boolean lat-
tice (up to isomorphism). Most telling, one of the formula-
tions combines uninterpreted symbols with AND, OR, and

NOT . Surely most security policies can be so defined. For
example, the usual boolean lattice can deal with ORs of the
policy elements

{FINANCIAL, ENGINEERING, STRATEGIC}
by using the meet-irreducibles (atoms)

{F ∧ E ∧ S, F ∧ E ∧ ¬S,
F ∧ ¬E ∧ S, F ∧ ¬E ∧ ¬S,
¬F ∧ E ∧ S,¬F ∧ E ∧ ¬S,

¬F ∧ ¬E ∧ S,¬F ∧ ¬E ∧ ¬S}.
Any security policy that can be defined with

AND/OR/NOT is isomorphic to any other one of the
same width (number of atoms). If they have different
widths, the smaller one is isomorphic to a sublattice of
the larger one. An implementation built to support any
boolean lattice could support any other boolean policy,
given enough width and the provision of a personality mod-
ule. This result was published in 1990 and demonstrated
that statements that the military security lattices are not
applicable to other situations were in error [39].

After presenting my paper, I asked Jim Anderson
whether he’d heard my talk. He had not, but observed that
if I could use my results to support ORCON, he knew peo-
ple who could use it immediately. Even 1-step ORCON
would be a big help. (ORCON stands for ”Originator Con-
trol.” It refers to access granted only for reading. Any use
or citation must be explicitly requested and granted by the
originating organization before it can be used.) My first
thoughts were that ORCON could not be done. If you pro-
vide an electronic copy of a report, no more control can
be exerted. My second thoughts considered the publication
process for classified documents more closely. Classified
publications are first drafted and then reviewed before pub-
lication and dissemination. From that perspective, a solu-
tion was constructed that marked each object with the origi-
nating organization and distinguished between DRAFT and
PUBLISHED materials. Changes of state were governed by
approval officials for each organization. An analyst prepar-
ing a DRAFT could use any information to which she had
access in her own organization and any PUBLISHED infor-
mation that other organizations had made available to her
organization. Publication (producing a PUBLISHED clone
of a DRAFT document) required approval by the local or-
ganization and any organization whose information was in-
cluded. With joint approval, roll-back, and limited changes
of state, one-step ORCON had a conceptual design. With
only a few extensions, n-step ORCON did too.4

With multilateral sharing, one-step ORCON, and n-step
ORCON solved, I attempted to collect all the claims of

4Note that this conceptual design requires a homogeneous environment.
All the computers and components must be cooperating to enforce the pol-
icy. The design does not solve ORCON in a heterogeneous environment.

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

“different” security policies in the literature, noting in par-
ticular whether the authors claimed their policy was out-
side the DoD’s classification policy. I structured my analy-
sis in terms of an abstract computer that included a lattice
policy built with AND/OR/NOT and access control lists.
For this abstract machine, I produced constructive solutions
for every security policy in the literature. In fact, two so-
lutions were provided, a strong solution building on non-
discretionary security policy and a weak solution building
on discretionary security policy. The weak solution was in-
cluded for those situations where strong, labeled security
policy is not available. The results were reported in “Putting
Policy Commonalities to Work” [40]. This was an example
of conceptual work addressing policies outside confiden-
tiality, discretionary security, and �-property. This paper
showed tangentially that the profusion of new security poli-
cies did not pose the problem it might have. Had all the
new policies been fundamentally different, vendors would
have had to choose which policies to support and which to
neglect. With the ability of any boolean policy implemen-
tation to support any other boolean policy, the plethora of
policies merely provided comfortable terminology for all
communities.

