EECS 710 - Fall 2012

Mobile Application
Security

Himanshu Dwivedi
Chris Clark
David Thiel

Presented by
Bharath Padmanabhan

MOBILE
APPLICATION

COVERS COCOLE " ANDRODD, AFFLL FHONL
WINDOWS SMISILE AND OTHER PLATFORMS

The Authors

Himanshu Dwivedi
is a co-founder of
ISEC Partners, an
information security
firm specializing in
application security.
He is also a
renowned industry
author with six

security books
published.

Chris Clark is a
principal security
consultant at iSEC
Partners, where he
writes tools,
performs
penetration tests,
and serves as a
Windows and
Mobile expert.

David Thiel is a
Principal Security
Consultant with iSEC
Partners. His areas
of expertise are web
application
penetration testing,
network protocols,
fuzzing, Unix, and
Mac OS X.

Contents

Part | Mobile Platforms
Top Issues Facing Mobile Devices
Tips for Secure Mobile Application Development
Apple iPhone
Google Android
Part Il Mobile Services
WAP and Mobile HTML Security
Bluetooth Security
SMS Security
Mobile Geolocation

Enterprise Security on the Mobile OS

Partl Mobile Platforms

Top Issues Facing Mobile Devices

Physical Security Virus, Worms, Trojans,

Spyware, and Malware
Secure Data Storage (on Disk)

Difficult Patching/Update

Strong Authentication with Process

Poor Keyboards

Strict Use and Enforcement of
Multiple-User Support with SSL

Security

Phishing
Safe Browsing Environment

Cross-Site Request Forgery
Secure Operating Systems (CSRF)

Application Isolation Location Privacy/Security

Information Disclosure Insecure Device Drivers

Multifactor Authentication

Top Issues Facing Mobile Devices

Physical Security
Loss of information from lost or stolen devices
Unauthorized usage by borrower

Physical security has always meant little-to-no security

Secure Data Storage (on Disk)
Sensitive information stored locally (password files, tokens, etc.)

Prevent unauthorized access while making it accessible to certain
applications on an as-needed basis

Top Issues Facing Mobile Devices

Strong Authentication with Poor Keywords

Password or passphrase that uses a combination of letters, numbers,
special characters, and a space

Same standard on a mobile keyboard is difficult, if not impossible

Multiple-User Support with Security

Unlike traditional client operating systems that support multiple
users with different operating environments, no such thing as logging
into a mobile device as a separate user

No distinction between applications for business purpose vs. personal

Need unique security model by application to prevent data exposure

Top Issues Facing Mobile Devices

Safe Browsing Environment
Lack of real estate makes phishing attempts easier
Inability to view the entire URL or the URL at all

Links are followed a lot more on mobile devices

Secure Operating Systems

Securing an OS is no easy task but should still be undertaken by all
mobile vendors

Security often correlates to data loss but can also correlate to system
downtime and diminished user experience

Top Issues Facing Mobile Devices

Application Isolation

Very common to see various types of applications (corporate,
gaming, social, etc) on a mobile device

Ability to isolate these applications and the data they require is
critical

Information Disclosure

Data stored on a device (desktop, laptop, server, mobile) is worth
more than the device itself, however, mobile device more likely to be
lost or stolen

Access from mobile device to other networks (say VPN) is another
area of concern if authentication mechanisms are not strong

Top Issues Facing Mobile Devices

Virus, Worms, Trojans, Spyware, and Malware

Mobile devices also face threat of viruses, worms, Trojans, spyware,
and malware

Lessons to learn from the desktop world but also need to adjust to
the mobile environment and new attack classes

Difficult Patching/Update Process

Patching and updating not a technical challenge but several
considerations make it a difficult problem for mobile

Carriers have big problems with immediate system updates and
patching due to little response time for testing

Requires coordination among OS developer, carriers, and handset
vendors

|0

Top Issues Facing Mobile Devices

String Use and Enforcement of SSL

Older devices lacked horsepower to enforce SSL without affecting
user experience; some still allowed for backwards-compatibility

Some organizations defaulting to clear-text protocols assuming
increased complexity of sniffing on 3G network

Abundance of transitive networks between mobile device and the
end system

Phishing
Users more prone to clicking links on mobile without safety concerns

Lack of real estate to show entire URL or the URL itself

Top Issues Facing Mobile Devices

Cross-Site Request Forgery (CSRF)

Big problem for mobile HTML sites that are vulnerable

Easy to get victims to click on links due to previously mentioned
factors

Allows attacker to update a victim's information (address, email,
password, etc) on a vulnerable application

Location Privacy/Security

Most mobile users have assumed their location privacy was lost as
soon as they started carrying a mobile device

Users willingly give away their location-specific information through
applications like Google Latitude, Foursquare etc.

