
Experience with Approximations in the
Trust-Region Parallel Direct Search Algorithm ?

S.M. Shontz1, V.E. Howle2, and P.D. Hough3

1 Department of Computer Science and Engineering
The Pennsylvania State University,

University Park, PA 16802
shontz@cse.psu.edu??

2 Department of Mathematics and Statistics
Texas Tech University Lubbock, TX 79409

victoria.howle@ttu.edu
3 Advanced Software Research and Development Department

Sandia National Laboratories
Livermore, CA 94551
pdhough@sandia.gov

Abstract. Recent years have seen growth in the number of algorithms
designed to solve challenging simulation-based nonlinear optimization
problems. One such algorithm is the Trust-Region Parallel Direct Search
(TRPDS) method developed by Hough and Meza. In this paper, we take
advantage of the theoretical properties of TRPDS to make use of approx-
imation models in order to reduce the computational cost of simulation-
based optimization. We describe the extension, which we call mTRPDS,
and present the results of a case study for two earth penetrator design
problems. In the case study, we conduct computational experiments with
an array of approximations within the mTRPDS algorithm and compare
the numerical results to the original TRPDS algorithm and a trust-region
method implemented using the speculative gradient approach described
by Byrd, Schnabel, and Shultz. The results suggest new ways to improve
the algorithm.
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1 Introduction

Coupling optimization software with simulations has become a common way to
address optimal design and analysis questions. For example, one may want to
identify parameters for a new model such that simulation results most closely
match experimental results or to determine an optimal device design. It is well-
known that simulation-based optimization problems pose many challenges. We
consider gradient-based methods in which finite-difference approximations to
the gradient are used because analytic gradients are not available. We consider
problems with a small number of variables, so the dominant optimization cost
is the function evaluation cost. Our goal is to reduce the number of function
evaluations performed by leveraging parallelism and approximation models that
incur less computational expense.

There are many ways of parallelizing optimization algorithms such as [1]-
[5]. We focus on two variants of trust-region optimization methods. The first is
a speculative gradient technique introduced in [6]. The key assumption of this
method is that in a classical Newton method (with either line search or trust
region), the initial trial point at each iteration is usually accepted. Since small
clusters of processors are commonly available, the additional processors can be
used to begin computing finite-difference gradient components at the trial point
while the function is being evaluated. If the trial point is rejected, nothing is
lost. However, since it is usually accepted, this approach results in substantial
computational savings. The other approach we employ is the Trust-Region Par-
allel Direct Search (TRPDS) algorithm developed in [7]. This method combines
the trust-region version of a Newton method with a parallel direct search (PDS)
method in a way that retains the best properties of both. In particular, PDS is
used to augment the set of search directions to offset inaccuracies in the numer-
ical gradient approximations. Since PDS is inherently parallel, this can be done
without any additional cost when multiple processors are available.

Approximation models are another approach to reducing the overall cost of
the optimization. There are many ways in which an approximation to a high-
accuracy model can be constructed, such as response surface and spacing map-
ping techniques for constructing surrogates in [9]. Examples of optimization
strategies that make use of approximations are described in [10]-[13]. In this
work, we consider the use of approximation models within the TRPDS algorithm.
Unlike [10] and [13], this approach incorporates the use of numerical gradients.
In addition, we do not assume that trial iterates satisfy decrease conditions by
construction as is true in classical trust-region methods and in [12]. Our work
is related to [11] in that both fall into a general class of trust-region algorithms
described in [8], and both leverage the flexibility of this class of algorithms by
using approximation models to reduce computational cost. The primary distinc-
tion is that our approach seeks to find decrease quickly at each iteration using
the approximation rather than optimizing the approximation at each iteration as
in [11]. We will present a case study using TRPDS in conjunction with approxi-
mations obtained by reducing accuracy of the physics model and by constructing
quadratic representations. Results suggest ways of improving the algorithm.
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2 Speculative Gradients

Recall that a trust-region method is an optimization method in which each
iteration entails constructing a quadratic Taylor series expansion of the function
and minimizing that expansion over a region in which it is expected to be a good
approximation to the function. We refer the reader to standard references like
[19] for details, but we present a summary of the speculative gradient version of
the algorithm here.