7. Observations for the 21st Century

7.1. Overview

Our computer security legacy at the beginning of the 21st

Century is not extensive, but neither is it inconsiderable. It
is the result of dedicated work by master technologists and
government champions. Lasting principles were hammered
out conceptually, then refined and honed on engineering
workbenches. The lessons were codified and an immense
effort to prime the pump with secure, trusted systems was
undertaken, compensating for the ineffectiveness of market
forces. In the opening years of this century, our legacy in-
cludes two very high security products and the community
knowledge to deploy them wisely. One could argue that we
are in a much better situation now than in the early 1980’s.
The general feeling, however, is that computer and network
security is in decline. Why is that? I believe it is the conflu-
ence of three currents of change: technology, the processes
for fielding secure systems, and Government’s role in nur-
turing and expanding our secure system resources.

7.2. Technology

Technology’s increasing pace of development and short-
ening product cycles have made most computer users full-
time beta testers. Something can be imagined, demon-
strated, and become mission-critical before a stable version
is available. In Internet time, “immediate gratification takes

too long” [41] is an understatement. Our networks are as-
semblies of beta products, hooked together heterogeneously
with more attention to features than to fundamental security.
Added to that is the normal marketing of commercial prod-
ucts. One’s own feature set, or dominance of the market, or
previous deployment — any impression of a market advan-
tage can and will be used to make a sale. There is nothing
wrong with that in any particular case. It is an unbroken
sequence of such decisions and interactions with other cur-
rents that causes problems.

7.3. Fielding Systems

At its inception, the Computer Security Initiative’s in-
tent to improve security certification suffered from a dearth
of secure products. Doubtful or hostile program man-
agers (government and contractor) could cite competitive-
ness regulations and system requirements not met (some-
times carefully crafted) by available secure products to seek
waivers. This reluctance to embrace change was neither un-
expected nor blameworthy. That initial reluctance, however,
combined with an increasing pace of technological change
and slow increases in the availability of secure products, re-
sulted in stultification and no meaningful progress towards
the routine use of secure products.

The formal process of evaluation suffered under shrink-
ing time-to-market schedules because analysis and under-
standing take time and thought. The structural changes to
product evaluation initiated in the early 1990’s had the ef-
fect of terminating community evaluation of highly secure
systems. The stock of secure-system resources was there-
fore frozen and attrition further thinned the ranks. Without
sales of their secure products, the vendors rightly viewed
them as under-performers.

On the certification and accreditation front, quick was
the enemy of strong security. System acquisitions and de-
ployments increasingly began to face hard choices between
sound security and speedy approval. Interested parties in
the form of vendors lobbied in favor of speedy approval,
and incidentally, sales of their products. I know from di-
rect experience that successful system acquisition requires
balancing many different demands and imperatives. One
must make compromises to deliver at all. The best one can
hope is to minimize compromises on essential issues. Such
compromises, however, are local optimizations. A sequence
of local optimizations need not produce global optimiza-
tion. Were I currently a program manager who needed a
highly secure component, I would far rather leverage some-
one else’s selfless act than act selflessly myself. The run-
ning joke is that everyone wants to be second through the
gate.

With few secure resources to build upon, with little C&A
to leverage, and with active lobbying by the vendors of low-

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

security systems, it is easy to see why individual program
managers and certifiers do not lead ambitious initiatives to
better the security in deployed systems. Surely someone
somewhere should be doing so.

7.4. Nurturing Secure System Resources

It is hard to argue persuasively that anyone is currently
nurturing our commercial security resources. From the
1960’s through the 1980’s, the military services and ARPA
funded research and development in computer security. In
the early 1980’s, the Department of Defense assigned for-
mal evaluation of commercial products to the National Se-
curity Agency, paired with the mission of encouraging se-
cure products and mandating their use. None of these mis-
sions flourish today.

At the beginning of the 21st Century, product evaluation
for high-security systems is moribund. DARPA correctly
views computer and network security as past the research
stage. Individual program offices rightly have primary focus
on their program, not on the greater good. No one has the
mission of “selfless acts of security.”