12

Top Issues Facing Mobile Devices

Insecure Device Drivers

Most applications should not have system access to mobile device
but device drivers need such access

Exposure to attackers if third-party drivers provide methods to get
around protection schemes via potentially insecure code

Multifactor Authentication

Soft multifactor authentication schemes (same browser, IP range,
HTTP headers) used by mobile web applications very vulnerable to
spoofing

Typical to create a device signature using a combination of HTTP
headers and properties of the device's connection but still not good
enough compared to native mobile applications

|3

Tips for Secure Mobile Application Development

Leverage TLS/SSL Figure out a Secure and Strong

Update Process
Follow Secure Programming

Practices Understand the Mobile
Browser’s Security Strengths

Validate Input and Limitations

Leverage the Permissions Zero Out the Non-Threats
Model Used by the OS

User Secure/Intuitive Mobile
Use the Least Privilege Model URLs

for System Access

Store Sensitive Information
Properly

Sign the Application’s Code

Tips for Secure Mobile Application Development

Leverage TLS/SSL

Turn on Transport Layer Security (TLS) or Secure Sockets Layer (SSL)
by default

Both confidentiality and integrity protections should be enabled;
many environments often enforce confidentiality, but do not
correctly enforce integrity protection

Follow Secure Programming Practices

Big rush (and a small budget) to get a product out the door, forcing
developers to write code quickly and not make the necessary security
checks and balances

Leverage the abundance of security frameworks and coding
guidelines available

|5

Tips for Secure Mobile Application Development

Validate Input

Validating input is imperative for both native mobile applications and
mobile web applications

Mobile devices do not have host-based firewalls, IDS, or antivirus
software, so basic sanitization of input is a must

Leverage the Permissions Model Used by the OS

Permissions model is fairly strong on the base device, however,
external SD card may not be as secure

Application isolation provided by systems like iOS and Android should
be leveraged

|6

Tips for Secure Mobile Application Development

Use the Least Privilege Model for System Access

The least privilege model involves only asking for what is needed by
the application

One should enumerate the least amount of services, permissions,
files, and processes the application will need and limit the application
to only those items

The least privilege model ensures the application does not affect
others and is run in the safest way possible

Store Sensitive Information Properly

Do not store sensitive information (usernames, passwords, etc.) in
clear text on the device; use native encryption schemes instead

|7

Tips for Secure Mobile Application Development

Sign the Application’s Code

Although signing the code does not make the code more secure, it
allows users to know that an application has followed the practices
required by the device’s application store

Unsigned application may have a much reduced number of privileges
on the system and will be unable to be widely disturbed through the
various application channels of the devices

Depending on whether or not the application is signed, or what type
of certificate is used, the application will be given different privileges
on the OS

|18

Tips for Secure Mobile Application Development

Figure Out a Secure and Strong Update Process

Much like in the desktop world, an application that is not fully
patched is a big problem for the application, the underlying OS, and
the user

A secure update process needs to be figured out where an
application can be updated quickly, easily, and without a lot of
bandwidth

Understand the Mobile Browser’s Security Strengths and Limitations

Understand the limitations of cookies, caching pages locally to the
page, the Remember Password check boxes, and cached credentials

Do not treat the mobile browser as you would treat a regular web
browser on a desktop operating system

19

Tips for Secure Mobile Application Development

Zero Out the Non-Threats

Although the threats to mobile devices and their applications are
very real, it is important to understand which ones matter to a given
application

The best way to start this process is to enumerate the threats that
are real, design mitigation strategies around them, and note the
others as accepted risks ("threat model")

Threat model should allow application developers to understand all
the threats to the system and enable them to take action on those
that are too risky to accept

20

OWASP Mobile Threat Model

Come)
App Stores -
Corporate
Networks
Trust
Boundary

$ “ Bi-directional
Communication
\ _ >> Wireless
Communication

Carrier
Network

Local Network
(WiFi, VPN, etc)

/ . — -

Bi-directional
Communication

I Corporate Consumer Built-in Malicious l
APPS
Peer Devices I — Laptop
Payments Card Reader
Lapt i S
aptops I Libraries Dependencies Vlrtl.lal I ensors
Machines
Hardware Hardware
I Extensions I Extensions
802.11 802.11
NFC I NFC I
Bluetooth Bluetooth . File
Kernel Drivers
System
oS

Radios GPS Sensors

Hardware

Mobile Device

OWASP Mobile Threat Model

Improper - Modifying
Session S_oc-a ._ Local Data

Handling Engineering \
\ Weak

- Authorizavion Tampering
Spoof] n — wWeal

Authentication
Carrier Insecure
Malicious Network WiFi
Mallcous Application Breach network
QR Code Untrusted
NFC Tag Or
Peer Malware Lost

Device
Missing
Device

A e e Inforrmation

Repudiation Disclosure

\ Reverse Backend
Engineering Breach

Client ApPppPsSs
Side
Injection Make

Unauthorized
Malware Purchases Push Apps
Remotely

Sandbox /
Escape Compromised

Elevation of

Denial of Privilege — N
Se rVi ce \ Authorization
/ \ ComDper‘c,)ir:eised

Excessive Rooted/ Rootkits
API Usage Jailbroken

Push
. Notification Credentials
Crashing Flooding
ApPppPs
Flawvwed
Authentication
=

