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Summary. The presence of a few poor-quality mesh elements can negatively affect
the stability and efficiency of a finite element solver and the accuracy of the associ-
ated partial differential equation solution. We propose a mesh quality improvement
method that improves the quality of the worst elements. Mesh quality improvement
of the worst elements can be formulated as a nonsmooth unconstrained optimization
problem, which can be reformulated as a smooth constrained optimization problem.
Our technique solves the latter problem using a log-barrier interior point method
and uses the gradient of the objective function to efficiently converge to a stationary
point. The technique can be used with convex or nonconvex quality metrics. The
method uses a logarithmic barrier function and performs global mesh quality im-
provement. Our method usually yields better quality meshes than existing methods
for improvement of the worst quality elements, such as the active set, pattern search,
and multidirectional search mesh quality improvement methods.
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1 Introduction

High-quality meshes are necessary for the stability [1] and efficiency of finite
element (FE) solvers and for the accuracy [2, 3, 4] of the solution of the asso-
ciated partial differential equations (PDEs). Poor quality elements affect the
conditioning of the linear system that arises from the PDE and the mesh [1].
Therefore, mesh quality improvement algorithms are used to improve the qual-
ity of mesh elements when the initial qualities of the elements obtained from
mesh generators are poor or after mesh warping [5, 6, 7]. There are numer-
ous geometric mesh quality improvement algorithms which are effective in
improving the average mesh quality [8, 9, 10, 11, 12]. However, even a few
poor quality elements can negatively affect the entire finite element analysis
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due to the resulting ill-conditioned matrices that hinder the efficiency and
the accuracy of the finite element solvers [13]. Therefore, we focus on the de-
velopment of an algorithm to improve the worst quality mesh element. Our
algorithm solves a smooth constrained optimization problem to improve the
worst quality elements and can be classified as an interior point method [14].

Other algorithms have been developed for improvement of the quality
of the worst element. Freitag and Plassmann developed an active set algo-
rithm [15] for mesh quality improvement. However, their algorithm requires
the the objective function specifying the mesh quality metrics to be con-
vex. Park and Shontz developed two derivative-free optimization algorithms,
namely the pattern search and multidirectional search methods [16], for mesh
quality improvement. These algorithms do not use the gradient to optimize
the mesh quality; thus, we expect their rate of convergence to be slow. They
are described in more detail in Section 2.

Quality improvement of worst quality mesh elements is a nonsmooth un-
constrained optimization problem. In Section 3, we describe the problem state-
ment and show its reformulation into a constrained optimization problem. We
solve this unconstrained optimization problem using an interior point method.

We develop a log-barrier interior point method [14] that seeks to improve
the quality of the worst element in a mesh. Our method overcomes the dis-
advantages posed by the other algorithms presented above by employing a
logarithmic barrier term, which is a function of the quality of the worst
element. Though derived from classical optimization theory, the log-barrier
method in our context has the following natural interpretation. On each iter-
ation, the gradient of the log-barrier function points in a direction that is a
weighted combination of the directions that improve each individual element.
The weights are selected automatically in such a way that elements with the
worst qualities have the highest weights (see (6) below). Therefore, the method
globally updates vertex positions but concentrates on the improvement of the
worst elements. In addition, the method has the built-in feature that the line
search for maximizing the objective function will automatically prevent inver-
sion, since the objective function (weighted element qualities) tends to minus
infinity as inversion is approached. Our interior point method solves the pri-
mal formulation of the constrained optimization problem and can be used on
both convex and nonconvex objective functions. The algorithm is presented
in Section 4, and its characteristics are discussed in Section 5.

We run numerical experiments to assess the efficiency of our algorithm by
comparing it against existing algorithms such as the active set, pattern search,
and multidirectional search methods. Numerical experiments and their results
are discussed in Section 6. We give our concluding remarks and indicate future
research directions in Section 7.
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2 Related Work

2.1 Derivative-Free Algorithms for Mesh Quality Improvement

Park and Shontz developed pattern search (PS) and multidirectional search
(MDS) mesh quality improvement algorithms [16] to improve the worst quality
mesh element. Their derivative-free algorithms do not compute the gradient
of the objective function, but instead use function evaluations to move the
vertices. These algorithms also employ local mesh quality improvement, as
pattern search techniques are not efficient on large problems. The following
objective function is maximized in order to improve the worst element mesh
quality:

f(x) = min
1≤i≤m

qi(x), (1)

where m is the number of elements, and qi(x) is a mesh quality metric.