We first note that a function gradient is required to construct each Taylor
series expansion and is computed using finite-difference calculations since an-
alytic gradient information is not available. Furthermore, let us assume that
we have p processors at our disposal. For simplicity, the algorithm is described
assuming that a function evaluation uses one processor and forward/backward
finite-differences are being performed. Generalizing to multiprocessor function
evaluations and central differences is straightforward. To maximize the use of
available processors, one processor is used to evaluate the trial point, and the
remaining p− 1 processors are used to calculate up to p− 1 components of the
finite-difference gradient. If the trial point is accepted, we have p−1 components
of the gradient available and only need to calculate the remaining n − (p − 1)
components, where n is the problem dimension. If the trial point is not ac-
cepted, no time is lost because the function evaluation is required regardless.
The speculative-gradient trust-region algorithm is shown below in Algorithm 1.
Here xk is the current iterate, s is the trial step, g(xk) is the gradient of f at
the current point, Hk ≈ ∇2f(xk) is the Hessian approximation at the current
point, δk is the size of the trust region, and

ψ(s) = g(xk)T s +
1
2
sTHks. (1)

Algorithm 1. Trust-Region Method with Speculative Gradients
Given p processors, x0, g0, H0, δ0, and η ∈ (0, 1)
for k = 0, 1, . . . until convergence do

for i = 0, 1, . . . until step accepted do
1. Find si that approximately solves the quadratic subproblem
2. Processor 0: evaluate f(xk + si)

Processor j: evaluate gj−1(xk + si) for j = 1, . . . , p− 1
3. Compute ρ = (f(xk + si)− f(xk))/ψ(si)
if ρ > η then

4. Accept step, set xk+1 = xk + si

5. Processor j: for j = 0, . . . , p− 1:
for l = j + 1, . . . , n− (p− 1), step p, do

6. Evaluate gl+(p−1)(xk + si)
7. Update Hk

else
8. Reject step

9. Update δk
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3 TRPDS with Generalized Approximation Models

In 2002, Hough and Meza developed the Trust Region-Parallel Direct Search
(TRPDS) algorithm [7]. TRPDS employs the trust-region framework but uses
the PDS algorithm of Dennis and Torczon [1] to solve a non-standard subprob-
lem, the PDS subproblem, at each iteration. Solving this subproblem entails
using PDS to minimize the function itself subject to the trust-region constraint
and a fraction of Cauchy decrease constraint. See [7] for more details.

The original motivation for TRPDS was to combine the desirable convergence
properties of trust-region methods with the robustness of PDS for low-accuracy
functions. However, this algorithmic combination has a great deal of additional
flexibility, which we leverage by extending the subproblem solution to a two-
phase approach that incorporates the use of an approximation model. The first
phase consists of using PDS to find the j best solutions to the following problem:

min
s∈IRn

m(xk + s) (2)

s. t. ‖s‖2 ≤ 2δk,

ψ(s) ≤ β‖g(xk)‖min
(
δk,

‖g(xk)‖
C

)
,

where j is an integer, m is a computationally inexpensive approximation to the
objective function, xk is the current iterate, s is the trial step, δk is the size of the
trust region, β > 0, C > 0, and ψ(s) is defined in (1). This resembles the PDS
subproblem except the objective function has been replaced by an approximation
model. Also, the constraint on ψ(s) enforces the fraction of Cauchy decrease
condition. We are using p processors and are taking j = p for simplicity of
description. In the second phase, each processor evaluates the objective function
at one of these j trial points. The point that yields the lowest function value
is returned to and processed by the trust-region framework. This variation of
TRPDS, referred to as mTRPDS, is given in Algorithm 2 below.

Algorithm 2. mTRPDS
Given p processors, x0, g0, H0, δ0, and η ∈ (0, 1)
for k = 0, 1, . . . until convergence do

1. Solve HksN = −gk

for i = 0, 1, . . . until step accepted do
2. Form an initial simplex using sN

3. Compute the p best approximate solutions s1, . . . , sp to (2) using PDS
4. Determine s ∈ {s1, . . . , sp} that minimizes f(xk + s)
5. Compute ρ = (f(xk + si)− f(xk))/ψ(si)
if ρ > η then