22

Tips for Secure Mobile Application Development

Use Secure/Intuitive Mobile URLs

Some organizations use third-parties to host their mobile sites whose
domain will be different from the organization

Many organizations have mobile-optimized sites separate from their
regular websites but it is important to keep the URLs intuitive

Intuitive

m.isecpartners.com

Not So Intuitive
isecpartners.mobi

isecpartners.mobilevendor.com

23

Apple iPhone

Development

Security Testing

Application Format
Permissions and User Controls

Local Data Storage

Networking e

Push Notifications, Copy/Paste, and Other IPC

Development

Performed with Xcode and the iPhone SDK
Can be run either within the emulator or on a physical device
Debugging is done within Xcode via gdb

Objective-C code can be decompiled fairly easily using standard OS X
developer tools

It is not possible to prevent reverse-engineering of the code

25

Security Testing

Threat of classic C exploits is reduced, but not eliminated, by using
high-level Objective-C APlIs

To avoid buffer overflows, avoid manual memory management and
use Cocoa objects such as NSString for string manipulation (Integer
overflows still possible even when using NSinteger)

Double-frees, where a segment of memory is already freed from use
and an attempt is made to deallocate it again, are a problem

Most commercial static analysis tools haven’t matured to detect

Objective-C specific flaws, but simple free tools can be used to fine C
APl abuses

26

Application Format

Applications are compiled via Xcode using the GNU GCC compiler,
cross-compiled for the ARM processor and local machine (emulator)

Each application bundle includes a unique ID, a plist of entitlements
and preferences, a code signature, any required media assets, and
the executable itself

All iPhone applications have to be distributed through the “App
Store” which have to be approved by Apple prior to distribution and
can be revoked anytime at Apple’s discretion

All iPhone applications have to be signed by a valid code-signing
certificate; requires membership with the iPhone Developer Program

On “jailbroken” iPhones, using Cydia and Installer are the two most
popular ways to install unauthorized third-party software

27

Permissions and User Controls

Apple uses “Mandatory Access Control” (MAC) as its mechanism for
restricting the capabilities of applications

The iPhone OS and OS X permission system (“sandboxing”) is based
on the TrustedBSD framework which allows for writing policy files
that describe what permissions an application should have

Each application is installed into its own directory (GUID); they are
allowed limited read access to some system areas but not allowed to
read/write directories belonging to other applications

Both the heap and stack are non-executable by default; newer
versions support ASLR (Address Space Layout Randomization)

Permissions granting for specific functionality (location, contacts) is
granted via popups to the user at the time of APl use

28

Local Data Storage

SQLite Storage: This is a popular way to persist application data but
is subject to injection attacks like any type of SQL database.
Parameterized queries should be used to ensure third-party SQL is
not accidentally executed by the application.

Keychain Storage: The iPhone includes the Keychain mechanism
from OS X (with some differences) to store credentials and other
data. The APl is simpler compared to the Cocoa API and all the data
is stored in a dictionary of key/value pairs. It is to be noted that
Keychain APIs only work on a physical device.

Shared Keychain Storage: iOS 3.0 introduced this ability allowing for
separate applications to share data by defining additional
“entitlements”. The developer has to explicitly specify this when
adding the attribute and also define the entitlement.

29

Networking

URL Loading API: Supports HTTP, HTTPS, FTP, and file resource types
using the NSURLConnection and NSURLDownload APIs with an NSURL
object as the input. It is to be noted that HTTP and HTTPS request
results are cached on the device by default and all cookies stored are
accessible by any application that uses the URL loading system.

NSStreams: Useful when using network sockets for protocols other
than those handled by the URL loading system, or in places where
you need more control over how connections behave.

Peer to Peer (P2P): iOS 3.0 introduced this ability to do P2P
networking between devices via Bluetooth. Opportunities for data
theft are increased since game and non-game applications use it for
collaboration and data exchange. Also, because data can potentially
be streamed to the device by a malicious program or user, it is
another untrusted input to be dealt with.

30

Push Notifications, Copy/Paste, and Other IPC

Push Notifications: iOS 3.0 introduced this ability allowing
applications to provide users with notifications when they are not
running. The device and push service platform perform mutual
certificate authentication. Notification types can include popups or
updating the badge. It should be noted that push notifications are
not guaranteed to be delivered.

UlPasteboard: Similar to OS X, this can be implemented to handle
copying and pasting of objects within an application, or to handle
data to share among applications. Copied and pasted data is stored
in item groupings with various representations. Any information on
shared pasteboards should be considered untrusted and potentially
malicious and needs to be sanitized before use.