Pattern Search (PS) Method. The PS method moves a mesh vertex in
one of a pre-defined (usually orthogonal) set of directions. The direction and
distance by which each vertex is moved is determined by evaluating objective
function at the pattern points. A backtracking line search is used to untangle
an element if vertex movement deems this necessary.

Multidirectional Search (MDS) Method. The MDS method uses search
directions given by a simplex, i.e., a triangle (2D) or a tetrahedron (3D). The
simplex is expanded, contracted, and/or reflected in order to determine the
optimal position for a vertex. A backtracking line search is used to untangle
an element, if needed, in a similar manner as for the PS method.

2.2 Active Set Method for Mesh Quality Improvement

Freitag and Plassmann developed an active set mesh quality improvement
algorithm [15], which maximizes the quality of triangular or tetrahedral mesh
elements. To guarantee convergence, the relevant objective function formed
by quality metrics should possess convex level sets. Examples of such quality
metrics include the minimum of the sine of the angles of the triangle in 2D and
the aspect ratio quality metric in 3D for individual submeshes. This method
employs a local quality improvement technique, where individual submeshes
are optimized by moving one vertex at a time.

For each submesh, the objective function is defined as the quality of the
worst element. The objective function described above in (1) is maximized
in order to improve quality of the worst element in the mesh. They define
active value as the current value of the objective function due to the vertex
placement, x. They define active set, denoted by A, as a set of those func-
tions that result in the active value. The nonsmooth optimization problem
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of improving the quality of the worst element is solved using the steepest
descent algorithm [14]. Here, the gradient and hence the descent direction is
obtained by considering all possible convex combinations of active set gradi-
ents, ∇x (qi(x)) = gi(x), and choosing the one that solves

min
x

ḡT ḡ,where ḡ =
∑
i∈A

βigi(x),

s.t.
∑
i∈A

βi = 1, βi ≥ 0.

A backtracking line search technique is used to determine the points at which
the active set changes, and the vertex is moved to the point that results in
the best quality improvement.

3 Mesh Quality Improvement Problem Formulation

In this section, we mathematically formulate our mesh quality improvement
problem. Our problem involves the description of the quality metrics used
to measure the mesh quality and the objective function that is optimized
in order to improve the mesh quality. We use two quality metrics, i.e., one
smooth and one nonsmooth, to demonstrate the effectiveness of our algorithm.

Aspect Ratio Quality Metric. We define the quality of tetrahedral mesh
element i as

qi(x) =
(

l21 + l22 + · · ·+ l26
6

) 3
2

/

(
vol× 12√

2

)
,

where x are the vertex positions, vol is the unsigned volume of the ith tetra-
hedron, and lj is the length of side j of the tetrahedron [17]. The range of this
quality metric is from 1 to ∞, where 1 is the quality of an regular tetrahedron.
The quality tends to infinity as the tetrahedron becomes degenerate.

Nonsmooth Aspect Ratio Quality Metric. We define the quality of the
ith tetrahedral mesh element as

qi(x) =
√

2
12

l3max

vol
,

where lmax is the length of the longest edge of the tetrahedron. The range of
this quality metric is from 1 to ∞, where 1 is the quality of an equilateral
tetrahedron. The quality tends to infinity as the tetrahedron becomes degen-
erate.
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Objective Function. The problem of improving the worst quality element
can be expressed as

min
x

(
max

i∈[1,m]
qi(x)

)
.

However, our algorithm is designed for maximization of a quality metric. Thus,
the objective function is modified by taking the reciprocal of the quality metric
as follows:

max
x

(
min

i∈[1,m]

1
qi(x)

)
.

This can be reformulated as a constrained optimization problem

max
x

t subject to t <
1

qi(x)
,∀i ∈ [1,m]. (2)

Note that all of these formulations improve the quality of the worst element,
as minimizing a function is equivalent to maximizing its reciprocal.