6. Accept step and set xk+1 = xk + si, evaluate gk+1, Hk+1

else
7. Reject step

8. Update δ
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In [7], it was observed that the TRPDS class of algorithms fits into the gen-
eralized trust-region framework of Alexandrov et al. [8], which provides much
flexibility in the choice of trust-region model and in the step computation. In par-
ticular, let a be an approximation to the objective function, f . If a(xk) = f(xk),
and ∇a(xk) = ∇f(xk), and the sequence of iterates generated during the opti-
mization satisfies a fraction of Cauchy decrease condition according to a, then
the standard trust-region convergence theory implies this class of methods will
converge to a local minimizer of f [8]. Note that a is different from the approxi-
mation, m, described in mTRPDS. The former could be any model that satisfies
the conditions above; however in mTRPDS, as in TRPDS, we fix a = ψ, where
ψ is defined in (1). Furthermore, the fraction of Cauchy decrease condition is en-
forced by the second constraint in (2), so the iterates generated by mTRPDS also
satisfy the above assumptions. Thus, as with TRPDS, mTRPDS is guaranteed
to converge according to the theory in [8].

Now that we have established the convergence properties of our TRPDS
modification, we present a case study for an earth penetrator design problem.

4 Case Study for Earth Penetrator Design

To evaluate the mTRPDS algorithm, we consider two problems in earth pene-
trator design, a problem of long-standing interest to the Departments of Energy
and Defense. We consider the scenario in which there is a pre-existing hole in
the target, as depicted in Fig. 1.

Fig. 1. The earth penetrator radius is held fixed, while the lengths are varied indepen-
dently. The goal is to find section lengths that will optimize mission performance.

The penetrator model is fairly simple in that we consider it to be a solid
“egg” made of one material. The penetrator shaft is divided into three sections,
and their lengths are varied independently. The radius is held constant. In the
first problem, we wish to find lengths that minimize the maximum acceleration
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subject to bounds on the length parameters. Our optimization problem is the
following:

min
L∈IR3

F (L) = max(acceleration) (3)

s.t. li ≤ Li ≤ ui, i = 1 . . . 3,

where L is the vector containing the three unknown length parameters, Li, and li
and ui are the lower and upper bounds, respectively. In the second problem, we
wish to find lengths resulting in maximal penetration depth subject to bounds
on the length parameters. Our optimization problem is the following:

min
L∈IR3

F (L) = −(depth of penetration) (4)

s.t. li ≤ Li ≤ ui, i = 1 . . . 3.

Presto, a Sandia-developed three-dimensional explicit transient dynamics
code that is implemented using Lagrangian finite elements [14], is used to model
the mechanical deformation of the penetrator upon impact. The ACME library
[15] is used for the contact algorithms. We use a finite element model that rep-
resents a solid, homogeneous body. The penetrator is modeled as an elastic
material, and a Mohr-Coulomb soil constitutive model is used to represent the
target. The penetrator and target models are axisymmetric. CUBIT [16] was
used to develop a parametric mesh model that was used to generate the finite
element mesh for each set of length parameters. Meshes consist of eight-node hex
elements, and the time step is chosen to satisfy the Courant stability condition.

To compare the approaches, we ran a set of computational experiments on
a Linux cluster with dual 3.6 GHz Intel EM64T processors with 6 GB RAM.
Each node runs Red Hat Enterprise Linux WS 4 and MPICH over an Infiniband
network. For mTRPDS, we chose a range of approximations constructed in the
following ways: 1) altering the mesh discretization, 2) altering the amount of
event time simulated, and 3) using a Taylor series to construct a quadratic model
of the function. The results were compared to those obtained using TRPDS and
the trust-region method with speculative gradients. In all cases, the gradient was
approximated by central differences, and a BFGS approximation to the Hessian
was employed.

We chose the number of processors to be that which is ideal for speculative
gradient computation. The penetrator design problem has three variables, so
seven function evaluations need to be done simultaneously to compute the ob-
jective and central difference gradient at the trial iterate. We used 16 processors
for each simulation and one for the optimization process, totaling 113 processors.
Thus, we also used 113 processors for the mTRPDS computational experiments.
The ideal settings for mTRPDS on 113 processors are a search pattern size (sps)
of 7 and j = 7. The optimization algorithms are implemented in OPT++, and
additional algorithmic parameters were set to their default values shown in [17].

Table 1 shows the set of algorithms and models used in the experiments and
the wall clock time for a single execution of each model. The approximation
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models were named according to the following convention: MeshXk refers to the
model using a mesh with X thousand elements; TimeYms refers to the model
in which the event time simulated is Y milliseconds, and QuadraticModel is the
quadratic Taylor series expansion for f . The results of the experiments appear
in Figs. 2 through 4. Figure 2 shows the wall clock times to reach a 0.1% change
in the function value for the algorithms and approximations tested. We use this
criteria because investigation into behavior of the algorithms after this point
uncovered the need for further research into useful numerical stopping criteria.