31

Google Android

Development

Platform Security Architecture

Security Model

Permissions

Securable IPC Mechanisms

Application Signing

Memory Management Security Enhancements

Files, Preferences, and Mass Storage

Development
SDK provides free tools for building and debugging applications,
supporting developers on Linux, Windows, and OS X

SDK provides an emulator that emulates ARM-based device and also
alternate virtual hardware configurations

Debugging support is built into Android and working with a device or
with the emulator is mostly interchangeable

Code developed using the SDK generally runs in the Dalvik VM

33

Platform Security Architecture

Android seeks to be the most secure and usable operating system for mobile
platforms by re-purposing traditional operating system security controls to:

Protect user data
Protect system resources (including the network)
Provide application isolation
To achieve these objectives, Android provides these key security features:
Robust security at the OS level through the Linux kernel
Mandatory application sandbox for all applications
Secure interprocess (IPC) communication
Application signing

Application-defined and user-granted permissions

34

Security Model

Android is based on the Linux security model with some abstractions
unique to it and leverages Linux user accounts to silo applications

Android permissions are rights given to applications to allow them to
take pictures, use the GPS, make phone calls, and so on

When installed, applications are given a unique user identifier (UID);
the UID is used to protect an application’s data

The need for permissions minimizes the impact of malicious
software, unless a user grants powerful rights to dubious software

Android’s runtime system tracks which permissions each application
has; these permissions are granted either when the OS was installed
or upon installation of the application by the user

35

Permissions

Android uses manifest permissions to track what the user allows
applications to do, such as sending SMS, using the camera, etc.

Prior to installation of any application, the user is shown the different

permissions the application is requesting. Once installed, an
application’s permissions cannot be changed.

= ull B 418

Do you want to install this
application?

+ Services that cost you money
directly call phone numbers

+ Your location
coarse (network-based) location, fine
(GPS) location

+ Network communication
full Internet access

+ Your accounts
Google Maps, manage the accounts list,

Permissions at
use the authentication credentials of an . .
account Application
+ Storage
Install

modify/delete USB storage contents

Install ’ ' Cancel }

Permissions of
an Installed
Application

= wl B 419

Permissions

This application can access the following on your

phone:

v

Your personal information
read contact data, write contact data

Network communication
full Internet access

Your accounts

Google mail, manage the accounts list,
use the authentication credentials of an
account

Storage
modify/delete USB storage contents

System tools
prevent phone from sleeping, write
subscribed feeds, write sync settings

Show all @

36

Permission Protection Levels

Protection Levels

Protection Behavior

Normal

Permissions for application features whose consequences are
minor (for example, VIBRATE, which lets applications vibrate
the device). Suitable for granting rights not generally of keen
interest to users. Users can review them but may not be
explicitly warned.

Dangerous

Permissions such as WRITE SETTINGS and SEND SMS are
dangerous because they could be used to reconfigure the device
or incur tolls. Use this level to mark permissions users will be
interested 1n or potentially surprised by. Android will warn users
about the need for these permissions upon install, although the
specific behavior may vary according to the version of Android
or the device upon which 1t is installed.

Signature

These permissions are only granted to other applications signed
with the same key as the program. This allows secure
coordination without publishing a public interface.

SignatureOrSystem

Similar to Signature, except that programs on the system image
also qualify for access. This allows programs on custom
Android systems to also get the permission. This protection
helps integrate system builds and won’t typically be needed by
developers.

Note: Custom system builds can do whatever they like. Indeed,
you ask the system when checking permissions, but
SignatureOrSystem-level permissions intend for third-party
integration and thus protect more stable interfaces than
Signature.

37

Securable IPC Mechanisms

Activities are interactive screens used to communicate with users.
Intents are used to specify an Activity.

Broadcasts provide a way to send messages between applications.
When sending a broadcast, an application puts the message to be
sent into an Intent.

Services are background processes that toil away quietly in the
background.

ContentProviders provide a way to efficiently share relational data
between processes securely. They are based on SQL.

Binder provides a highly efficient communication mechanism. Itis
commonly used to bridge Java and native code running in separate
processes.

38

Application Signing

Every application that is run on the Android platform must be signed
by the developer. Applications that attempt to install without being
signed will rejected by either Google Play or the package installer on
the Android device.

The signed application certificate defines which user id is associated
with which application. Application signing ensures that one
application cannot access any other application except through well-
defined IPC.

Applications can be signed by a third-party or self-signed. Android
provides code signing using self-signed certificates that developers
can generate without external assistance or permission.