4 A Log-Barrier Method for Mesh Quality Improvement

In this section, we describe our log-barrier method for mesh quality improve-
ment. We develop our algorithm based on interior point methods, which can
be used to solve constrained optimization problems [14]. Our method uses a
logarithmic barrier term, which emphasizes the improvement of poor quality
elements, and solves the constrained optimization problem using the gradient
of the objective function.

4.1 Interior Point Methods

Interior point methods are a class of methods used to solve constrained op-
timization problems. For a constrained optimization problem, the objective
function, f(x), is maximized while respecting the constraint, g(x) < 0. When
interior point methods are employed, the constraint is added as logarithmic
barrier term to the objective function. The new objective function, F (x, µ),
is given by:

F (x, µ) = f(x) + µ log (−g(x)),

where µ > 0. As we will describe in Section 5.1, µ is chosen such that it
enables the satisfaction of the Karush Kuhn Tucker (KKT) conditions (i.e.,
first order, necessary conditions) [14]. The modified objective function is iter-
atively maximized using an unconstrained optimization algorithm. On every
iteration, µ is reduced so that the barrier term is eventually negligible, and
the original objective function, f(x), is maximized subject to the constraint.
Psuedocode for a typical interior point method is presented in Algorithm 1.
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Algorithm 1 Interior Point Method
Input: f(x), g(x), tol.
Output: maxx f(x) such that g(x) < 0.
Initialize µk > 0 and x0 such that g(x0) < 0.
while µk ≥ tol do

Maximize f(x) + µk log (−g(x)) using any gradient-based optimization
algorithm.

Decrease µk towards 0.
end while

4.2 The Log-Barrier Method for Mesh Quality Improvement

We seek to improve the worst mesh element quality. A quantity, t, is defined,
which is a function of the worst quality element such that t < mini

1
qi(x) , where

qi(x) is the quality of the ith element. When t is maximized, the quality of the
worst element is improved. The expression t− 1

qi(x) < 0 is used as a constraint.
We iteratively maximize

t + µk

m∑
i=1

log
(

1
qi(x)

− t

)
(3)

to improve the quality of the worst element in the mesh. After every iteration,
µ is brought closer to 0. We modify t such that d

dt (F (x, t, µ)) ≈ 0. For a fixed
µ and x, the objective function is strictly concave in t. Therefore, setting its
derivative to 0 corresponds to globally maximizing the objective w.r.t. t. The
log-barrier method for mesh quality improvement is shown in Algorithm 2.

Algorithm 2 Interior Point Method for Mesh Quality Improvement
Initialize µk and t < 1/qi(x) for all i ∈ [1, m] where qi(·) is the quality metric

function.
while not converged do

Maximize F (x, t, µk) = t + µk

∑m

i=1
log

(
1

qi(x)
− t

)
, where t and µ are held

constant, using the nonlinear conjugate gradient method.
Decrease µk towards 0.
Update t to a new value such that d

dt
(F (x, t, µ)) ≈ 0.

end while

Log Barrier Term for Nonsmooth Quality Metrics. In our paper, the
nonsmooth aspect ratio quality metric is defined using the longest edge of a
tetrahedron. Our method handles the metric using each of the edges in the
tetrahedron to compute six qualities for the tetrahedron and uses them as
additive terms in the log barrier function. Since each individual term (for
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each edge in the tetrahedron) is smooth, the resulting log barrier function is
also smooth.

5 Characteristics of the Log-Barrier Method for Mesh
Quality Improvement

In this section, we show that the set of first-order necessary conditions, i.e.,
the KKT conditions [14], are satisfied for a solution of our constrained opti-
mization problem. This fact is well known in the optimization community; we
are including it here for the sake of completeness and also to provide more
detail about the properties of the objective function and the algorithm. In
addition, we examine the monotonicity of our algorithm.

5.1 Satisfaction of the KKT Conditions

For a solution, x∗, of a constrained optimization problem, the gradient of the
Lagrangian vanishes at the solution, i.e., ∇xL(x∗, t∗, λ∗) = 0. For (2), the
Lagrangian is given by

L(x, t, λ) = t +
m∑

i=1

λi

(
1

qi(x)
− t

)
.