Table 1. This table shows the algorithm-model combinations used in experiments and
the time required for a single execution of each model. SpecGrad and TRPDS use the
truth model, where mTRPDS uses the truth model along with the specified approxima-
tion models.

Key Algorithm Model Time for Single
Model Execution

1 SpecGrad Truth (Mesh640k, Time25ms) 2− 3 hours

2 TRPDS Truth (Mesh640k, Time25ms) 2− 3 hours

3 mTRPDS QuadraticModel negligible

4 mTRPDS Mesh10k 0.8− 1.3 hours

5 mTRPDS Mesh80k 1.3− 1.8 hours

6 mTRPDS Time6.25ms 1.1− 1.6 hours

7 mTRPDS Time12.5ms 1.7− 2.3 hours

(a) (b)

Fig. 2. Key is given in Table 1. (a) This figure shows the wall clock time required
to achieve a 0.1% change in the function value for (3). Variations in results are due
primarily to different numbers of iterations. (b) This figure shows the wall clock time
required to achieve an 0.1% change in the function value for (4). Variations in results
are due primarily to different costs per iteration.
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For problem (4), shown in Fig. 2b, all experiments took approximately the
same number of iterations. The variations in wall clock times, therefore, are due
primarily to differences in the average wall clock time per iteration. We see from
Fig. 3b that there can be a notable difference in time per iteration. Further
investigation into these differences revealed opportunities to improve the com-
putational efficiency of the mTRPDS algorithm. For the depth of penetration,
the approximation models track the truth fairly well (see [18]). This indicates
that we should reduce the value of j and incorporate the computation of spec-
ulative finite-difference gradients for those j points. It is possible that the best
choice is j = 0. This would reduce the number of truth evaluations needed at
each iteration, thereby reducing the total time. We also found that PDS was
doing approximation evaluations that make little or no apparent contribution
to the progress of the optimization algorithm. Even though PDS is operating
on the approximation models, this can add up to notable time. We would like
to eliminate that by developing a dynamic scheme for managing the amount
of work done by PDS based on the quality of the approximation evaluations it
does.

(a) (b)

Fig. 3. Key is given in Table 1. (a) This figure shows the average time per iteration for
(3). Results suggested a need for better characterization of algorithm and approxima-
tion performance. (b) This figure shows the average time per iteration for (4). Results
suggested specific improvements in computational efficiency for mTRPDS.

Further investigation into the results for problem (3) show that the primary
difference in wall clock times (shown in Fig. 2a) is due to the algorithms tak-
ing different numbers of iterations. We see in Fig. 3a, however, that several
algorithm-model combinations have comparable average times per iteration. To
get further insight, we plot the function value versus iteration number for those
variants in Fig. 4. We see that the TRPDS-based algorithms start out the same
as the speculative gradient algorithm but then move toward solutions with lower
function values, thereby taking longer. To better understand the reasons for this
behavior, further characterization of the effects of problem features on algorithm
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performance is needed. Such characterization requires a set of computationally
expensive, physics-based test problems. Test problems with these characteristics
are hard to come by, as standard test sets do not meet these criteria.

Fig. 4. Log of function value vs. iteration for the four algorithms with comparable
average time per iteration for problem (3). TRPDS-based algorithms move to a solution
with a lower function value, thereby taking more iterations.

5 Conclusions and Future Work

We have extended the TRPDS algorithm of Hough and Meza to include the
use of an approximation model in solving the PDS subproblem. This approach,
which we call mTRPDS, uses the approximation to identify several candidates
for the trial iterate and takes advantage of parallel processing to evaluate them.
The algorithm was studied, together with TRPDS and a speculative gradient
implementation of the classical trust-region method, in the context of two earth
penetrator optimal design problems but is generally applicable to any simulation-
based unconstrained or bound-constrained nonlinear optimization problem.

The empirical results we collected from the numerical tests suggested both
short-term, concrete areas for improving the computational efficiency of mTRPDS
and longer-term research areas. To improve computational efficiency, we will fur-
ther examine the choice of j to reduce the number of truth evaluations needed.
We will also develop a means of dynamically managing the amount of work PDS
performs using the approximation model. Longer-term research includes devel-
oping meaningful numerical stopping criteria for optimization algorithms and
characterizing the effects of problem characteristics on algorithm performance.
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