39

Memory Management Security Enhancements

ProPolice to prevent stack buffer overruns
safe _iop to reduce integer overflows

Extensions to OpenBSD dimalloc to prevent double free()
vulnerabilities and to prevent chunk consolidation attacks

OpenBSD calloc to prevent integer overflows during memory allocation
Format string vulnerability protections

Hardware-based No eXecute (NX) to prevent code execution on the
stack and heap

Linux mmap_min_addr to mitigate null pointer dereference privilege
escalation

Address Space Layout Randomization (ASLR) to randomize key
locations in memory

40

Files, Preferences, and Mass Storage

UNIX-style file permissions are present in Android; each application
runs as its own user so files created by one application cannot be
read or altered by another application (unless user allows it)

SharedPreferences is a system feature that is backed by a file with
permissions like any others

Android devices may support larger add-on file systems mounted on
memory cards since devices typically have limited amount of memory

Data stored on memory cards is unprotected and cannot be accessed
by any program on the device

4]

Contents

Part Il Mobile Services
WAP and Mobile HTML Security
Bluetooth Security
SMS Security
Mobile Geolocation

Enterprise Security on the Mobile OS

Part II Mobile Services

WAP and Mobile HTML Security

WAP and Mobile HTML Basics
Authentication on WAP/Mobile HTML Sites
Encryption

Application Attacks on Mobile HTML Sites

WAP and Mobile Browser Weaknesses

WAP and Mobile HTML Basics

WAP is a method to access the Internet from mobile devices

WAP gateway acts like a proxy server translating content

WAP 2.0 does not require a WAP gateway

WAP Request

WAP Response

>

il

DoQao

S—

<
WAP Client

WAP Gateway

HTTP Request

L

HTTP Response (VWML)
“

A

-

HTTP/Application

Server

WAP Architecture

45

Authentication on WAP/Mobile HTML Sites

One of the many problems that WAP and Mobile HTML developers
have with mobile devices is the keyboard.

PDA-style keyboard

Non-PDA-style keyboard

Strong passwords (consisting of letters, numbers, and special
characters) difficult to type on Non-PDA-style keyboards.

46

Authentication on WAP/Mobile HTML Sites

Mobile PIN, an alternative to complex passwords, increases the user
experience at the cost of lowering the security of the authentication
process

PIN typically consists of only 4-8 digit numbers, making it easier for
brute-force attempts

Crossover use of SMS and WAP/Mobile HTML applications is another
avenue of exposure. Ex: Sending an SMS message to a predefined
number will return an account balance as long as the caller ID value is
correct.

Spoofing of caller ID (“trusted value”) is quite simple

47

Encryption

SSL/TLS is a critical aspect of online security to keep sensitive
information private over the Internet

WAP 1.0 used TLS but not end to end due to the limited horsepower
on mobile devices

WTLS is similar to TLS; used for low-bandwidth data channels that
cannot support full-blown TLS implementation

\
.\' |
WTLS . SSL/TLS ——————
< 2 - < > -
oo o N -
WAP Client WAP Gateway o
HTTP/Application
Server

WAP 1.0 and transport encryption

Encryption

WAP 2.0 supports full end to end TLS to eliminate the “WAP gap”
WAP gateway optional (can be used for optimization purposes)

WTLS is no longer needed

—
SSLITLS i SSL/TLS
<4 »
WAP Client WAP Gateway J ——
(Optional) HTTP/Application

Server

WAP 2.0 and transport encryption

49

Application Attacks on Mobile HTML Sites

Many traditional web application attacks will work on mobile
browsers/devices supporting WAP 2.x/Mobile HTML sites

Cross-Site Scripting (XSS)

SQL Injection

Cross-Site Request Forgery (CSRF)
HTTP Redirects

Phishing

Session Fixation

Non-SSL Login

50

WAP and Mobile Browser Weaknesses

Known limitations of WAP and mobile browsers:
Lack of HTTPOnly Flag Support
Lack of SECURE Flag Support
Handling Browser Cache

WAP Limitations

51

Bluetooth Security

Overview of the Technology
Bluetooth Security Features
Pairing
Authentication
Authorization
Confidentiality
Threats to Bluetooth Devices and Networks
Bluetooth Vulnerabilities

Recommendations

Overview of the Technology

Conceived at Ericsson Mobile Communications to create a wireless
keyboard system and then adapted for more generic purposes

Common Uses include:
Wireless keyboard, mouse, and printer connectivity
Device synchronization (phone to desktop)
File transfer (phone to desktop or photo printer)

Gaming console integration (Nintendo Wii remotes and Sony PS3
headsets)

Tethering for Internet access (using data-enabled mobile phone as a
modem for Internet access from a laptop with Bluetooth providing
inter-device connectivity)

Hands-free and voice-activated mobile phone kits for cars

53

Bluetooth Security Features - Pairing

Pairing, the process whereby two Bluetooth devices establish a link
and agree to communicate, is critical to the overall security
architecture and is tightly integrated with other security features

During pairing, the communicating devices agree on and generate
keys used to identify and relate to other devices; these keys are also
used for device authentication and communication encryption

Prior to Bluetooth v2.1, pairing between devices is accomplished
through the entry of a PIN with a maximum length of 128 bits.