Hence, its gradient is given by

∇xL(x, t, λ) =
m∑

i=1

λi∇x

(
1

qi(x)

)
. (4)

The nonlinear conjugate gradient (CG) step in the log barrier method com-
putes x such that the gradient of the objective function given by (3), i.e.,
∇xF (x, t, µk), vanishes. Thus,

∇xF (x, t, µk) = µk∇x

m∑
i=1

log
(

1
qi(x)

− t

)
(5)

= µk

m∑
i=1

1(
1

qi(x) − t
)∇x

(
1

qi(x)

)
. (6)

From Equations (4) and (6), we see that, if λi satisfies

λ∗i =
µ∗k

1
qi(x∗)

− t∗
, (7)

then the solution obtained by our method satisfies the stationarity require-
ment of the KKT conditions. The stationarity conditions are satisfied, as
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∇xL(x∗, t∗, λ∗) =
m∑

i=1

λ∗i∇x

(
1

qi(x∗)

)
= 0.

Primal feasibility is also satisfied, since

1
qi(x∗)

− t∗ ≥ 0.

Dual feasibility is satisfied if
λ∗i ≥ 0.

From (7), and since µk > 0 and 1
qi(x∗)

− t∗ > 0 at the solution, we have

λ∗i ≥ 0.

The complementarity condition requires that

λ∗i

(
1

qi(x∗)
− t∗

)
= 0.

Substituting for λ∗i , we see that

λ∗i

(
1

qi(x∗)
− t∗

)
= µk.

The log-barrier method drives µk to 0 as k → ∞. Thus, the complementar-
ity condition is also satisfied. Therefore, our log-barrier method converges to
stationary points. Our implementation explicitly checks that the line search
exploration moves the vertices in an ascent direction.

5.2 Monotonicity

In our algorithm, the optimization method maximizes the objective function
given by (3),

F (x, t, µk) = t + µk

m∑
i=1

log
(

1
qi(x)

− t

)
,

on every iteration. Because t and µk > 0 are constants for a given iteration, the
maximization of the objective function is equivalent to maximization of the
sum of the logarithmic terms. This is equivalent to maximizing the product
of the terms (without taking their logarithms).

For simplicity of the analysis, let us now examine the monotonicity of our
algorithm when employed on a patch having only two elements. If we plot
the qualities of the two elements on the X and Y axes, we obtain hyperbolic
contours representing the objective function as shown in Fig. 1. In Fig. 1, P
represents a patch with near-equal qualities of the elements, and Q represents
a patch with unequal element qualities. The symbols a, b, c, and d represent
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the paths the patches can take in order to maximize the objective function.
Ideally, P should take path b, and Q should take path d so that the qualities
of both the elements improve. In many cases, this is not possible, as improving
the quality of one of the elements decreases the quality of the other. In the
near-equal case, if P takes path a, the quality of the worst element decreases.
Thus, we see that our algorithm may not monotonically increase the quality
of the worst element in the mesh. For the unequal case, path c also improves
the quality of the worst element.

Fig. 2 shows how the nonsmooth objective function for maximizing the
worst quality element in Fig. 2(a) is converted to a smooth objective function
in Fig. 2(b). In Fig. 2(a), the nonsmooth aspect ratio is plotted for a patch with
a free vertex in the square formed by the diagonal from (0, 0) to (1, 1). Other
vertices are on the perimeter of the square at (0, 0), (0, 0.5), (0, 1), (0.5, 1),
(1, 1), (1, 0.5), (1, 0), and (0.5, 0). Note that the contours are nonsmooth when
plotting the worst quality element in the patch. For illustration purposes, we
chose the point (0.1, 0.1), where the function is nonsmooth and set t in the
log-barrier objective function as some quantity less than the worst element
quality in the patch with the free vertex at (0.1, 0.1). When the contours of
the objective function are plotted, we see in Fig. 2(b) that they are smooth.
Our algorithm moves the free vertex at (0.1, 0.1) to a point close to (0.5, 0.5).
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Fig. 1. Illustration of possible nonmonotonicity in the convergence of our algorithm.
The X and Y axes represent the qualities of two elements in a patch, and the
hyperbolic contours represent the sum of the two qualities on a logarithmic scale
(which is maximized in an iteration). P and Q are possible locations of qualities of
the patch. The symbols a, b, c, and d are the possible paths our algorithm can take.
Although the objective function is maximized, notice that the quality of the worst
element may not improve in all cases.
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(a) Contours of the mesh quality
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(b) Contours of the objective func-
tion

Fig. 2. Contours of the worst element quality and log-barrier objective function
for a patch with eight vertices on the perimeter. (a) Contours of the nonsmooth
aspect ratio quality metric. They are nonsmooth at points where two worst quality
elements are present. (b) Contours of the log-barrier objective function with the free
vertex at (0.1, 0.1). Notice how smooth the contours are.