7.5. What Can We Do?

The first thing we must do is tell ourselves the truth about
security. Mostly isolated networks have not solved our
security problems. The Computer Security Intermediate-
Value Theorem still holds: slim lines between single-level
networks are multilevel devices, secure or not. Because
the slim lines are multilevel, it is unconscionable to use
overly weak components. Such connections require high
security, meaning A1, although in some cases one could ac-
cept a B3 solution. Systems of C2 or B1 heritage (Windows
NT/XP/Vista or Trusted Solaris, respectively) are totally in-
adequate. Their forebears could not thwart the Tiger Teams
of the 1970’s; they cannot stop a skilled and dedicated at-
tacker today. A Cuckoo’s Egg attack on an operational sys-
tem would be bad enough. A two-card loader subversion
requiring only a six-line “toehold” would be catastrophic
[42] [43].

As a corollary to telling ourselves the truth, we must
look askance at those who insist that semi-isolated networks
have solved our problems. Do they not know? or do they
ignore the risks they expose us to?

Not only can we use our scarce high-security resources
for the critical network connections, the current prevalence
of networking actually works to our advantage in this case.
There was once the vision of a world of computing where
every computing platform was multilevel and secure. Con-
trary to the assertions of critics, no one I knew ever believed
multilevel security had to be pervasive to succeed at all. Ev-
ery multilevel project I ever worked on explicitly acknowl-

edged and dealt with a mixed environment: multilevel se-
cure platforms and single-level platforms, interacting. (At a
conceptual level, a single-level system is a degenerate mul-
tilevel system: its highest and lowest levels are the same.)
Now, by contrast, our networks are heterogeneous and the
connections between networks of different security levels
are relatively few. There is the opportunity, therefore, to
place high-security products at the weakest points, the con-
nections between the not-quite-isolated networks.

Consider the kinds of connections one might want be-
tween networks. One might want a common file server. One
might want a web server. The connection might be a multi-
level database of a simple kind. Current web practice builds
pages from information assembled from many sources.
This makes utilization of several single-level databases or
a simple SeaViews-style secure database eminently reason-
able [44]. One might want thin clients attached to a multi-
level server, itself attached to resources of different security
levels. All of these could easily be built on current high-
security platforms. None of them require functions avail-
able exclusively on weak platforms.

Suppose one built these applications on a Yahoo!-
like base without a high level of security. The prob-
lems for a configurable Yahoo! portal are primarily func-
tional: database access, web display, and the marshaling
of searches via multiple search engines. Only protection
against defacement and masquerade have a security flavor.
Extending a Yahoo! situation to the connection of networks
of differing security levels is a massive and fundamental
change. The functional issues are the same, but the secu-
rity requirements cannot be satisfied by tighter configura-
tion or by constantly vigilant geeks. Without a solid, se-
cure foundation, such functionality is built on such a shaky
foundation that it cannot be trusted with multiple security
classifications.

The next thing we must do is use the resources we have.
The hard-won triumphs of the Computer Security Initiative
have been neglected so long that it is a miracle anything
has survived. We must constantly be on the lookout for op-
portunities to use them to good advantage. Knowing the
conflicting pressures on active acquisitions, we must gener-
ate opportunities to perform selfless acts of security in the
form of crafting and sharing reference implementations of
widely needed components. A good list to start with is the
following:

• high-security file servers,

• high-security static web servers,

• simple high-security multilevel databases,

• high-security dynamic web sites, and

• high-security thin-client architectures.

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

None of these breaks new ground in either security or in
general functionality, but each of them would be an ex-
tremely valuable building block. (In fact, the first three
build to the fourth.) We as a community need a champion
to lead these and similar reference implementations for the
good of the entire community. We cannot wait for market
forces to reverse course and surprise us with truly secure
building blocks.

8. Conclusion

Our computer security legacy needs to be used and it
needs to be nurtured. If we do not, we risk losing what
little we have and having our enduring security principles
fade from community consciousness. In addition, we must
remember that

• Tight configuration and smart geeks are not a substitute
for good security.

• Multilevel secure components are unavoidable.

• Multilevel links between security levels must be as
strong as we can make them.

• Government must perform its crucial role in nurturing
our commercial security resources.