Bluetooth v2.1 introduced Secure Simple Pairing to improve security
through the use of Elliptic Curve Diffie-Hellman for key exchange and
link key generation

54

Bluetooth Security Features - Authentication

Authentication is the process whereby one device verifies the identity
of another device

A traditional challenge-response mechanism is used between the
claimant device and the verifier device

Response to challenge based on a function involving a random
number, the claimant’s Bluetooth device address, and a secret key
generated during device pairing

To prevent repeated attacks in a limited timeframe, on an
authentication failure the verifier will delay its next attempt to
authenticate the claimant

55

Bluetooth Security Features - Authorization

Authorization allows for decision making about resource access and

connection configuration based on permissions granted a given
device or service

Device Trust Levels: Bluetooth devices can be “trusted” (previously
been paired and have full access) or “untrusted” (not previously

paired and have restricted access) in relation to other Bluetooth
devices

Service Security Levels:
Level 1 services require authentication and authorization
Level 2 services require authentication only

Level 3 services have no security and are open to all devices

56

Bluetooth Security Features - Confidentiality

Confidentiality is provided through the use of encryption

Bluetooth uses Eg, a stream cipher, as the basis for encryption and
provides three different encryption modes

Mode 1 does not do any encryption; all traffic is unencrypted

Mode 2 encrypts traffic between individual endpoints but
broadcast traffic is unencrypted

Mode 3 encrypts both broadcast and point-to-point traffic

57

Threats to Bluetooth Devices and Networks

Bluetooth devices and networks are also subject to threats like
eavesdropping, impersonation, denial of service, and man-in-the-
middle attacks

Additional Bluetooth threats include:
Location tracking
Key management issues
Bluejacking

Implementation issues (Bluesnarfing, Bluebugging, Car
whispering)

58

Bluetooth Vulnerabilities

Bluetooth Versions Prior to v1.2
The unit key is reusable and becomes public when used
Bluetooth Versions Prior to v2.1
Short PINs are permitted
The encryption keystream repeats
All Versions
Unknown RNG strength for challenge-response
Negotiable encryption key length (as small as one byte!)

Shared master key

Weak Eo stream cipher (theoretical known-plaintext attack)

59

Recommendations

Use complex PINs for Bluetooth devices

In sensitive and high-security environments, configure Bluetooth
devices to limit the power used by the Bluetooth radio

Limit the services and profiles available on Bluetooth devices to only
those required

Configure Bluetooth devices as non-discoverable except during
pairing

Enable mutual authentication for all Bluetooth communications
Configure the maximum allowable size for encryption keys

Unpair devices that had previously paired with a device if a Bluetooth
device is lost or stolen

60

SMS Security

Overview of Short Message Service
Overview of Multimedia Messaging Service
Protocol Attacks

Application Attacks

Overview of Short Message Service

SMS is designed for one mobile subscriber to send a short message
(up to 160 characters) to another mobile subscriber

I .r.
' 2 05pm \\ ‘I. -~ Carrier |(SMSC) Carrier 2(SMSC) T I‘
& &
Bob e Alice jig-%'\ ;i%l“
. ‘; ' o5 ™~ ‘;
SMS message between phones using the 205
same carrier Bob e Alce

SMS message between phones on
different carriers

62

Overview of Short Message Service

A raw SMS message is known as a Protocol Data Unit (PDU)

A basic SMS PDU contains several header fields as wells as message
contents

‘,04 08 | 81| 5155551512F2 |00 |00 | B040326195328A |03 C|60l0]

\ : . ‘

phone number encoding message

|44 OB | 81| 5155551512F2 100 lenc| 8040326195328A Ienl payloadJ

_

Message

UDH

63

Overview of Multimedia Messaging Service
MMS can send various types of images, audio, and video in addition
to text

MMS is fundamentally different from SMS although they may look
exactly the same from a user’s perspective

y/
)

[

(%
&,
)

| | |

: MSendreq —— i i

' ' M-Notification.ind — :

: «—— MSendconf — : erfictionn - :

| | |

E i «— M-NotifyRespind = o i

| | |

. | | |

MMS from a user standpoint i | |
1 | |

i | 4— WSPIHTTP GETreq |

| | |

l : ~ M-Retrieve.conf — :

s i i

. . : | 4— M-Acknowledge.inf - :
Detailed MMS diagram | =" Uisienacon | |

Protocol Attacks

Abusing Legitimate Functionality

Attacks targeting functionality that is meant to be hidden from
the end user. Ex: Administrative and provisioning

communications such as updates and voicemail notifications.

Attacking Protocol Implementations

Attacks targeting vulnerabilities in the implementations of the
popular SMS protocols with the intent of sending a corrupted

message to a victim’s phone resulting in the phone running
hostile code.