6 Numerical Experiments

In this section, we describe the numerical experiments that we designed to
evaluate the performance of our method. We implemented our algorithm,
the PS, and the MDS methods in the Mesquite Mesh Quality Improvement
Toolkit Version 2.0.0 [18]. The active set method was already implemented in
Mesquite. For each of the methods, the movement of the surface vertices was
enabled. For the star meshes, the gradient of the objective function for the
boundary vertices was projected onto the respective planes. For the sphere
meshes, if the boundary vertices moved away from the surface, they were
snapped back onto the surface.

Star and sphere (Fig. 3) meshes of various sizes were constructed using
CUBIT [19]. In order to test our algorithm on challenging meshes, 50% of the
vertices in the original meshes were randomly perturbed. The following three
experiments were performed.

6.1 Effect of Parameters on Algorithmic Performance

For our first experiment, the following set of parameters were modified to
determine their effect on the performance of the mesh quality improvement.
Three variants of the nonlinear conjugate gradient method, i.e., the Fletcher-
Reeves, Polak-Ribière, and Hestenes-Stiefel variants were used to improve the
mesh quality in the inner loop. Two, four, and eight CG iterations per outer
iteration were used in each of the experiments. The parameter µ was reduced
to 90%, 60%, and 30% of its value after every outer iteration. We used the
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(a) Star domain (b) Sphere domain

Fig. 3. Unperturbed coarse meshes on the two domains representative of actual
meshes considered in this paper.

largest star mesh with approximately 1.012 million elements. We maximized
the reciprocal of the aspect ratio quality metric for each of the subexperiments.
The subexperiments were carried out for all combinations of these parameters.
The numerical experiments were run until the quality of the worst element
did not improve for five successive iterations.

Hestenes-Stiefel Conjugate Gradient Method. For this subexperiment,
the Hestenes-Stiefel CG method was used for mesh quality improvement. The
results from all the parameter combinations are shown in Fig. 4. Fig. 4(a)
shows the plot of mesh quality verses time when µ was reduced to 30% of its
value in every outer iteration for a set of CG iterations per outer iteration.
It can be clearly seen that eight CG iterations for every outer iteration give
the best mesh quality improvement. The results indicate that eight and four
iterations of Hestenes-Stiefel CG give the best performance for the 60% and
90% cases, respectively.

Fletcher-Reeves and Polak-Ribière Conjugate Gradient Methods.
We repeated the above subexperiment using the Fletcher-Reeves and Polak-
Ribière CG methods. The results for two iterations of Polak-Ribière CG and
four iterations of Fletcher-Reeves CG are show in Figs. 5(a), (b), and (c). For
all the numerical experiments we conducted, it was seen that four Fletcher-
Reeves CG iterations per outer iteration returned the best performance Polak-
Ribière CG method gave best performance when two CG iterations were car-
ried out for every outer iteration.

Parameters for Best Performance of Log-Barrier Method. Fig. 5
shows a summary of the best results obtained for the above subexperiments.
Figs. 5(a), (b), and (c) show the best performance of each of the CG variants
for µ being reduced to 30%, 60%, and 90% of its value after every outer it-
eration, respectively. Fig. 5(d) summarizes the best performing results from
Figs. 5(a), (b), and (c). For each of the cases, the Hestenes-Stiefel CG variant
gives the best performance. When µ is reduced to 90% of its value after four
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iterations of the Hestenes-Stiefel CG algorithm, maximum quality improve-
ment is seen. Thus, we use this set of parameter values in our subsequent
experiments, described in Sections 6.3 and 6.4, in which we compare the per-
formance of our methods with existing algorithms for worst element mesh
quality improvement including the active set, PS, and MDS methods.
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Fig. 4. Results obtained by using the Hestenes-Stiefel CG on the star mesh. The
reciprocal of the aspect ratio is maximized using the log-barrier method. The per-
centages refer to the factor to which µ is reduced after every outer iteration. The
number of iterations refer to the number of CG iterations per outer iteration.