We have known for nearly a third of a century how to
build and deploy strong and secure systems. Our shared
knowledge applies in today’s networked world with its em-
phasis on fast, secure information sharing. In the 21st Cen-
tury, we should utilize our existing resources in the slim
lines between networks. It is time we got started.

Acknowledgment

Thanks to all of my readers, with special thanks to Roger
Schell who reminded me of the TNI’s treatment of compo-
sition.

References

[1] J. P. Anderson, “Computer Security Technology Plan-
ning Study,” ESD–TR–73–51, Vol. I, AD–758 206,
ESD/AFSC, Hanscom AFB, MA, October 1972, p. 4.

[2] Paul A. Karger and Roger R. Schell, “Multics Secu-
rity Evaluation: Vulnerability Analysis,” ESD–TR–
74–193, Vol. II, ESD/AFSC, Hanscom AFB, MA,
June 1974.

[3] Ken Thompson, “Reflections on Trusting Trust,”
Comm ACM, August 1984, 27(8), 761–763.

[4] Ken Thompson, “On Trusting Trust,” Unix Review,
November 1989, 7(11), 70–74.

[5] J. P. Anderson, “Computer Security Technology Plan-
ning Study,” ESD–TR–73–51, Vol. II, ESD/AFSC,
Hanscom AFB, MA, October 1972, p. 16.

[6] D. Elliott Bell and Leonard J. La Padula, “Se-
cure Computer Systems: Mathematical Foundations,”
MTR–2547, Vol. I, The MITRE Corporation, Bed-
ford, MA, 1 March 1973. (ESD–TR–73–278–I)

[7] Jerome H. Saltzer, Michael D. Schroeder, “The Pro-
tection of Information in Computer Systems,” Pro-
ceedings of the IEEE, 63(9) (September 1975), pp.
1278–1308.

[8] Leonard J. La Padula and D. Elliott Bell, “Secure
Computer Systems: A Mathematical Model,” MTR–
2547, Vol. II, The MITRE Corporation, Bedford, MA,
31 May 1973. (ESD–TR–73–278–II)

[9] K. G. Walter et al., “Primitive Models for Computer
Security,” ESD–TR–74–117, Electronic Systems Di-
vision, Hanscom AFB, MA, January, 1974.

[10] D. Elliott Bell, “Secure Computer Systems: A Refine-
ment of the Mathematical Model,” MTR–2547, Vol.
III, The MITRE Corporation, Bedford, MA, Decem-
ber 1973. (ESD–TR–73–278–III), p. 25.

[11] Ibid.

[12] Ibid., p. 34.

[13] Elliott I. Organick. The Multics System: An Examina-
tion of its Structure. The MIT Press: Cambridge, MA,
1972.

[14] D. Elliott Bell and Leonard J. La Padula, “Secure
Computer Systems: Unified Exposition and Multics
Interpretation,” MTR–2997, The MITRE Corporation,
Bedford, MA, July 1975. (ESD–TR–75–306)

[15] Ibid., p. 5.

[16] Ibid., p. 98.

[17] Clifford Stoll. The Cuckoo’s Egg. Doubleday: New
York, NY, 1989.

[18] Paul Karger and Roger R. Schell, “Thirty Years Later:
Lessons from the Multics Security Evaluation,” Pro-
ceedings, 18th ACSAC, Las Vegas, NV, December
2002, 119–126.

[19] Bell and La Padula, op. cit., 1975, p. 70–71.

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

[20] E. J. McCauley and P. J. Drongowski, “KSOS—The
design of a secure operating system,” Proceedings,
AFIPS 1979 NCC, v48, 345–353.

[21] P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N.
Levitt, and L. Robinson, “A provably secure operat-
ing system: The system, its applications, and proofs,”
Technical Report CSL–116, SRI International, 1980.

[22] Marvin Schaefer, R. R. Linde, et al., “Program Con-
finement in KVM/370,” Proceedings, ACM National
Conference, Seattle, October, 1977.

[23] Jerome Saltzer, “Protection and the Control of Infor-
mation in Multics,” Comm. ACM 17(7), July 1974,
388–402.