65

Protocol Attacks - Abusing Legitimate Functionality

WAP Push Attack

MMS Notification
Battery-Draining Attack
Silent Billing Attack

OTA Settings Attack

66

Application Attacks

Targets applications that use SMS as a delivery mechanism

Unlike protocol attacks that are mostly version agnostic, application
attacks are very specific to software versions running on phones

Application vulnerabilities tend to fall into browser, MMS client, or
Image categories

Examples:

iPhone Safari vulnerability results in heap overflow after viewing
a malicious page within mobile Safari, allowing attacker to
execute arbitrary code on the iPhone

Motorola RAZR JPG overflow vulnerability due to the way the
RAZR parsed thumbprints in the JPG EXIF header, allowing
arbitrary code execution using malicious JPG image

67

Mobile Geolocation

Geolocation Methods
Geolocation Implementation
Android
iIPhone
Risks of Geolocation Services
End User
Service Providers

Geolocation Best Practices

Geolocation Methods

Tower Triangulation (Accuracy: 50m - 1,000m)
Oldest widely used method of geolocation via cell phone

Uses relative power levels of radio signals between cell phone
and cell tower; requires at least two cell towers

Fairly inexact due to distance from cell towers and signal strength
GPS (Accuracy: 5m - 15m)

Uses satellite signals instead of cell phone or wireless
infrastructure; reception may be poor indoors

Can provide continuous tracking updates, useful for real-time
applications

69

Geolocation Methods

802.11 (Accuracy: 10m - 200m but potentially erroneous)

iPhone was the first smartphone to use this approach, using an
APl from Skyhook Wireless which uses data from wireless access
points to create a large “wardriving” database

Allows for devices without GPS to get potentially highly accurate
location data

Faster and more accurate than tower triangulation

Drawbacks due to dependency on wireless access points which
could be moved

Google’s “Latitude” service provides a newer implementation of
Skyhook’s technology

70

Geolocation Implementation - Android

Permission to use geolocation features is requested via the program
manifest and is granted by the user at install time

ACCESS_COARSE_LOCATION (for cell triangulation or Wi-Fi)

ACCESS FINE_LOCATION (for GPS)

SLOB:E MG :zaerm
A permissions

request for only
This apphcation has access to the . . This apphcation has access to the
following: ﬁne location following:

A Ngtwovt communication services A Network communication

IFRernet xoess

A Your location

networ b-bamed) location, line

A Your location

‘0
PS) localie

.. A Your personal information
A permissions read COPLACT GaEA Write COtact data

request for

A Phone calls

et ! hore Y ale

A System tools
modify pobal system setiings, prevent

coarse and fine
location services

71

Geolocation Implementation - iPhone
Requires user approval every time an application that uses
geolocation APIs is launched
CLLocationAccuracyBest
CLLocationAccuracyNearestTenMeters

CLLocationAccuracyHundredMeters

CLLocationAccuracyThreeKilometers ~Camers” would like 10 USe
your current location
S —
Don't Allow 0K
The iPhone
location
permissions

dialog

72

Risks of Geolocation Services - End User
Positional data stored on remote servers, when it can be tied to an
individual, introduces a new avenue for data theft

Along with other sensitive data, not only could this be a breach of
user privacy, but also a potential source of information in court

Broadcasting user’s location voluntarily (think Foursquare) may also
lead to stalking or harassment

Few points to ponder:
Privacy and data retention policies for positional information
Third-party sharing and data transfer channels

Course of action for law enforcement requests

73

Risks of Geolocation Services - Service Providers

Risk of negative publicity from a data breach, legal or congressional
subpoenas, and potential assistance to criminal acts by allowing third
parties to track individual users

Often times, the stored geolocation data is not really necessary to
provide the required functionality

Legal obligation to follow privacy guidelines in countries like the UK
(“Data Protection Act”)

74

Geolocation Best Practices

Use the least precise measurement necessary

Discard data after use

Keep data anonymous

Indicate when tracking is enabled

Use an opt-in model

Have a privacy policy

Do not share geolocation data with other users or services

Familiarize yourself with local laws

75

Enterprise Security on the Mobile OS

Device Security Options
PIN
Remote Wipe
Secure Local Storage
Encryption
Application Sandboxing
Application Signing

Buffer Overflow Protection

Device Security Options - PIN

Enabling the PIN is the first step in securing a mobile device

Unmotivated attacker could wipe and sell it instead of trying to break
into the OS

Data on the device (or data that phone has access to) is at times
worth more than the device

Although a four-digit PIN only needs 10,000 attempts to brute-force
it, many mobile devices have a time delay after ten failed attempts

On some devices like the iPhone, the SIM card also has PIN
protection

77

Device Security Options - Remote Wipe

The ability to remote wipe data on a mobile device (especially if its a
corporate one) is imperative

Remote wipe functionality makes the loss of such devices a lot less
stressful

Both iPhone and Android support remote wipe functionality

78

Secure Local Storage

Ability to store sensitive information locally in a secure fashion is also
an imperative security feature for mobile devices

Many applications store login information, such as username and
password, locally on the device in clear text (without encryption)

The iPhone addresses this need via the use of “Keychain” which can
be used to store, retrieve, and read sensitive information, such as
passwords, certificates, and secrets

79

Encryption

Full Disk Encryption

Unlike desktop OSes, mobile OSes have little or no solutions for
full disk encryption.