6.2 Scalability

For this experiment, the reciprocal of the aspect ratio metric was maximized to
improve the quality of the perturbed meshes using all the methods described
in Section 2. Two inner iterations were carried out for every outer iteration
each the method. The log-barrier method employed the Hestenes-Stiefel con-
jugate gradient algorithm [14] in the inner loop. After every outer iteration,
µ was reduced to 90% of its value in the previous iteration. In order to accu-
rately estimate the time per iteration, our implementation was executed for
50 iterations on each star mesh.
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(d) Summary of best results from
this experiment

Fig. 5. Results obtained by using variants of CG on the star mesh. The reciprocal of
the aspect ratio is maximized using the log barrier method. The percentages refer to
the factor to which µ is reduced after every outer iteration. The number of iterations
refer to the number of CG iterations per outer iteration.

The results from the scalability experiment are shown in Fig. 6, where the
time per outer iteration scales linearly (for each method) with the number of
elements in the mesh, as the time required to compute the gradient and move
the vertices is directly proportional to the mesh size. We determined the order
of convergence as a function of the problem size for our method. The order of
convergence, α, is given by T = k∗mα, where T is the time to convergence, m
is the number of mesh elements, and k > 0 is a constant. In order to determine
α, a least squares fit was computed by taking the logarithm of both sides. The
value of α was found to be 0.9946.

6.3 Comparison with Existing Mesh Quality Improvement
Methods for the Aspect Ratio Quality Metric

For this experiment, we used the largest meshes for each domain containing
approximately 1.012 million and 1.014 million elements in the star and the
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Fig. 6. Scalability experiment results. The data and the linear regression fits are
shown. In the equations, T refers to average time per iteration, and m refers to
number of elements (in thousands). The reciprocal of the aspect ratio quality metric
was maximized. The average time per iteration for the first 50 outer iterations of all
the methods were used to compute the least squares fit. For the log-barrier method,
two Hestenes-Stiefel CG iterations were carried out per outer iteration.

sphere mesh, respectively. The reciprocal of the aspect ratio quality metric
was maximized by the four algorithms previously discussed: the log-barrier,
active set, PS, and MDS methods. Several experiments were conducted to
find the values of the various parameters in each of the algorithms resulting
in the best performance (measured as the worst element quality at the time
by which our algorithm converged). The numerical experiments were carried
out until the worst element quality remained the same for five iterations. We
present results for the best performance for each of the algorithms.

The results for the mesh quality improvement on the star mesh are shown
in Fig. 7(a). Our method improved the mesh quality by the greatest amount
when compared to the other methods. It was followed by the MDS, PS, and
then the active set method. A closer inspection of the plot reveals that, in the
initial iterations, the active set method was the fastest method to significantly
improve the worst quality. The method was followed by the MDS and PS
methods. During the initial phase, our method was slower than the rest.

The slow convergence of the other three methods, despite their initial per-
formance, may have been caused by the slow propagation of unequal patches
due to their use of local mesh quality improvement. The active set method
was able to quickly improve the worst quality by a significant amount within
two iterations but became stagnant afterward. The active set method moves
every vertex to the optimal location with respect to the patch.

The optimal vertex locations are approximately determined in each it-
eration for the PS and MDS methods. Thus, unequal patches are present
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throughout the mesh. This enables steady improvement of the worst element
quality in MDS and PS. In MDS, we noticed a behavior similar to the active
set method where the worst element quality was constant for seven iterations
and then the method converged to a mesh with a slightly better quality.

The results for the sphere mesh are shown in Fig. 7(b). As in the earlier
case, our method was able to improve the mesh quality by the greatest amount.
Here the PS method was very competitive and converged faster than our
method, but to a lower optimal value. The MDS and active set methods also
converged to a lower optimal value.