[24] Department of Defense Trusted Computer System
Evaluation Criteria, DoD 5200.28–STD, December
1985.

[25] D. Elliott Bell and Edmund L. Burke, “A Software
Validation Technique for Certification: The Method-
ology,” MTR–2932, Vol. I, The MITRE Corporation,
Bedford, MA, April 1975. (ESD–TR–75–54)

[26] Paul Karger et al., “A VMM Security Kernel for the
VAX Architecture,” Proceedings, 1990 IEEE Sympo-
sium on Security and Privacy, Oakland, CA, 7–9 May
1990, 2–19.

[27] David Clark and David Wilson, “A Comparison of
Commercial and Military Computer Security Poli-
cies,” Proceedings, 1987 IEEE Symposium on Se-
curity and Privacy, Oakland, CA, 27–29 April 1987,
184–194.

[28] T. M. P. Lee, “Using Mandatory Integrity to Enforce
‘Commercial’ Security,” Proceedings, 1988 IEEE
Symposium on Security and Privacy, Oakland, CA,
April 1988, 140–146.

[29] William R. Shockley, “Implementing the
Clark/Wilson Integrity Policy Using Current Technol-
ogy,” Proceedings, 11th National Computer Security
Conference, Baltimore, Maryland, October 1988,
29–37.

[30] David Brewer and Michael Nash, “The Chinese Wall
Security Policy,” Proceedings, 1989 IEEE Sympo-
sium on Security and Privacy, Oakland, CA, May
1989, 206–214.

[31] Trusted Network Interpretation of the Trusted Com-
puter System Evaluation Criteria, DoD 5200.28–STD,
31 July 1987, NCSC–TG–005.

[32] Trusted Database Management System Interpretation
of the Trusted Computer System Evaluation Criteria,
DoD 5200.28–STD, April 1991, NCSC–TG–021.

[33] D. Elliott Bell, “Trusted Xenix Interpretation: Phase
I,” Proceedings, 13th National Computer Security
Conference, Washington, DC, 1–4 October 1990,
333–339.

[34] Clark Weissman, “BLACKER: Security for the DDN,
Examples of A1 Security Engineering Trades,” Pro-
ceedings, 1992 IEEE Computer Security Symposium
on Research in Security and Privacy, 4–6 May 1992,
Oakland, CA, 286–292.

[35] D. Elliott Bell, “Secure Computer Systems: A Net-
work Interpretation”, Proceedings, Second Aerospace
Computer Conference, McLean, VA, 2–4 December
1986, 32–39.

[36] TNI, op. cit., Appendix A.

[37] Garrett Birkhoff, Lattice Theory (1st ed.), American
Mathematical Society: Ann Arbor, Michigan, 1948.

[38] Ibid., p. 163.

[39] D. Elliott Bell, “Lattices, Policies, and Implementa-
tions,” Proceedings, 13th National Computer Secu-
rity Conference, Washington, DC, 1–4 October 1990,
165–171.

[40] D. Elliott Bell, “Putting Policy Commonalities to
Work,” Proceedings, 14th National Computer Secu-
rity Conference, Washington, DC, 1–4 October 1991,
456–471.

[41] Carrie Fisher. Postcards from the Edge. Simon &
Schuster: New York, NY, 1987.

[42] Cynthia E. Irvine, “Considering Lifecycle Subver-
sion,” Invited presentation, MLS Workshop, Alexan-
dria, VA, 24 September, 2003.

[43] Emory A. Anderson, Cynthia E. Irvine, and Roger
R. Schell, ”Subversion as a Threat in Information
Warfare,” Journal of Information Warfare, 3(2), June
2004, pp. 52–65.

[44] Dorothy Denning, et al., “A Multilevel Relational
Data Model,” Proceedings, 1987 IEEE Computer Se-
curity Symposium on Research in Security and Pri-
vacy, 27–29 April 1987, Oakland, CA, 220–242.

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005)
1063-9527/05 $20.00 © 2005 IEEE