i0S4 and Android ICS supposedly have this feature
Email Encryption

None of the most popular mobile OSes provide native support for
local email

Good for Enterprise supports both iPhone and Android
File Encryption

Most major mobile OSes support file encryption

80

Application Sandboxing

The primary goals are:
ensure one application is protected from another
protect the underlying OS from the application

ensure a bad application is isolated from the good ones

Appl | App2 | Appd | App4é Appl | App2 | App3 | App4

File System

Appl | Appl | Appl | Appl
Darta Data Data Darta

New application isolation model Traditional application isolation model

Application Signing

It is a vetting process to provide users some level of assurance
concerning the application and to associate authorship and privileges
to an application

It is not a measure of the security of the application or its code

Depending on whether or not the application is sighed, and what
type of certificate is used, different privileges are granted on the OS

Most mobile OSes, including the iPhone and Android, require
application signing; Android allows self-signed certificates whereas
the iPhone does not

It is assumed that malware authors would not be able to bypass the
appropriate levels of controls by a signing authority to get a
certificate

82

Buffer Overflow Protection

Major attack class for mobile OSes written in C, Objective-C, or C++

The iPhone mitigates buffer overflows by making the stack and heap
on the OS non-executable; any attempts to do so would cause
application exception

Stack-based protection on the iPhone is performed using the NX
Bit that marks certain areas of memory as non-executable

The Android OS mitigates buffer overflow attacks by leveraging the
use of ProPolice, OpenBSD malloc/calloc, and the safe iop function

ProPolice provides stack smasher protection; OpenBSD’s malloc/
calloc make heap-based buffer overflows more difficult; safe_iop
library provides functions to perform safe integer operations

83

OWASP Mobile Security Project

Our primary focus is at the application layer. While we take into
consideration the underlying mobile platform and carrier inherent risks
when threat modeling and building controls, we are targeting the areas
that the average developer can make a difference. Additionally, we
focus not only on the mobile applications deployed to end user devices,
but also on the broader server-side infrastructure which the mobile apps
communicate with. We focus heavily on the integration between the
mobile application, remote authentication services, and cloud platform-
specific features.

85

Top 10 Mobile Risks

8.

O.

Insecure Data Storage

Weak Server Side Controls

Insufficient Transport Layer Protection

Client Side Injection

Poor Authorization and Authentication
Improper Session Handling

Security Decisions Via Untrusted Inputs
Side Channel Data Leakage

Broken Cryptography

10. Sensitive Information Disclosure

86

1. Insecure Data Storage

HelpLul
. . Tps
Store ONLY what is absolutely required

Never use public storage areas (like SD card)

Leverage secure containers and platform-provided encryption APls

Do not grant files world-readable or world-writeable permissions

87

2. Weak Server Side Controls

HelpLul
" Tps
Understand the additional risks mobile apps introduce into
existing architectures

Leverage the wealth of knowledge that is already out there

OWASP Web Top 10, Cloud Top 10, Web Services Top 10

Cheat sheets, development guides, ESAPI

88

e

HelpLul
Tps

3. Insufficient Transport Layer Protection

Ensure that all sensitive data leaving the device is encrypted
This includes data over carrier networks, WiFi, and even NFC

When security exceptions are thrown, it’s generally for a reason -- DO
NOT ignore them!

89

e

HelpLul
Tps

4. Client Side Injection

Sanitize or escape untrusted data before rendering/executing it

Use prepared statements for database calls; concatenation is still
bad, and always will be bad

Minimize the sensitive native capabilities tied to hybrid web
functionality

90

5. Poor Authorization and Authentication

Contextual info can enhance things, but only as part of
multi-factor implementation

Out-of-band doesn’t work when it’s all the same device

Never use device ID or subscriber ID as sole authenticator

e
HelpLul

Tps

91

e

HelpLul
Tps

6. Improper Session Handling

Don’t be afraid to make users re-authenticate every so often

Ensure that tokens can be revoked quickly in the event of a lost/
stolen device

Utilize high entropy, tested token generation resources

92

e
HelpLul

Tps

7. Security Decisions Via Untrusted Inputs

Check caller’s permissions at input boundaries
Prompt the user for additional authorization before allowing

Where permission checks cannot be performed, ensure additional
steps required to launch sensitive actions

93

e

HelpLul
Tps

8. Side Channel Data Leakage

Never log credentials, Pll, or other sensitive data to system logs

Remove sensitive data before screenshots are taken, disable
keystroke logging per field, and utilize anti-caching directives for web

content

Debug your apps before releasing them to observe files created,
written to, or modified in any way

Carefully review any third-party libraries you introduce and the data
they consume

Test your applications across as many platform versions as possible

94

9. Broken Cryptography

Storing the key with the encrypted data negates everything
Leverage battle-tested crypto libraries instead of writing your own

Take advantage of what your platform already provides!

e

HelpLul
Tps

95

e

HelpLul
Tps

10. Sensitive Information Disclosure

Private APl keys are called that for a reason -- keep them away
from the client

Keep proprietary and sensitive business logic on the server

Almost never a legitimate reason to hardcode a password

96