# Vertices # Elements Initial Worst Quality Final Worst Quality
2,128 9,099 1.8544e-03 5.2991e-02
9,501 48,219 8.9960e-04 5.6172e-02

21,972 99,684 4.6232e-04 2.0447e-02
29,096 153,780 1.2875e-05 3.4908e-02
38,163 204,612 4.2422e-05 4.0148e-02
48,880 263,602 5.7753e-04 4.5985e-02
64,673 350,303 9.4858e-06 3.3304e-02
73,617 400,522 3.1302e-05 3.4584e-02
80,926 440,711 6.1325e-05 2.9847e-02
97,981 535,921 7.2535e-05 2.3580e-02

119,137 654,606 4.5933e-05 4.0360e-02
129,952 714,495 7.9804e-06 2.3341e-02
152,929 844,425 4.9885e-06 3.1510e-02
169,024 935,178 4.9250e-06 1.4332e-02
182,760 1,012,632 2.3352e-04 3.0506e-02

Table 1. Number of vertices and elements in the star meshes with their initial and
final qualities after 50 outer iterations of quality improvement using the log-barrier
method. The objective function that is formed from the reciprocal of the aspect ratio
quality metric is maximized. The aspect ratio metric is a smooth, convex quality
metric.

6.4 Comparison with Existing Mesh Quality Improvement
Methods for the Nonsmooth Aspect Ratio Quality Metric

Through this experiment, we demonstrate that our algorithm is also efficient
for mesh quality improvement when a nonsmooth or nonconvex quality metric
is used to define the objective function. For this experiment, the objective
function that was formed from the reciprocal of the nonsmooth aspect ratio
quality metric was maximized by the log barrier, PS, and MDS methods. The
active set method is designed to be used with a convex objective function,
and yields a tangled mesh when used with a nonconvex quality metric. Thus,
we have shown only the results for the other three methods in Fig. 8(a).
The numerical experiments were carried out until the quality of the worst
element did not improve for five iterations. It can be clearly seen in Fig. 8(a)
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that our method yields a better quality mesh than the other methods. In
Fig. 8(b), it can be seen that our log-barrier method converged to a mesh of
somewhat lower quality than the PS method. We seek to determine the line
search parameter values that can make our method converge to a mesh with
better quality.

We also found that the PS and MDS methods were very sensitive to pa-
rameter changes, but our log-barrier method and the active set method are
not as sensitive. We have shown the effectiveness of our method compared to
other existing methods. Our method can also improve the quality of a mesh
even when it is assessed using a nonsmooth, nonconvex metric.

7 Conclusions and Future Work

We have presented a log barrier interior point method for improving the
worst quality elements in a finite element mesh. We reformulated the non-
smooth problem of maximizing the quality of the worst element as a smooth
constrained optimization problem, which is solved using a log barrier inte-
rior point method. Our method uses a log barrier function whose gradient
places a greater emphasis on poor quality elements in the mesh and performs
global mesh quality improvement. Our method usually yields a better quality
mesh than other existing worst quality mesh improvement methods and scales
roughly linearly with the problem size.

We have used the conjugate gradient method to perform mesh quality
improvement in the inner loop. We plan to use Newton’s method for the ob-
jective function maximization instead of the nonlinear CG method because it
uses second-order information which may lead to faster convergence. The con-
strained optimization problem can also be solved using primal-dual Newton-

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

Time (in seconds)

W
or

st
 Q

ua
lit

y 
E

le
m

en
t

 

 

Log−Barrier
Active Set
PS
MDS

(a) Star mesh

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

Time (in seconds)

W
or

st
 Q

ua
lit

y 
E

le
m

en
t

 

 

Log−Barrier
Active Set
PS
MDS

(b) Sphere mesh

Fig. 7. Results from the experiment that compares the mesh quality improvement
algorithms. The aspect ratio quality metric was improved in the meshes.
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Fig. 8. Results from the experiment that compares the mesh quality improvement
algorithms. The nonsmooth aspect ratio quality metric was improved in the meshes.
The active set method is designed to be used with a convex objective function, and
it yields a tangled mesh when used with a nonconvex quality metric, and hence its
performance is not shown here.

based methods. An example of such a method includes the Mehrotra predictor-
corrector method [20]. We plan to explore such methods to determine the most
efficient solver for mesh quality improvement. We will also conduct research
on other barrier functions that may make our method more efficient.

Our method can be naturally extended to handle mesh untangling by ap-
propriately choosing the barrier term in the objective function. In this case, the
barrier term should place the highest emphasis on inverted elements, medium
emphasis on poor quality elements, and the least emphasis on good quality
elements. Finally, by combining these approaches, our method may be used
for simultaneous untangling and quality improvement.
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